Supplementary online material

Nasal nitric oxide in chronic rhinosinusitis with or without nasal polyps:

a systematic review with meta-analysis.

Pasquale Ambrosino¹, Antonio Molino², Giorgio Alfredo Spedicato³, Paolo Parrella¹, Roberto Formisano¹, Andrea Motta⁴, Matteo Nicola Dario Di Minno⁵, Mauro Maniscalco¹

¹Cardio-pulmonary Rehabilitation Dept, Istituti Clinici Scientifici Maugeri IRCCS, Telese Terme, Italy; ²Respiratory Division, Department of Respiratory Medicine, Federico II University, Naples, Italy.

³University of Bologna, Bologna, Italy

⁴Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli (Naples), Italy.

⁵Department of Translational Medical Sciences, Federico II University, Naples, Italy;

Table of contents:

г

Supplemental Table 1	Devices and methods for measurement of nasal nitric oxide (nNO) in included studies.
Supplemental Table 2	Assessment of quality of studies (Newcastle-Ottawa scale).
Supplemental Table 3	Meta-regression analyses. Impact of major clinical and demographic variables on nasal nitric oxide (nNO) in cases and control subjects.
Supplemental Figure 1	Funnel plot of effect size vs. precision (1/standard error) for studies evaluating nasal nitric oxide (nNO) in patients with chronic rhinosinusitis with nasal polyps (CRSwNP) and healthy controls.
Supplemental Figure 2	Funnel plot of effect size vs. precision (1/standard error) for studies evaluating nasal nitric oxide (nNO) in patients with chronic rhinosinusitis without nasal polyps (CRSsNP) and healthy controls.
Supplemental Figure 3	Funnel plot of effect size vs. precision (1/standard error) for studies evaluating nasal nitric oxide (nNO) in patients with chronic rhinosinusitis with nasal polyps (CRSwNP) and in control subjects with chronic rhinosinusitis without nasal polyps (CRSsNP).

Study	Analyzer	Technique	Transnasal airflow	Device	Equipment
Alexandersson 2019	Chemiluminescence	Aspiration during breath hold	2000 ml/min	Nasal olive	 NIOX®, Aerocrine AB (Solna,Sweden)
Arnal 1999	Chemiluminescence	Aspiration during tidal breath	700 ml/min	Nasal olive	 NO analyser, Cosma (Igny, France)
Asano 2008	Chemiluminescence	Nasal exhalation	3000 ml/min	Nasal olive	 Sievers NOA-280i[®], GE Analytical Instruments (Boulder, USA)
Bae 2014	Electrochemical	Nasal exhalation	-	-	 NObreath[®], Bedfont Scientific (Rochester, UK)
Bommarito 2008	Chemiluminescence	Aspiration during breath hold	300 ml/min	Nasal olive	 NIOX®, Aerocrine AB (Solna,Sweden)
Frendø 2018	Electrochemical	Aspiration during exhalation against resistance	300 ml/min	Nasal olive	NIOX MINO Airway Inflammation Monitor®, Aerocrine AB (Solna,Sweden)
Fu 2015	Electrochemical	Aspiration during tidal breath	300 ml/min	Nasal olive	NIOX MINO Airway Inflammation Monitor®, Aerocrine AB (Solna,Sweden)
Fu 2017	Electrochemical	Aspiration during tidal breath	300 ml/min	Nasal olive	NIOX MINO Airway Inflammation Monitor®, Aerocrine AB (Solna,Sweden)
Gilain 2002	Chemiluminescence	Aspiration during exhalation against resistance	3000 ml/min	Nasal olive	 Sievers NOA-280i[®], GE Analytical Instruments (Boulder, USA)
Guilemany 2009	Chemiluminescence	Aspiration during breath hold	3000 ml/min	Nasal olive	 SIR System N6008 NO tracer[®], SIR (Madrid, Spain)
Gupta 2013	Electrochemical	-	300 ml/min	Nasal olive	NIOX MINO Airway Inflammation Monitor®, Aerocrine AB (Solna,Sweden)
Heffler 2013	Chemiluminescence	Aspiration during breath hold	300 ml/min	Nasal olive	 NIOX®, Aerocrine AB (Solna,Sweden)
Jeong 2014	Chemiluminescence	Aspiration during exhalation against resistance	700 ml/min	Nasal olive	 Sievers NOA-280i[®], GE Analytical Instruments (Boulder, USA)
Lee 2015	Chemiluminescence	Aspiration during exhalation against resistance	300 ml/min	Nasal olive	• Eco Medics CLD 88sp NO Analyzer®, Eco Physics Inc. (Ann Arbor, USA)
Lindenberg 1997	Chemiluminescence	Aspiration during tidal breath	660 ml/min	Nasal olive	CLD 700 AL Med [®] , Ecophysics (Durnten, Switzerland)
Liu 2017	Electrochemical	Aspiration during exhalation against resistance	2500-3000 ml/min	Nasal olive	NIOX MINO Airway Inflammation Monitor®, Aerocrine AB (Solna,Sweden)
Noda 2012	Electrochemical	Nasal exhalation	3000 ml/min	Nasal olive	 NObreath®, Bedfont Scientific (Rochester, UK)
Ragab 2006	Chemiluminescence	Aspiration during breath hold	250 ml/min	Nasal olive	 LR 2000[®], Logan Sinclair (Rochester, UK)

Torretta 2015	-	-	-	-	• -
Tworek 2012	Electrochemical	-	-	Nasal olive	 ExpAir®, Medisoft (Dinant, Belgium)
Weschta 2008	Electrochemical	Nasal exhalation	3000 ml/min	Nasal mask	NIOX MINO Airway Inflammation Monitor®, Aerocrine AB (Solna,Sweden)
Williamson 2010	Chemiluminescence	Aspiration during exhalation against resistance	-	Nasal olive	NIOX®, Aerocrine AB (Solna,Sweden)
Yoshida 2019	Chemiluminescence	Nasal exhalation	3000 ml/min	Nasal olive	 Sievers NOA-280i[®], GE Analytical Instruments (Boulder, USA)

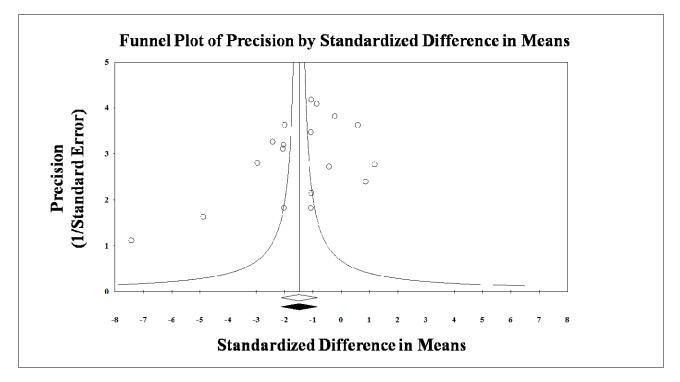
Supplemental Table S2. Assessment of quality of studies (Newcastle-Ottawa scale).

Study	Adequate case definition	Representativeness of the cases	Selection of controls	Definition of controls	Comparability of cases and controls on the basis of the design or analysis*	Ascertainment of exposure	Same method of ascertainment for cases and controls	Non-response rate	Quality
Alexandersson 2019	*	*	-	*	-	*	*	*	6
Arnal 1999	*	-	-	*	*	*	*	*	6
Asano 2008	*	*	-	*	-	*	*	*	6
Bae 2014**	-	-	-	-	-	-	-	-	NA
Bommarito 2008	*	*	-	*	-	*	*	*	6
Frendø 2018	*	*	*	*	-	*	*	*	7
Fu 2015	*	*	*	*	*	*	*	*	8
Fu 2017	*	*	*	*	*	*	*	*	8
Gilain 2002**	-	-	-	-	-	-	-	-	NA
Guilemany 2009	*	*	*	*	-	*	*	*	7
Gupta 2013	*	*	-	*	-	*	*	*	6
Heffler 2013	*	*	-	*	-	*	*	*	6
Jeong 2014	*	-	-	*	*	*	*	*	6
Lee 2015	*	*	*	*	-	*	*	*	7
Lindenberg 1997	*	-	-	*	-	*	*	*	5
Liu 2017	*	*	-	*	-	*	*	*	6
Noda 2012	*	-	-	*	-	*	*	*	5
Ragab 2006	*	*	*	*	-	*	*	*	7
Torretta 2015**	-	-	-	-	-	-	-	-	NA
Tworek 2012	*	-	-	*	**	*	*	*	7
Weschta 2008	*	*	*	*	-	*	*	*	7

Williamson 2010	*	*	-	*	**	*	*	*	8	
Yoshida 2019	*	*	-	*	-	*	*	*	6	

NA: not assessed.

*A maximum of 2 stars can be allotted in this category: \star if enrolling controls matched to cases for age and sex; $\star \star$ if enrolling controls matched to cases for any additional factor.

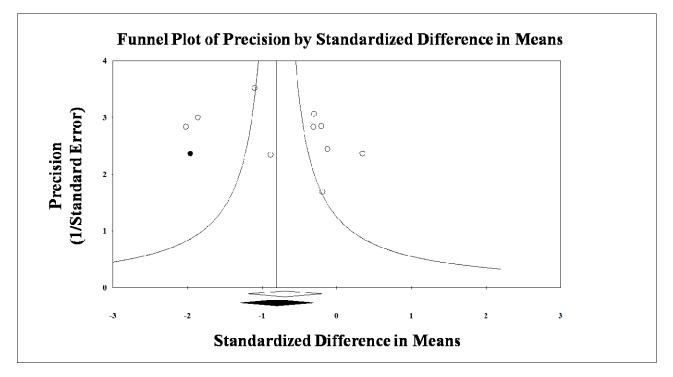

**Only abstract available.

	Independent variable	nNO
	% of males	Z-score: 0.115, P=0.908
Χ	Age	Z-score: 1.058, P=0.290
CRSwNP vs. HEALTHY	Smoking	Z-score: 1.707, P=0.088
AL	Atopy	Z-score: 0.178, P=0.858
HE	Asthma	Z-score: 1.455, P=0.146
S.	Lund-Mackay CT score	Z-score: 0.596, P=0.551
Ρv	SNOT-22 score	N/A
NN]	FEV1 (% predicted)	Z-score: 1.401, P=0.161
RSv	FVC (% predicted)	N/A
C	FEV ₁ /FVC	N/A
	Aspiration flow	Z-score: -4.379, P<0.0001
	% of males	Z-score: -0.951, P=0.342
Υ	Age	Z-score: 0.484, P=0.629
ΗI	Smoking	N/A
AL'	Atopy	Z-score: 1.011, P=0.312
CRSsNP vs. HEALTHY	Asthma	Z-score: 1.975, P=0.050
s.]	Lund-Mackay CT score	Z-score: -2.123, P=0.034
À C	SNOT-22 score	Z-score: -0.455, P=0.649
INS	FEV1 (% predicted)	N/A
RS	FVC (% predicted)	N/A
C	FEV ₁ /FVC	N/A
	Aspiration flow	Z-score: -0.473, P=0.636
	% of males	Z-score: 2.631, P=0.009
	Age	Z-score: -0.831, P=0.406
SNF	Smoking	Z-score: 1.576, P=0.115
RS	Atopy	Z-score: -0.723, P=0.469
C	Asthma	Z-score: -1.437, P=0.151
CRSwNP vs. CRSsNP	Lund-Mackay CT score	Z-score: 0.515, P=0.607
NP	SNOT-22 score	Z-score: -0.613, P=0.540
Swl	FEV1 (% predicted)	N/A
CR	FVC (% predicted)	N/A
Ŭ	FEV ₁ /FVC	N/A
	Aspiration flow	Z-score: -4.100, P<0.0001

Supplemental Table 3. Meta-regression analyses. Impact of major clinical and demographic variables on nasal nitric oxide (nNO) in cases and control subjects.

CRSwNP: chronic rhinosinusitis with nasal polyps; CRSsNP: chronic rhinosinusitis without nasal polyps; CT: computed tomography; SNOT-22: Sino-Nasal Outcome Test-22; FEV₁: forced expiratory volume in 1 second; FVC: forced vital capacity; N/A: not assessed because of the limited number of studies reporting this covariate. The overall effect was tested using Z-scores and significance was set at P < 0.05. Statistically significant results are shown in bold.

Supplemental Figure 1. Funnel plot of effect size vs. precision (1/standard error) for studies evaluating nasal nitric oxide (nNO) in patients with chronic rhinosinusitis with nasal polyps (CRSwNP) and healthy controls.

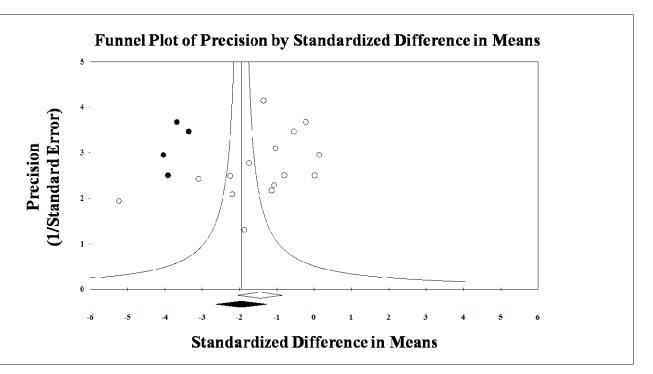


Observed studies and effect size are represented by empty circles and empty square. Imputed studies and adjusted effect size are represented by black circles and black square.

	Intercept	-5.24799			
Egger's regression intercept	Standard error	3.13557			
	95% lower limit	-11.89511			
	95% upper limit	1.39913			
	t-value	1.67369			
	P value	0.11362			
	Kendall's S statistic (P-Q)	-39.00000			
	Kendall's tau without continuity correction				
	tau	-0.25490			
	Z-value for tau	1.47723			
Begg and Mazumdar	P-value	0.13961			
	Kendall's tau with continuity correction				
	tau	-0.24837			
	Z-value for tau	1.43935			
	P-value	0.15005			

Duvall and Tweedie's trim and fill	Studies trimmed	Point estimate	Lower limit	Upper limit	Q value
Observed values	-	-1.495	-2.135	-0.854	270.216
Adjusted values (on the left)	0	-1.495	-2.135	-0.854	270.216
Adjusted values (on the right)	0	-1.495	-2.135	-0.854	270.216

Supplemental Figure 2. Funnel plot of effect size vs. precision (1/standard error) for studies evaluating nasal nitric oxide (nNO) in patients with chronic rhinosinusitis without nasal polyps (CRSsNP) and healthy controls.



Observed studies and effect size are represented by empty circles and empty square. Imputed studies and adjusted effect size are represented by black circles and black square.

	Intercept	4.45525
Egger's regression intercept	Standard error	3.79837
	95% lower limit	-4.30382
	95% upper limit	13.21431
	t-value	1.17294
	P value	0.27456
	Kendall's S statistic (P-Q)	7.00000
	Kendall's tau without continuity correction	
	tau	0.15556
	Z-value for tau	0.62610
Begg and Mazumdar	P-value	0.53125
	Kendall's tau with continuity correction	
	tau	0.13333
	Z-value for tau	0.53666
	P-value	0.59151

Duvall and Tweedie's trim and fill	Studies trimmed	Point estimate	Lower limit	Upper limit	Q value
Observed values	-	-0.696	-1.189	-0.202	41.214
Adjusted values (on the left)	1	-0.804	-1.294	-0.315	48.502
Adjusted values (on the right)	0	-0.696	-1.189	-0.202	41.214

Supplemental Figure 3. Funnel plot of effect size vs. precision (1/standard error) for studies evaluating nasal nitric oxide (nNO) in patients with chronic rhinosinusitis with nasal polyps (CRSwNP) and in control subjects with chronic rhinosinusitis without nasal polyps (CRSsNP).

Observed studies and effect size are represented by empty circles and empty square. Imputed studies and adjusted effect size are represented by black circles and black square.

	Intercept	-5.51859				
Egger's regression intercept	Standard error	2.94419				
	95% lower limit	-11.87912				
	95% upper limit	0.84193				
	t-value	1.87440				
	P value	0.08352				
	Kendall's S statistic (P-Q)	-47.0000				
	Kendall's tau without continuity correction					
	tau	-0.44762				
	Z-value for tau	2.32590				
Begg and Mazumdar	P-value	0.02002				
	Kendall's tau with continuity correction					
	tau	-0.43810				
	Z-value for tau	2.27641				
	P-value	0.02282				

Duvall and Tweedie's trim and fill	Studies trimmed	Point estimate	Lower limit	Upper limit	Q value
Observed values	-	-1.448	-2.046	-0.850	140.342
Adjusted values (on the left)	4	-1.955	-2.264	-1.268	328.771
Adjusted values (on the right)	0	-1.448	-2.046	-0.850	140.342