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Abstract: Infections caused by HSV-1 and their typical outbreaks invading the nervous system have
been related to neurodegenerative diseases. HSV-1 infection may deregulate the balance between the
amyloidogenic and non-amyloidogenic pathways, raising the accumulation of amyloid-β peptides,
one of the hallmarks in the neurodegenerative diseases. An effective treatment against both, HSV-1
infections and neurodegeneration, is a major therapeutic target. Therefore, gold nanoparticles
(NPAus) have been previously studied in immunotherapy, cancer and cellular disruptions with
very promising results. Our study demonstrates that a new NPAus family inhibits the HSV-1
infection in a neural-derived SK-N-MC cell line model and that this new NPAus reduces the
HSV-1-induced β-secretase activity, as well as amyloid-β accumulation in SK-APP-D1 modifies cell
line. We demonstrated that NPAuG3-S8 crosses the blood-brain barrier (BBB) and does not generate
cerebral damage to in vivo CD1 mice model. The NPAuG3-S8 could be a promising treatment against
neuronal HSV-1 infections and neuronal disorders related to the Aβ peptides.

Keywords: HSV-1; gold nanoparticles; central nervous system; amyloid-β peptides;
neurodegeneration

1. Introduction

Herpes Simplex Virus (HSV) type 1 is one of the most common infections in the human population
nowadays [1]. More than 65% of the human population up to 50 years is infected by HSV-1. This virus
establishes lifelong latent infections within the nervous system [2], avoiding the immune system
mechanisms and raising the subsequent recurrent episodes [3]. In serious cases, the damage could
cause corneal disease or encephalitis. Although the herpes simplex virus encephalitis (HSE) can
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result from primary infection as well as for recurrent HSV-1 episodes, HSV-1 impacts especially in
immunocompromised patients, increasing the risk of developing HSE [4]. Once the primary infection
takes place, the HSV-1 invades the peripheral nervous system (PNS), mainly sensory neurons, and
generates a latent infection in trigeminal ganglia [3], where the virus is undetectable [5,6]. HSV-1 has
been related to various neurodegenerative disorders in the last decade [7], and novel studies have
contributed to new data and valuable approaches to understand the mechanisms of neurocognitive
pathology. One of the most frequent HSV-1 infection-associated diseases is Alzheimer’s disease
(AD) [8–13]. Life expectancy after diagnosis varies between 7 and 15 years, depending on the severity
at the time of diagnosis. As familial AD (FAD), AD is caused by mutations in three genes which
codify the amyloid precursor protein (APP) [14], whereas sporadic AD (SAD) is linked to several
genetic and environmental risk factors, consistently related to neural infections such as those caused
by HSV-1 [11–13,15,16].

FAD and SAD have common neuropathological hallmarks, mainly the presence of senile plaques
and neurofibrillary tangles [17]. The senile plaques are generated by extracellular accumulation
of amyloid-β peptide (Aβ) [18]. Those Aβ plaques are the result of deregulation in the balance
between amyloidogenic and non-amyloidogenic pathways of APP [19–21]. In both routes, the APP
transmembrane protein is firstly proteolyzed by α or β-secretase, followed by the action of the
γ-secretase [19]. When the regulation between both pathways is affected, Aβ peptides will accumulate
and remain as intracellular soluble oligomers and extracellular senile plaques [19,22,23].

HSV-1 induced the intracellular accumulation of Aβ by the inhibition of the non-amyloidogenic
pathway [24,25]. This infection also modifies the proteolytic processing of the APP [26], as well as the
autophagy process [24]. These results show a potential correlation between AD and HSV-1 [11–13,27],
revealing the interactions amidst the HSV-1 infections in the nervous system and the higher risk to
develop neurodegenerative disorders.

These results show a correlation between AD patients and HSV-1, where the presence of viral DNA
was much more frequent in AD patients than in healthy individuals [27], revealing the interactions
amidst the HSV-1 infections in the nervous system and the higher risk of developing AD. In agreement,
the presence of HSV-1 in certain locations of the nervous system can be related to morphological
changes shown in the neurons, related to the development of several neurodegenerative diseases such
as AD [27].

The therapy against HSV-1 is based on the use of nucleotide analogous drugs such as acyclovir
(ACV), famciclovir (FAM) or valacyclovir (VCV) being their main target the viral DNA polymerase.
However, those drugs only mitigate and modulate the HSV-1 symptoms [28], but they are not capable
of eliminating the HSV-1 latency [28,29]. ACV, the most used anti-HSV-1 drug, generates resistance in
immunocompetent patients with recurrent episodes [30–32]. This limitation highlights the need to
develop new anti-HSV-1 compounds based on alternative mechanisms of action. A widespread kind
of nanoparticles (NPs) have shown great results inhibiting several steps of the viral cycle in HSV-1 and
HIV-2 infection [33–35], as well as in other latent viruses [36–38]. They have a controlled synthesis
consisting of a core with several sequential branching units, which present several end-groups [39].
The capability to synthesize this hyperbranched polymer with different cores or functional groups
provides these NPs a versatile functionalization.

Therefore, the objective of the present study is to evaluate the anti-HSV-1 activity of a new
NPAu family, as well as to elucidate the mechanism of action of this inhibition and evaluate the
biocompatibility of these new nanoparticles in an in vivo model.

2. Materials and Method

2.1. Cell Lines, Culture Conditions and Virus

Human neuroepithelioma cell line SK-N-MC (ATTC HTB-10, ATCC, Manassas, Virginia, USA),
and African green monkey kidney Vero cell line (ATTC CCL-81, ATCC, Manassas, Virginia, USA) were
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obtained from the American Type Culture Collection. Stable transfected SK-N-MC amyloid precursor
protein (SK-APP-D1, these cells were generated from SK-N-MC cells (ATCC HTB10, Manassas, Virginia,
USA) modified to stably expressing the human isoform APP695 and these cells were kindly provided
by Dra. MJ. Bullido (Centro Biología Molecular Severo Ochoa, CBMSO, Madrid, Spain).

SK-N-MC and SK-N-MC APP-D1 cell lines were grown in Dulbecco’s Modified Eagle’s Medium
(DMEM; Biochrom AG, Berlin, Germany) supplemented with 10% fetal bovine serum (FBS); Vero cell
line was grown in DMEM supplemented with 5% FBS. All culture mediums contain 1% L-glutamine,
and an antibiotic mix (125 µg/mL ampicillin, 125 µg/mL cloxacillin and 40 µg/mL gentamicin); (Sigma,
St. Louis, Missouri, USA). All cell lines were cultivated in 5% CO2 at 37 ◦C.

HSV-1 strain Kos 1.1 was kindly provided by Dra. MJ. Bullido and expanded on the Vero cell line,
titrated by plaque assay and stored at −80 ◦C.

2.2. Nanoparticles

NPs were synthesized according to described procedures by Bermejo et al [39]. The gold
NPAuG1-S2, NPAuG2-S4, and NPAuG3-S8 were selected according to the generation number, type and
number of peripherical charges and the focal point. The three selected NPAus were briefly described in
Table 1 and the schematic structures of the polyanionic carbosilane NPAus were represented in Figure 1.
NPs were dissolved in distilled water (Promega, Madrid, Spain) as well as subsequent dilutions to
working concentrations.

Table 1. Characteristics of the selected NPAuG1-S2, NPAuG2-S4, and NPAuG3-S8.

Nomenclature Nuclei Generation Chargues N Funtional Group Molecular Weight (g/mol)

NPAuG1-S2 GOLD 1 2 SULFONATE 421978
NPAuG2-S4 GOLD 2 4 SULFONATE 374956
NPAuG3-S8 GOLD 3 8 SULFONATE 257929 J. Clin. Med. 2019, 8, x FOR PEER REVIEW 4 of 16 

 

 
Figure 1. Schematic representation of Gold nanoparticles (NPs). NPs decorated with (A) first 
generation dendron with two sulfonate end groups, (B) second generation dendron with four 
sulfonate end groups and (C) third generation dendron with eight sulfonate end groups. The 
generation of NPs is determined by considering that each generation corresponds to the number of 
repeating layers of silicon atoms forming the NP. 

2.3. Cell Viability Assay 

Cellular mitochondrial metabolism was evaluated by MTT assay. This assay is based on the 
reduction of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT) (Sigma, St. 
Louis, Missouri, USA) to formazan crystals as an indicator of dendrimer-induced toxicity. SK-N-MC 
cell line was seeded in 96-well plates at 5×105 cells/well. Cells were exposed to a range of 
concentrations (10–500 nM) for each NP. After 24 h, SK-N-MC cells were incubated with 0.5 mg/mL 
MTT for 2 h at 37 °C, and MTT/formazan crystals were dissolved with DMSO (Honeywell, Charlotte, 
North Carolina, USA). Optical densities were measured at 570/690 nm (Synergy 4 microplate reader, 
BioteK, Winooski, Vermont, USA). DMSO was used as death control. 

2.4. HSV-1 Infection 

SK-N-MC cell line was seeded in 12-well plates (6×105 cells/well), and exposed to the maximum 
non-toxic concentration of each NP for 1 h and HSV-1 infected at a multiplicity of infection (MOI) of 
1 plaque-forming unit (pfu)/cells for 1 h in the case of pre-treatment assay. For treatment assays, 
SK-N-MC cell line was treated and infected simultaneously at MOI 1 for 1 h. At 24 h post-infection, 
serially diluted supernatants were titrated by plaque assay on Vero cell line, previously seeded in 
12-well plates (3.75×105 cells/well). Vero cells were infected with 350 μL supernatants at seriated 
dilutions and washed with PBS at 2 h post-infection to remove unabsorbed viruses. HSV-1 infection 
remained in DMEM containing 2% FCS and 0.4% IgG. After 72 h, the medium was removed, Vero 
cells were stained with Methylene Blue 300 mg/L (Sigma, St. Louis, Missouri, USA) 1 h, and the lysis 
plaques were counted. Results were related to infection controls. 

2.5. Cellular Protection against HSV-1 Infection 

SK-N-MC cell line was 6×105 cells/well seeded in 12-well plates and exposed to the inhibitory 
concentration for 1 h. SK-N-MC cells were washed to remove any excess of unbound NPs and the 
HSV-1 infection was performed at MOI 1, 1 h at 37 oC. Supernatants were titrated 24 h post-infection 
on Vero cells by plaque assay as described before. 

2.6. Interactions Nanoparticles-HSV-1 

HSV-1 (MOI 1) was incubated 1 h with the inhibitory concentration of each NP at 4 oC in an 
eppendorf. Vero cells were seeded at 3x105 cells/well in a 12-well plate and exposed to the 
HSV-1-NPs mix, 1 h at 37 oC. Supernatants were titrated 48 h post-infection by plaque assay as 
described before. 

2.7. β-Secretase Activity 

SK-APP-D1 cells (5×106) were treated with NPs and HSV-1 infected at MOI 1 for 1h. Mock 
HSV-1 infected control was made with virus-free suspension. After 3 h post-HSV-1 infection, β–
secretase activity was determined using commercial kits (BioVision, Milpitas, California, USA) 
according to the manufacturer’s instructions. Plates were incubated in dark at 37 °C for 1 h, and 

Figure 1. Schematic representation of Gold nanoparticles (NPs). NPs decorated with (A) first generation
dendron with two sulfonate end groups, (B) second generation dendron with four sulfonate end groups
and (C) third generation dendron with eight sulfonate end groups. The generation of NPs is determined
by considering that each generation corresponds to the number of repeating layers of silicon atoms
forming the NP.

2.3. Cell Viability Assay

Cellular mitochondrial metabolism was evaluated by MTT assay. This assay is based on the
reduction of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT) (Sigma, St. Louis,
Missouri, USA) to formazan crystals as an indicator of dendrimer-induced toxicity. SK-N-MC cell
line was seeded in 96-well plates at 5×105 cells/well. Cells were exposed to a range of concentrations
(10–500 nM) for each NP. After 24 h, SK-N-MC cells were incubated with 0.5 mg/mL MTT for 2 h at
37 ◦C, and MTT/formazan crystals were dissolved with DMSO (Honeywell, Charlotte, North Carolina,
USA). Optical densities were measured at 570/690 nm (Synergy 4 microplate reader, BioteK, Winooski,
Vermont, USA). DMSO was used as death control.

2.4. HSV-1 Infection

SK-N-MC cell line was seeded in 12-well plates (6×105 cells/well), and exposed to the maximum
non-toxic concentration of each NP for 1 h and HSV-1 infected at a multiplicity of infection (MOI)
of 1 plaque-forming unit (pfu)/cells for 1 h in the case of pre-treatment assay. For treatment assays,
SK-N-MC cell line was treated and infected simultaneously at MOI 1 for 1 h. At 24 h post-infection,
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serially diluted supernatants were titrated by plaque assay on Vero cell line, previously seeded in
12-well plates (3.75×105 cells/well). Vero cells were infected with 350 µL supernatants at seriated
dilutions and washed with PBS at 2 h post-infection to remove unabsorbed viruses. HSV-1 infection
remained in DMEM containing 2% FCS and 0.4% IgG. After 72 h, the medium was removed, Vero
cells were stained with Methylene Blue 300 mg/L (Sigma, St. Louis, Missouri, USA) 1 h, and the lysis
plaques were counted. Results were related to infection controls.

2.5. Cellular Protection against HSV-1 Infection

SK-N-MC cell line was 6×105 cells/well seeded in 12-well plates and exposed to the inhibitory
concentration for 1 h. SK-N-MC cells were washed to remove any excess of unbound NPs and the
HSV-1 infection was performed at MOI 1, 1 h at 37 ◦C. Supernatants were titrated 24 h post-infection
on Vero cells by plaque assay as described before.

2.6. Interactions Nanoparticles-HSV-1

HSV-1 (MOI 1) was incubated 1 h with the inhibitory concentration of each NP at 4 ◦C in an
eppendorf. Vero cells were seeded at 3x105 cells/well in a 12-well plate and exposed to the HSV-1-NPs
mix, 1 h at 37 ◦C. Supernatants were titrated 48 h post-infection by plaque assay as described before.

2.7. β-Secretase Activity

SK-APP-D1 cells (5×106) were treated with NPs and HSV-1 infected at MOI 1 for 1h. Mock HSV-1
infected control was made with virus-free suspension. After 3 h post-HSV-1 infection, β–secretase
activity was determined using commercial kits (BioVision, Milpitas, California, USA) according to the
manufacturer’s instructions. Plates were incubated in dark at 37 ◦C for 1 h, and fluorescence recorded
at 420 mn using a microplate reader (Synergy 4 microplate reader, BioteK, Winooski, Vermont, USA).
The activity was related to non-treated cells.

2.8. Measurement of Secreted Aβ

The secreted Aβwas measurement by an enzyme-linked immunosorbent assay (Kit ELISA, Thermo
Fisher scientific, Spain). The SK-APP-D1 cells were mock-infected or HSV-1 infected. The supernatants
were assayed for human Aβ40 and Aβ42 using a commercial sandwich ELISA kit (Wako, Osaka,
Japan) according to the manufacturer’s instructions. The sensitivity of both kits is 1.0–100.0 pmol/L
and 0.1–20.0 pmol/L, respectively. Related to the specificity, both kits present 50.1 of cross-reactivity
with others Aβ. The standard curve was performed using 100 pmol/L of Aβ40 or 20 pmol/L Aβ42
stock solution.

2.9. Histological Studies in CD1 Mice

Histological studies in mice brains were evaluated by hematoxylin-eosin staining. Twenty four
CD1 mice 8 weeks old, 22 ± 3 g (Charles River Laboratories, Wilmington, MA, USA) were purchased
and housed in CBMSO animal husbandry. Mice studies were conducted and approved by the CBMSO
Institutional Animal Care and Use Committee (CEEA-CBMSO, Madrid, Spain). One mouse control
group treated with PBS and three mice groups treated with gold NPAuG3-S8 at 10 h, 24 h and 48 h
were established for intravenous NP administration. Twenty-one of the twenty four mice were injected
intravenously in the tail vein with 3.5 mg/Kg of NPAuG3-S8 previously dissolved in PBS and 3 mice
were injected only in PBS as control.

Mice were sacrificed at 10 h, 24 h and 48 h after the inoculation. Then, brains were extracted
and fixed on PFA 4%. Samples were included in paraffin by passing through increasing alcohol, two
xylol baths, and one paraffin bath. Subsequently, the brains were cut by means of a microtome and
processed for hematoxylin and eosin. Brain sections were finally mounted with DPX. The brains were
carved making three cuts to make the assessment of the different parts of it. The assigned values (score)
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were 0 (no changes): when no injuries were observed or the changes observed were within normality;
1 (minimum): when the changes were scarce but exceeded those considered normal; 2 (slight): the
lesions were identifiable but with moderate severity; 3 (moderate): important injuries but can still
increase in severity; and 4 (very serious): very serious injuries.

2.10. Permeability of Blood-Brain Barrier to NPAuG3-S8 in CD1 Mice

To determine the presence of NPAuG3-S8 in the brains of CD1 mice, the same four randomized
CD1 mice groups were used. Mice were injected intravenously in the tail vein with 3.5 mg/Kg of
NPAuG3-S8 dissolved in PBS and mice were sacrificed at 10 h, 24 h and 48 h after the inoculation.
Then, the brain of each mouse was extracted and was flashed frozen in Tissue-Tek O.C.T. (Sakura
Finetek, Torrance, California, USA).

For cryogenic sections, slides with histological sections were incubated in 0.1% Triton X-100 for
5 min and washed. NPAuG3-S8 was stained by the silver enhancement kit (Sigma, St. Louis, Missouri,
USA) for 5 min, washed and fixed with 2.5% sodium thiosulfate solution (STS). Counterstain with
eosin and mounts of histological sections were performed in order to determine the presence of NP by
light microscopy.

2.11. Statistical Analysis

Statistical analysis including mean and standard deviation (SD), or median and interquartile
ranges were analyzed with GraphPad Prism v5.0 software (GraphPad, San Diego, CA, USA) using
non-parametric unpaired t-Test. Differences were considered significant at p < 0.05 (*), p < 0.01 (**),
or p < 0.001 (***). All dates were obtained of 2 or 3 independent experiments performed by duplicate
or triplicate.

3. Results

3.1. Cytotoxicity of Nanoparticles

The cytotoxicity of NPAuG1-S2, NPAuG2-S4, and NPAuG3-S8 was evaluated in human
neuroepithelioma SK-N-MC cell line, using a concentration rate for each NPAu from 10 to 500 nM.
SK-N-MC cells were treated for 24 h with increasing concentrations of NPs, which were considered
toxic when the survival rate was <80%. 10µM dextran and 10% DMSO were used as non-treated,
harmless and cell death controls, respectively.

The MTT results reveal that NPAuG3-S8 was non-toxic at 25 nM, NPAuG2-S4 at 50 nM, and
NPAuG1-S2 at 100 nM (Figure 2).
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Figure 2. Cytotoxicity associated with NPAus in SK-N-MC human neuroepithelioma cell lines at 24 h
post-treatment using MTT assay. SK-N-MC cells were treated with increasing concentrations of gold
NPs from 10 nM to 500 nM. SK-N-MC cells were not treated as control of viability or treated with 10%
of DMSO as control of cell death. The percent of cell viability was calculated as optical density. The 80%
of viability was set asa limit of toxicity. Data are represented as mean ± SD of three experiments
performed in triplicate. Abbreviations: NT= non-treated; DXT= Dextran; DMSO= dymethyl sulfoxide.
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3.2. Anti-HSV-1 Activity of Nanoparticles

We further studied the antiviral activity of NPAus against HSV-1 in SK-N-MC cells under pre-
and treatment conditions. Each NP was assayed at maximum non-toxic concentrations. ACV (20 µM)
was used as a positive control for HSV-1 inhibition. SK-N-MC cells were pre-treated with NP for 1 h
and infected or simultaneously treated and infected with HSV-1at an MOI 1.

HSV-1 infection titration was measured by plaque assays on Vero cells. The pre-treatment of
SK-N-MC cells with NPAuG2-S4 and NPAuG3-S8 inhibited the HSV-1 infection by 56.5% and 64.5%,
respectively (p < 0.01) (Figure 3). However, the treatment of NPAuG1-S2, NPAuG2-S4, and NPAuG3-S8
showed an inhibition up to 20% (p < 0.05), 25% (p < 0.05), and 40%(p < 0.001), respectively (Figure 3) in
SK-N-MC cells.  J. Clin. Med. 2019, 8, x FOR PEER REVIEW 7 of 16 
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Figure 3. Inhibition of HSV-1 infection by NPAus in SK-N-MC cell lines. SK-N-MC cell line was
exposed to the maximum non-toxic concentration of each NPAus and HSV-1 infected at MOI 1 for
24 h in pre-treatment assay or 1h in treatment assay. 20 µM ACV was used as a positive control of
HSV-1 inhibition. Data represent mean ± SD from at least three independent experiments performed
by duplicate. **: p < 0.01; ***: p < 0.001. CI: HSV-1 infection at MOI 1.

Therefore, NPAuG2-S4 and NPAuG3-S8 with high activity against HSV-1 infection were selected
for new studies.

3.3. Gold Nanoparticles Inhibit HSV-1 Infection through Cellular Protection

Inhibition at the level of viral entry may be due to the binding of the NPs either to cellular or viral
receptors, resulting in both cases in the blockade of the binding for the virus to the cell. To evaluate the
percentage of HSV-1 inhibition due to the interaction of the NPAus with cellular receptors, acting as
competitors of HSV-1 binding sites, SK-N-MC cells were pre-incubated 1 h at 37 ◦C with NPAuG2-S4
or NPAuG3-S8. SK-N-MC cells were washed to remove the unbound NPs to avoid their interaction
with HSV-1. The HSV-1 infection was measured by plaque assays on Vero cells. Interestingly, the
SK-N-MC cells showed significant cellular protection against HSV-1 infection by NPAuG2-S4 (75%)
and NPAuG3-S8 (74%) (Figure 4).
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Figure 4. Cellular protection mediated by NPAus. SK-N-MC cell line was exposed to the maximum
non-toxic concentration for 1 h. SK-N-MC cells were washed to eliminate the NPs and infected at MOI
1 for 1 h. Data represent median and interquartile range ± SD from three independent experiments
performed by duplicate. ***: p < 0,001; HSV-1 infection control at MOI 1.

3.4. Gold Nanoparticles Inhibit HSV-1 Infection through Viral Action

To evaluate the percentage of inhibition due to the interaction of the NPAus with HSV-1, second
and third selected NPs were incubated with MOI 1 of HSV-1 1 h at 4ºC. The incubation was performed
at 4ºC with the objective to prevent the loss of infectivity. This experiment was performed on Vero
cells due to the fact that the aim was independent of the cells used, in order to evaluate the activity of
the NPs against HSV-1. Vero cells were incubated with NPAus-HSV-1 1h at 37ºC and infection was
revealed by plaque assay. The two selected NPAus inhibited HSV-1 infection in a significant manner by
interacting with HSV-1. Our data showed that NPAuG2-S4 inhibited the viral infection acting against
HSV-1 by 20% and NPAuG3-S8 by approximately 50% (Figure 5), showing that NPs interacted with
the viral particles and prevented the HSV-1 infection.
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HSV-1 related neuronal disorders. 
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accumulation that is associated with the appearance of amyloid plaques in the mouse model and in 
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Figure 5. Activity against HSV-1. NPAus were incubated with MOI 1 of HSV-1 at 4 ◦C. After 1 h, Vero
cells were infected with HSV-1-NP mix, and the infection was revealed by plaque assay as performed
before. Data represent median and interquartile range ± SD from four independent experiments
performed by duplicate. ***: p < 0.001; HSV-1 infection control at MOI 1.

3.5. Nanoparticles Revert the β-Secretase Activity Increase Induced by HSV-1 to Basal Levels

To verify the influence of NPAus on APP processing, the β-secretase activity was determined
using a specific kit (BioVision, Milpitas, California, USA). Thus, 5×106 SK-APP-D1 cells were treated
with NPAus to evaluate the NP activity on β-secretase, or treated with NP and infected with HSV-1.
The HSV-1 infection increased in a significant manner in the β-secretase activity (Figure 6), favoring the
amiloidogenic pathway, and raising the probability of Aβ aggregates appearance. Interestingly enough,
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both NPs were able to reduce the increase due to HSV-1 in the β-secretase activity to non-treated levels,
even when SK-APP-D1 cells were pre-treated and HSV-1 infected.
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Figure 6. Levels of β-secretase activity in the SK-APP-D1cell line. SK-APP-D1cells were treated with
NPAus, or NPAus infected with HSV-1. Data represent mean ± SD of three independent experiments
performed by triplicate. **: p < 0.01; NT: SK-APP-D1 cells. Statistical analysis vs SK-APP-D1 non-treated
control cells.

Interestingly, NPAus appeared to decrease the β-secretase activity in HSV-1 infected SK-APP-D1
cells to even below the levels of non-infected cells, suggesting that these NPAus have the potential
to act against HSV-1 infection and even more, as a new potential treatment in the Aβ HSV-1 related
neuronal disorders.

3.6. Effect of Nanoparticles on Secreted Aβ

It is widely accepted that HSV-1 infection of neuronal cells induces intracellular amyloid
accumulation that is associated with the appearance of amyloid plaques in the mouse model and in
human brain samples. The Aβ 1-40 (Aβ40) and Aβ 1-42 (Aβ42) peptides are cleaved from the APP by
the sequential action of β- and γ-secretase. Aβ42 is more prone to aggregate than Aβ40. The initial
deposition in the Aβ plaques formation is due to Aβ42, although Aβ40 appears in the advanced stages
of neurodegenerative disorders such as AD.

In order to evaluate if NPAus modify the accumulation and secretion of Aβ, SK-APP-D1 cells
were treated with NPAus and infected with HSV-1 at MOI 1. The supernatants were analyzed by
ELISA assay for Aβ40 and Aβ42 (Wako, Osaka, Japan). The HSV-1 infection decreased the secreted
Aβ40, as was previously described [26], and both NPAus recovered those values up to non-treated
data (Figure 7A). Interestingly, NPAuG3-S8 potentiated the secretion of Aβ40 (Figure 7A) being, once
more, the most efficient NPAus in blocking the toxic Aβ accumulation as we previously showed in
Figure 6. The same behavior was showed for Aβ42. Both studied NPAus were able to recover the
normal values of secreted Aβ42, once SK-APP-D1 cells were HSV-1 infected (Figure 7B). Once more,
NPAuG3-S8 showed the best results. It is important to note that NPAuG3-S8 could be considered as a
new potential treatment in the HSV-1AD-related context.
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Figure 7. Secreted Aβ40 and Aβ42 levels on SK-APP-D1 cells. SK-APP-D1 cells were treated with
NPAuG2-S4 or NAPuG3-S8 and non-infected (A) or infected with HSV-1 (B) at MOI 1, 1 h at 37 ◦C.
Quantitative analysis of extracellular amyloid-β 1-40 or Aβ40 and 1-42 or Aβ42 levels were made by
ELISA. Data represent mean ± SD of at least three independent experiments performed by duplicate.
***: p < 0.001; **: p < 0.01; NT: SK-APP-D1 cells. Statistical analysis vs. NT SK-APP-D1 non-treated
cell control.

3.7. Histological Studies in CD1 Mice

NPAuG3-S8 was selected for in vivo studies in CD1 mice. The objective was to evaluate the tissue
damage in the CD1 mouse brain. The histopathological study was made with samples of 21 brains
from 21 two-month-old CD1 mice treated with intravenous NPAuG3-S8. The sacrifices were made at
10 h, 24 h and 48 h after the inoculation with NPAuG3-S8. The results obtained from the 21 brains of
CD1 mice previously treated with NPAuG3-S8 were compared with the results obtained from the 3
brains of CD1 mice previously treated with PBS. The toxicity of NPAuG3-S8 was measured by the
presence of inflammatory infiltrates, which in the case of the brain is characterized by infiltration of
the microglia cells, microglial satellitation, or presence of the microglia cells surrounding neuronal
bodies, presence of vacuoles inside the neuronal cytoplasm, the existence of vascular lesions such as
hemorrhage and edema, and finally, the presence of necrosis or malacia. The signs were scored as 0 (no
change); 1 (minimum change); 2 (light change); 3 (moderate change) and 4 (very serious).

The histological studies at 10 h, 24 h or 48 h post-inoculation of NPAuG3-S8 in the mice
brains showed that the hemorrhage, edema or presence of areas of necrosis was not detected
(Table 2). Moreover, when CD1 mice were treated with NPAuG3-S8 and analyzed 10 h, 24 h or 48 h
post-inoculation, no damage or alteration onto the brain epithelium was detected. Only a minimal or
moderate proliferation of the epithelium of the choroid plexuses was detected in two mice, one at 24 h
and other at 48 h (Figure 8). Our data suggest that NPAuG3-S8 could be a possible treatment against
HSV-1 infection in the brain of mice. However, brain injuries had not been monitored after 48 h, and
this fact could be a limitation that must be elucidated in futures studies.
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Table 2. Brain toxicity assay of NPAuG3-S8.

PBS 10 H 24 H 48 H

mouse ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
TELENCEPHALON
Microglia infiltration 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

satellitism 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
vacuolization 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
hemorrhage 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

edema 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
necrosis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DILENCEPHAL
microgliainfiltration 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

satellitism 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
vacuolization 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
hemorrhage 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

edema 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
necrosis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MIDBRAIN
microgliainfiltration 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

satellitism 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
vacuolization 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
hemorrhage 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

edema 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
necrosis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CEREBELLUM
microgliainfiltration 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

satellitism 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
vacuolization 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
hemorrhage 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

edema 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
necrosis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The existence of injury in the brain epithelium was evaluated in each biological sample. 0: no change;. These values were added up and determined the level of damage as minimum 1-3,
average 4-6, moderate 7-9 and severe 9+.
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choroid plexuses that occupy the lumen of one of the ventricles (arrows). 

3.8. Capability of NPAuG3-S8 Crossing the Blood-Brain Barrier (BBB) 

Once suggested that NPAuG3-S8 does not generate cerebral toxicity or tissue damage, we study 
the capability of NPAuG3-S8 to cross the BBB, with the objective to evaluate whether previous data 
were due to the fact that NPAuG3-S8 had a non-toxic effect or whether NPAuG3-S8 was unable to 
cross the BBB and consequently, this NPAuG3-S8 had no effect on the CNS. With the aim to study 
this possible hypothesis, CD1 mice were tail vein injected with NPAuG3-S8 and sacrificed at 10 h, 24 
h and 48 h after the inoculation in the same way as in the histological study. The histological sections 
were stained with Silver Enhancement Kit (Sigma, Missouri, USA) for 5 min to determine the 
presence of NPAuG3-S8, and counterstained with eosin in order to decrease the contrast of staining. 

The NPAuG3-S8 was detectable in brain tissue after 10 h post-inoculation, indicating clearly 
that this NPAuG3-S8 cross the BBB (Figure 9). However, 24 h post-inoculation the NPAuG3-S8 
accumulation decreased (Figure 9). 

Figure 8. Histological sections of diencephalon midbrain. Cerebral samples were cut by means of a
microtome and processed for hematoxylin and eosin. (A,B) Diencephalon sections of 24 h post-treatment
(mouse 14). Minimal proliferation of the choroidal plexus epithelium (arrow). (C,D) Midbrain sections
of 48 h post-treatment (mouse 23). Moderate proliferation of the epithelium of the choroid plexuses
that occupy the lumen of one of the ventricles (arrows).

3.8. Capability of NPAuG3-S8 Crossing the Blood-Brain Barrier (BBB)

Once suggested that NPAuG3-S8 does not generate cerebral toxicity or tissue damage, we study
the capability of NPAuG3-S8 to cross the BBB, with the objective to evaluate whether previous data
were due to the fact that NPAuG3-S8 had a non-toxic effect or whether NPAuG3-S8 was unable to
cross the BBB and consequently, this NPAuG3-S8 had no effect on the CNS. With the aim to study this
possible hypothesis, CD1 mice were tail vein injected with NPAuG3-S8 and sacrificed at 10 h, 24 h and
48 h after the inoculation in the same way as in the histological study. The histological sections were
stained with Silver Enhancement Kit (Sigma, Missouri, USA) for 5 min to determine the presence of
NPAuG3-S8, and counterstained with eosin in order to decrease the contrast of staining.

The NPAuG3-S8 was detectable in brain tissue after 10 h post-inoculation, indicating clearly that
this NPAuG3-S8 cross the BBB (Figure 9). However, 24 h post-inoculation the NPAuG3-S8 accumulation
decreased (Figure 9).

Based on the previous results where NPAuG3-S8 seems to not have histological lesions in mice
brain, and that NPAuG3-S8 cross the BBB, this NPAuG3-S8 could be a possible candidate for the
treatment of HSV-1 infections in the CNS.
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4. Discussion

In the last decade, researchers have provided increasing evidence of a potential relationship
between HSV-1 and neurodegenerative disorders such as AD [10–13]. The fact that HSV-1 infection
is related to AD can be due to the distinguishing characteristics of HSV-1 to establish latency in
neurons [9]. Although HSV-1 infection is generally limited or asymptomatic, there is a percentage of
HSV-1 infections that generate encephalitis or meningoencephalitis, which cause important lesions
and brain alterations. Previous studies have related the HSV-1 infection with a high risk of developing
senile plaques, neurofibrillary tangles, and AD [8,10]. New drugs that approach the treatment of
HSV-1 from other strategies, such as acting in other points of the viral cycle or mechanisms of action
are being researched. In this context, the NPs have shown their inhibitory action against HSV, HIV or
Hepatitis [33,35,40,41]. Thus, NPAuG1-S2, NPAuG2-S4, and NPAuG3-S8 were assayed against HSV-1
in neuronal cell lines. Our data provide the first approach to understand the behavior of these NPs in
the CNS.

Once the non-toxic concentrations of NPAuG1-S2, NPAuG2-S4, and NPAuG3-S8 were selected,
the HSV-1 inhibition assays showed that pre-treatment with NPAuG2-S4 and NPAuG3-S8 have >50%
of HSV-1 inhibitory activity, and 20% and 40% respectively in the treatment assay. The NPAuG1-S2 has
no effect against HSV-1 infection at any condition tested.

Both NPAuG2-S4 and NPAuG3-S8 could be acting against the HSV-1 infection, interacting with
some peripheral glycoprotein and preventing the HSV-1 infection, or binding to the host cell, occupying
the places for the viral union, and preventing, in the same way, the HSV-1 infection. To analyze
which mechanism is used by NPAuG2-S4 and NPAuG3-S8, the cellular protection mediated by NPs in
SK-N-MC cells was analyzed. NPAuG2-S4 and NPAuG3-S8 significantly protected SK-N-MC cells
(>70% and >75%, respectively) against HSV-1 infection.

Thus, we studied whether these NPs act against HSV-1. Data showed that NPs present a significant
neutralizing activity against HSV-1, with NPAuG3-S8 being the best one inhibiting HSV-1 infection. The
main histopathological markers in AD are the neurofibrillary tangles and the amyloid-β accumulations.
Related to the Aβ, the accumulation of Aβ40 and mainly Aβ42 are considered one of the hallmarks of
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early stages in AD [42]. AD etiology studies had described that initially the amyloid plaques are made
by Aβ42 peptide, whereas Aβ40 is also present in plaques in more advanced stages of AD pathology.
The relationship between NPs and the proteolytic pathway of APP, and, more interestingly, to the
Aβ40 and Aβ42 accumulation becomes very important.

The interaction between HSV-1 infection and an over-accumulation of Aβ40 and Aβ42 peptides,
as well as the deregulation in the amyloidogenic and non-amyloidogenic pathways, have been
previously described [8,22,26,27,43]. To analyze the interactions between HSV-1 and AD-like markers
and the NPAuG2-S4 and NPAuG3-S8 influence on those mechanisms, firstly the β-secretase activity
was evaluated. The amyloidogenic pathway is mediated by the β-secretase activity which initiates
that pathway and subsequently provokes the accumulation of Aβ peptides. Our data showed that
NPAuG2-S4 and NPAuG3-S8 reduced the HSV-1-mediated increase of β-secretase activity to normal
levels. Moreover, both NPs reduced these levels even below the control levels. The fact that NPAuG3-S8
reduces significantly the increase shown due to HSV-1 infection makes this NPAuG3-S8 a promising
candidate for treatment against Aβ HSV-1 neuronal disorders.

We studied the ability of NPAuG2-S4 and NPAuG3-S8 to modify the accumulation in Aβ peptides
induced by HSV-1 infection. Our results clearly showed that NPAuG2-S4 and especially NPAuG3-S8
were able to reduce the increase in β-secretase activity due to the HSV-1 infection. Based on our results,
the last step was to evaluate the ability of NPAuG3-S8 to cross the BBB, in order to determine if this
NPAuG3-S8 could be used as a possible treatment in the CNS. Our data reveals that NPAuG3-S8
crosses the BBB in brain mice and even more NPAuG3-S8 seems to be non-toxic for the brain tissue at
48 h. The lack of monitoring of brain injuries after 48 hours could be a limitation, however, based on
the data obtained at 10, 24 and 48 h all data indicates that this NPAus could be non-toxic in the mice
brain. This NPAuG3-S8 could be a possible candidate against HSV-1 infections in the CNS as well as a
future treatment against other neurodegenerative diseases associated with amyloid peptides.

5. Conclusions

Our study reveals the biosafety of three gold NPs in SK-N-MC neural-derived cell lines.
NPAuG2-S4 and NPAuG3-S8 are capable to inhibit the HSV-1 infection in neuronal cell lines, both in
pre-treatment and treatment assays, rising the more significant inhibition rates in the treatment assays.
We also showed that both NPAuG2-S4 and NPAuG3-S8 inhibit HSV-1 bycellular protection against the
infection in SK-N-MC, and that NPAuG3-S8 has a dual behavior, acting against the virus as well as
protecting the target cell against HSV-1 infection (Graphical Abstract).

Once HSV-1 inhibition and the action mechanism were showed, the relationship between AD-like
markers was studied, focusing on the amyloidogenic pathway, and more specifically, studying the
effect of NPAuG2-S4 and NPAuG3-S8 in the β-secretase activity and changes in the secreted pattern of
Aβ aggregates. Our study reveals that NPAuG2-S4 and NPAuG3-S8 modified AD-like markers by
decreasing β-secretase activity altered in the HSV-1 infection, and moreover, reducing those levels
to those observed in the non-treated condition. These results are strongly supported by the fact that
NPAuG2-S4 and NPAuG3-S8 can recover normal values of the secreted Aβ aggregates produced by
HSV-1 infection, either in Aβ40 or in Aβ42. Interestingly, NPAuG3-S8 gold NP crosses the BBB and
does not show CNS toxicity at the concentrations and time studied. All these data suggest that the
NPAuG3-S8 could be a promising candidate for further studies on the relationship between HSV-1
infection and neurodegenerative diseases (Graphical Abstract).
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