Exon		Primer	Product size (bp)	Annealing temperature (°C)		
2	Forward	AAACAGATGAATAGTGTGAAC	423	56		
	Reverse	CTAACAAGGTCATCGGAC				
3	Forward	GCATCTTGTCTGAGGTATG	431	58		
Reverse		CAAAGTGAGAACCTGTCT				
4	Forward	GACCAACTACTCCACCTTTCC	789	59		
	Reverse	GCCTGGGTGATGGAATGAAA				
5	Forward	GCACCCAGCTTTCCTCTATG	763	58		
	Reverse	GCAAGACCCTGCCTCAAATA				
6	Forward	CAGGAGAGTGGCGTGAAC	587	56		
	Reverse	GGTAACACCTTCAGAGTCATTT				
7	Forward	TGCAGGGTAGATCCCTGTCTA	743	58		
	Reverse	GCAGCGTTCAGCAAACTTCT				
8	Forward	TTGTTCAGTTGTGTGTTATT	403	56		
	Reverse	TTATGATGGCTCAAGATGG				
9	Forward	GTCTTACTCTGTCTCCCA	413	58		
	Reverse	AAGGCTATATTCAAGTCTACA				
10	Forward	TATCTCAGTGTTTACTCCTG	407	54		
	Reverse	ATGCTACAAAGACAATCTCA				

Table S1. Sequences of primers used in this study for SEPTIN14 novel variants.

Table S2. Variants identified in infertile men in the coding region of *SEPTIN14*.

variants	Genotype $\frac{\text{Case}}{(n=254)}$		Control (n=116)					rs No./ Functiona Consequence
c.116G>A	GG	251	(98.8 %)	112 (96.6	%)	
p.Pro39His	GA	3	(1.2 %)	4 (3.4	%)	
	AA	0	(0.0 %)	0 (0.0	%)	
c.367G>A	GG	251	(98.8 %)	116 (100.0	%)	
p.Ala123Thr	GA	3	(1.2 %)	0 (0.0	%)	
	AA	0	(0.0 %)	0 (0.0	%)	
c.459C>T	CC	254	(100.0 %)	114 (98.3	%)	rs202157028
p.Tyr153=	СТ	0	(0.0 %)	2 (1.7	%)	synonymous cod
	TT	0	(0.0 %)	0 (0.0	%)	
c.543G>A	GG	253	(99.6 %)	116 (100.0	%)	
p.Lys181=	GA	1	(0.4 %)	0 (0.0	%)	
	AA	0	(0.0 %)	0 (0.0	%)	
c.617C>T	CC	254	(100.0 %)	115 (99.1	%)	rs761205837
p.Thr206Met	СТ	0	(0.0 %)	1 (0.9	%)	missense
	TT	0	(0.0 %)	0 (0.0	%)	
c.998T>C	TT	251	(98.8 %)	116 (100.0	%)	rs185254020
p.Ile333Thr	TC	3	(1.2 %)	0 (0.0	%)	missense
-	CC	0	(0.0 %)	0 (0.0	%)	

variants	Genotype $\frac{Case}{(n=25)}$				rs No./ Functional Consequence		
c15-42T>C	TT	249	(98.0 %)	113 (97.4 %)	rs1212548424
	TC	5	(2.0 %)	3 (2.6 %)	intron variant
	CC	0	(0.0 %)	0 (0.0 %)	
c.54+97A>T	AA	75	(29.5 %)	39 (33.6 %)	rs10499759
	AT	127	(50.0 %)	58 (50.0 %)	intron variant
	TT	52	(20.5 %)	19 (16.4 %)	
c.176-41C>A	CC	253	(99.6 %)	116 (100.0 %)	
	CA	1	(0.4 %)	0 (0.0 %)	
	AA	0	(0.0 %)	0 (0.0 %)	
c.559-120C>T	CC	249	(98.0 %)	115 (99.1 %)	rs185656898
	СТ	5	(2.0 %)	1 (0.9 %)	intron variant
	TT	0	(0.0 %)	0 (0.0 %)	
c.721-291C>T	CC	192	(75.6 %)	89 (76.7 %)	rs138074720
	CT	56	(22.0 %)	25 (21.6 %)	intron variant
	TT	6	(2.4 %)	2 (1.7 %)	
c.721-222G>A	GG	104	(40.9 %)	53 (45.7 %)	rs11767417
	GA	112	(44.1 %)	46 (39.7 %)	intron variant
	AA	38	(15.0 %)	17 (14.7 %)	
c.817+26G>T	GG	192	(75.6 %)	84 (72.4 %)	rs73701152
	GT	52	(20.5 %)	26 (22.4 %)	intron variant
	TT	10	(3.9 %)	6 (5.2 %)	
c.721-314G>A	GG	254	(100.0 %)	115 (99.1 %)	rs1363256558
	GA	0	(0.0 %)	1 (0.9 %)	intron variant
	AA	0	(0.0 %)	0 (0.0 %)	
c.721-234G>A	GG	253	(99.6 %)	116 (100.0 %)	rs373047198
	GA	1	(0.4 %)	0 (0.0 %)	intron variant
	AA	0	(0.0 %)	0 (0.0 %)	
c.986+57A>C	AA			97.2 %)	112 (rs78233970
	AC	7	(2.8 %)	4 (3.4 %)	intron variant
	CC	0	(0.0 %)	0 (
c.987-32T>A	TT	253				100.0 %)	
	ТА	1	8	0.4 %)	0 (0.0 %)	
	AA	0	ì	0.0 %)	0 (0.0 %)	

Table S3. Variants identified in infertile men in the noncoding regions of the SEPTIN14 gene.