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Abstract: Dysbiosis has been described in systemic autoimmune diseases (SADs), including 
systemic lupus erythematosus (SLE), Sjögren’s syndrome (SjS), and primary anti-phosholipid 
syndrome (PAPS), however the biological implications of these associations are often elusive. 
Stool and plasma samples from 114 subjects, including in SLE (n = 27), SjS (n = 23), PAPs (n = 11) 
and undifferentiated connective tissue (UCTD, n = 26) patients, and geographically-matched 
healthy controls (HCs, n = 27), were collected for microbiome (16s rRNA gene sequencing) and 
metabolome (high-performance liquid chromatography coupled to mass spectrometry) analysis to 
identify shared characteristics across diseases. Out of 130 identified microbial genera, a subset of 
29 bacteria was able to differentiate study groups (area under receiver operating characteristics 
(AUROC) = 0.730 ± 0.025). A fair classification was obtained with a subset of 41 metabolic peaks 
out of 254 (AUROC = 0.748 ± 0.021). In both models, HCs were well separated from SADs, while 
UCTD largely overlapped with the other diseases. In all of the SADs pro-tolerogenic bacteria were 
reduced, while pathobiont genera were increased. Metabolic alterations included two clusters 
comprised of: (a) members of the acylcarnitine family, positively correlating with a 
Prevotella-enriched cluster and negatively correlating with a butyrate-producing 
bacteria-enriched cluster; and (b) phospholipids, negatively correlating with butyrate-producing 
bacteria. These findings demonstrate a strong interaction between intestinal microbiota and 
metabolic function in patients with SADs. 

Keywords: microbiomic; metabolomics; systemic autoimmune diseases; systemic lupus 
erythematosus; Sjögren’s syndrome; primary anti-phosholipid syndrome; undifferentiated 
connective tissue diseases 

 

1. Introduction 
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Gut microbiota contributes to immune system development and to immune defense processes 
involving both innate and adaptive immunity [1–4]. Specific gut bacterial phylotypes are involved 
in immune tolerance processes, including the activation of T regulatory cells through the 
production of short chain fatty acid (SCFA) [5–7]. 

Investigations of the intestinal microbiome in patients with systemic autoimmune diseases 
(SADs) have demonstrated a reduction of pro-tolerogenic bacterial species [8–11]. However, the 
functional consequences of dysbiosis in SADs remain elusive. Few studies have investigated the 
intestinal microbial profile in SADs from a multi-omic perspective by integrating microbiome and 
metabolome data to provide insight into the functional characteristics of microbiota in these disease 
states [11–13]. 

A microbiome analysis in patients with systemic lupus erythematosus (SLE) showed a 
reduction of intestinal microbial biodiversity and an altered SCFA production [9]. In mouse models 
of SLE, the administration of antibiotics to counteract dysbiosis ameliorated SLE-related symptoms 
[14]. Recently, Enterococcus gallinarum was increased in SLE mice and found to be associated with an 
increased gut epithelium permeability [15]. Metabolomic signatures have been investigated in a 
limited number of SLE studies. The most consistent alterations were found in unsaturated fatty 
acids and acyl-carnitines, as well as in phospholipid metabolites [16,17]. 

Very few studies have explored gut microbiota or serum metabolites in Sjögren’s syndrome 
(SjS) [18,19]. In a study conducted on 42 SjS and 35 healthy controls, patients with SjS had an 
increased prevalence of gut dysbiosis compared with controls and the extent of dysbiosis was 
correlated with disease severity [20]. Among the metabolomic studies in SjS performed in 
comparison with SLE or RA subjects, no definite conclusion on SjS metabolic fingerprints could be 
drawn from these works [17,21]. 

Various hypotheses on the pathogenesis of primary antiphospholipid syndromes (PAPs) have 
been formulated. The potential molecular cross-reactivity between autoantigens and repeated 
sequences of bacterial peptides has been hypothesized to stimulate T-cell mediated responses and B 
cell production of specific PAPs auto-antibodies. Intestinal microbiota could potentially serve as the 
source of bacteria stimulating a chronic systemic inflammatory response [22]. To our knowledge, 
only one study has been performed investigating the intestinal microbiota in PAPS patients, and 
this study found a reduction of Slackia strains (which are able to produce phospholipids including 
cardiolipin) and of Butyricides (pro-tolerogenic bacteria) [23]. The only metabolomic analysis 
conducted so far identified abnormalities associated with the metabolism of methyl group donors, 
ketone bodies, amino acids, and PAPS [24]. 

To date, there are still no clear guidelines and no recent studies on undifferentiated connective 
tissue disease (UCTD) [25] that examine the pathogenic aspects of this condition. Consequently, 
neither intestinal microbiota nor plasma metabolome analysis have been performed in this group of 
patients. 

The present study investigated the intestinal microbiome and plasma metabolome in patients 
with distinct SADs, including SLE, SjS, PAPS, and UCTD. We hypothesized that SADs may share 
common microbiota features across disease states that contrast with microbiota features of healthy 
controls (HCs). 

2. Methods 

2.1. Patients and Controls 

A total of 114 subjects were enrolled in the study, including 27 SLE, 23 SjS, 11 PAPs, and 26 
UCTD patients, plus 27 ethnically-, age-, and sex-matched HCs. All of the patients were recruited at 
the Referral Center for Systemic Autoimmune Diseases, Fondazione Istituto Ricerca a Carattere 
Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico of Milan, and at the Department of 
Rheumatology, Azienda Scocio Sanitaria Territoriale (ASST) Istituto Gaetano Pini and Centro 
Traumatologico Ortopedico (CTO) of Milan. SLE patients fulfilled the 1997 update of 1982 
American College of Rheumatology criteria [26]. SjS patients fulfilled the American European 



J. Clin. Med. 2019, 8, 1291 3 of 15 

 

Consensus Group (AECG) SjS classification criteria [27]. PAPs patients fulfilled the international 
consensus statement on an update of the classification criteria for definite PAPs [28] and UCTD 
were defined as those subjects with clinical features of SADs fulfilling none of the above criteria nor 
any other SADs criteria for at least 2 years, plus the presence of antinuclear antibodies (ANA) ≥ 
1:160 with or without SAD-specific autoantibodies. 

Clinical and laboratory characteristics of patients were recorded in the PRECISESADS case 
report form and later extracted for the present study. Autoantibodies were centrally determined at 
the Laboratory of Immunology and Immunotherapy of the Université Bretagne Occidentale (UBO) 
via a chemiluminescence autoantibody screening strategy using the IDS-iSYS immunoanalyzer 
(Boldon, UK) and coated magnetic particles (solid phase) coupled with autoantigens 
(Technogenetics, Milan, Italy). Polyclonal human rheumatoid factors (RF), complement C3c, C4, 
were measured using a turbidimetric immunoassay (SPAPLUS® analyzer, The Binding Site, 
Grassobbio, Italy). 

Our research is ancillary to the PRECISESADS project 
(https://clinicaltrials.gov/ct2/show/NCT02890121) that was approved by the local ethics committee 
(Comitato Etico Area 2, Milano; approval no. 425bis dated Nov 19, 2014, and no. 671_2018 dated 
Sep 19, 2018). 

2.2. Collection and Storage of Samples 

Patients donated stool samples and within 24 hours of the stool collection the plasma samples 
were obtained for metabolomic analysis and for autoantibody determination (see above). None of 
the patients were treated with antibiotics or probiotics within 4 weeks of the collection of fecal 
samples, which were frozen at −20 °C until delivery to the laboratory of probiogenomics of Parma 
University for processing and analysis. Plasma samples were frozen at −80 °C until delivery to the 
University of Granada for metabolomic analysis. 

2.3. 16S rRNA Gene-Sequencing 

DNA was extracted from each stool sample using DNA extraction using the QIAamp DNA 
Stool Mini kit following the manufacturer’s instructions (Qiagen). 

Partial 16S rRNA bacterial gene sequences were amplified from extracted DNA using primer 
pair Probio_Uni/Probio_Rev, which target the V3 region of the 16S rRNA gene sequence 16S rRNA. 
Gene amplification and amplicon checks were carried out as previously described [29]. Notably, the 
primer pair Probio_Uni/Probio_Rev was specifically developed to maximize coverage and 
amplification performance of gut bacterial populations. The 16S rRNA gene sequencing was 
performed using a MiSeq Illumina at the DNA sequencing facility of GenProbio srl [30] according 
to the protocol previously reported. Following sequencing and demultiplexing, the reads of each 
sample were filtered to remove low quality and polyclonal sequences and data were exported as 
fastq files. The fastq files were processed using a custom script based on the QIIME software suite 
[31]. Paired-end reads pairs were assembled to reconstruct the complete Probio_Uni/Probio_Rev 
amplicons. Quality control retained those sequences with a 140–400 bp length and mean sequence 
quality score > 20. Sequences with homopolymers > 7 bp and mismatched primers were omitted. 
Chimeric sequences were removed with ChimeraSlayer included in the quantitative insights into 
microbial ecology (QIIME) 2 software suite (http://qiime.org/). To calculate downstream diversity 
measures, 16S rRNA operational taxonomic units (OTUs) were defined at ≥ 97% sequence 
homology using uclust and OTUs with < 10 sequences were filtered [32]. All reads were classified to 
the lowest possible taxonomic rank using QIIME and the SILVA database v. 119 clustered at 97% 
identity as the reference dataset [33]. 

2.4. Metabolomic Analysis in Plasma 

Plasma samples were thawed on ice, then an aliquot of 100 μL of each sample was mixed with 
200 μL of methanol:ethanol (50:50, v/v) to remove proteins [34]. The solutions were vortex-mixed 
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and kept at −20 °C for 30 min to achieve an efficient protein precipitation and to avoid possible 
sample degradation. Subsequently, the samples were centrifuged (4 °C, 10 min, 18,400 × g), and the 
supernatants were evaporated in a vacuum concentrator for 105 min. The dry residue was 
reconstituted in 100 μL of 0.1% aqueous formic acid:methanol (95:5, v/v), and centrifuged in the 
same conditions mentioned previously to remove the solid particles. Finally, a 40 μL aliquot was 
transferred to high performance liquid chromatography (HPLC) vials and stored at −80 °C before 
their analysis. A quality control (QC) sample was created by mixing equal volumes of each sample 
(20 μL) and treated as described above. 

2.5. HPLC-ESI-QTOF-MS Analysis 

For the detection of metabolic peaks, a quadrupole-time of flight mass spectrometry analyzer 
(QTOF-MS) was used coupled to high performance liquid chromatography (HPLC). Specifically, an 
Agilent 1260 HPLC system (Agilent Technologies, Palo Alto, CA, USA) was used together with an 
Agilent 6540 Ultra High Definition (UHD) Accurate Mass Q-TOF system (Agilent Technologies, 
Palo Alto, CA, USA) equipped with a dual-stream Electrospray Ionization (ESI) interface. 

The compounds were separated in a C18 reverse phase analytical column (Agilent Zorbax 
Eclipse Plus, 3.5 μm, 2.1 × 150 mm). The mobile phases were made up of water plus 0.1% formic 
acid and methanol as solvents A and B, respectively. To obtain an efficient separation of the 
metabolites, the following gradient of mobile phases was applied: 0 min (A:B, 95/5), 5 min (A:B, 
90/10), 15 min (A:B, 15/85), 32–40 min (A:B, 0/100), and 45 min (A:B, 95/5). 

A QC sample was analyzed every 5 real samples in order to check the analytical 
reproducibility and correct possible analytical drifts during the sequence. In addition, a tandem 
mass spectrometry analysis (MS/MS) of the QC sample was performed to obtain characteristic 
fragments of molecular species that help in the identification process of candidate metabolites. This 
experiment was conducted using nitrogen as collision gas with different energy values (10, 20, and 
40 eV). 

A recursive feature extraction for small molecules was performed on the analyzed samples 
using the MassHunter Profinder software (B.06.00, Agilent). Peaks were filtered with an intensity 
threshold of 1000 counts; [M + H]+, [M + Na]+ and [M + H − H2O]+ were the considered adducts. The 
retention times and masses between the different samples were aligned with thresholds of ± 0.25 
min and 40 ppm ± 4 mDa, respectively. The exported areas were normalized by the MS total useful 
signal (MSTUS) [35]. 

2.6. Statistical Analysis 

2.6.1. Canonical Analysis of Microbiota 

The biodiversity of samples (alpha diversity) was calculated with the Chao1 and Shannon 
indices using 10 subsampling points for a maximum of 54,890 sequences in order to generate 
rarefaction curves. Similarities between samples (beta diversity) were calculated by unweighted 
uniFrac. [36]. Principal coordinate analysis (PCoA) representations of beta diversity were 
performed using QIIME [31]. 

For the other analyses, bacteria at the genus taxonomic rank, with an overall abundance >1%, 
were considered. 

2.6.2. Data Mining Classification and Non-Linear Interactions Analysis 

To model nonlinear multivariate interactions among variables, several inductive data mining 
algorithms were used. The overall procedure is described in detail in [11]. Briefly, the study 
pipeline included a 5-fold nested cross-validation phase (to perform model selection and data 
filtering) in the context of a repeated (10x) 5-fold cross-validation phase (to assess the robustness 
and capability of generalization of the selected model). In the model-selection phase, 5 different 
inductive algorithms were tested: naive Bayes, ada boost (500 runs), random forest (500 runs), extra 
trees classifiers (500 runs), or voting classifier (soft voting of the 4 previous algorithms). A stochastic 
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hill climbing procedure was used to select the subset of attributes that in the nested cross-validation 
phase globally optimized one-vs.-one comparisons. The balanced accuracy (BA), which is the 
average of sensitivity and specificity, was used as the fitness function for modelling and feature 
selection. Results in the validation phase are expressed as BA, F1 measure (harmonic mean between 
sensitivity and precision/positive predictive value), and area under receiver operating 
characteristics (AUROC). BA, F1, and AUROC are presented as the weighted mean of all the 
possible pairwise comparisons. 

In each training fold data were preprocessed, standardizing data values and removing 5% of 
the outliers via the isolation forest method (500 trees). For the microbiome dataset, genera with 
values equal to zero in > 95% of the cases were removed. 

To graphically represent multidimensional results we used the FreeViz method [37]. This 
method selects, via a gradient descent algorithm, the representation that optimizes the compactness 
and separation of instances of the same class, as assessed by average silhouette scores [38]. 

A subanalysis comparing the overall anti Ro60/SSA positive versus anti Ro60/SSA negative 
patients was conducted with the same procedures described above. 

2.6.3. Post-hoc statistical analysis on classification data 

Selected bacterial genera and metabolomic peaks were compared between study groups by 
Kruskal–Wallis tests and if significant after false discovery rate (FDR) correction at the nominal 0.05 
alpha level, the Dunn test was performed for post-hoc analysis. 

2.6.4. Cross-Correlation Analysis 

In patients with SADs, microbial genera (G) were correlated with metabolites (M) correcting 
for potential confounding variables at the time of sampling: age, the use of hydroxycloroquine 
(yes/no), the use of prednisone > 5 mg/day (yes/no), and the use of immunosuppressants (any type, 
yes/no). To this end, a partial correlation analysis was performed considering plasma metabolites as 
dependent (Y) variable, microbial genera as independent variable (Z), and the confounding 
variables as covariates (X). To test the null hypothesis of no relationship between Y and Z over and 
above any relationship of Y with X, we calculated the Pearson’s r coefficient using the residuals 
RY|X (residuals of regression equation of Y on X alone) and RZ|X (residuals of regression equation 
of Z on X alone). The procedure was iteratively repeated to produce a G x M cross-correlation 
matrix. The significance of matrix entries were calculated and corrected for multiple testing using a 
stepwise pMin procedure randomly permuting raw data (Y variable); 10,000 random runs were 
used to this end [39,40]. 

Partial r values in the G x M cross-correlation matrix were used to cluster genera and 
metabolites by means of the hierarchical clustering and Wards linkage methods and manually 
inspecting the cluster tree. The average (centroid) relative abundances and peak areas from 
clustered genera and metabolites were calculated for each individual; centroids were then used to 
build a simplified cross-correlation matrix. Correlation data were corrected for confounding 
variables taking into account multiple testing as described above. 

For all of the analyses, custom codes written in python by L. B. built on top of the scikit-learn 
modules [41] were used; codes are available upon request. Clusters were built with the Orange data 
mining suite (https://orange.biolab.si/). 

3. Results 

Clinical and demographic characteristics of the study participants are reported in Table 1. 
SADs patients were mostly female, whereas a slightly higher proportion of males was observed in 
HCs. Physician global assessment scale was similar in the 4 groups of SADs, with a slight increase 
in PAPs patients. All four disease groups had an average prednisone intake of less than 10 mg per 
day. Prevalent clinical features and autoantibody specificities were consistent with the baseline 
diagnosis. 



J. Clin. Med. 2019, 8, 1291 6 of 15 

 

Table 1. Demographic and clinical characteristics of study participants. 

 SLE 
(n = 27) 

SjS 
(n = 23) 

PAPS 
(n = 11) 

UCTD 
(n = 26) 

HC 
(n = 27) 

Age, mean (SD) 47.70 (16.55) 65.91 (12.72) 40.36 (6.17) 52.23 (12.01) 52.47 (9.96) 
Females, n (%) 24 (88.9) 22 (95.65) 8 (72.72) 23 (88.46) 20 (74.07) 

Disease duration years, mean (SD) 15.16 (10.92) 9.95 (9.38) 11.17 (5.92) 9.43 (5.09) - 
AutoAb profile, n (%)      

ANA 27 (100) 20 (86.97) 2 (16.67) 26 (100)  
Anti-Ro 60/SSA 4 (14.81) 15 (65.22) 0 (0) 3 (11.53)  

Anti-La/SSB 1 (3.70) 10 (43.48) 0 0  
Anti dsDNA 13 (48.14) 0 (0) 2 (18.18) 5 (19.23)  

Anti Sm 2 (7.4) 0 (0) 0 (0) 0 (0)  
ACL 0 (0) 0 (0) 6 (54.54) 1 (3.85)  

Anti B2GP 1 (3.70) 0 (0) 8 (72.72) 1 (3.85)  
RF 1 (3.70) 11 (47.83) 0 (0) 3 (11.54)  

C3c mg/dL, mean ± SD  82.7 ± 21.6  101.8 ± 25.3 100.1 ± 21.2  101.3 ± 28.9  
C4 mg/dL, mean ± SD  14.6 ± 7.2  19.1 ± 8.8 16.9 ± 9.1 16.6 ± 6.2  

Abnormal Liver function, n (%) 4 (14.81) 1 (4.35) 0 (0) 2 (7.69) - 
GERD, n (%) 5 (18.51) 11 (47.83) 1 (9.09) 10 (38.46) - 

Pericarditis, n (%) 4 (14.81) 0 (0) 0 (0) 0 (0) - 
Hypertension, n (%) 6 (22.22) 2 (8.69) 2 (18.18) 5 (19.23) - 
Valve lesions, n (%) 1 (3.70) 1 (4.35) 1 (9.09) 1 (3.85) - 
Dyslipidemia, n (%) 5 (18.51) 2 (8.69) 3 (27.27) 3 (11.54) - 

Abnormal creatinine, n (%) 7 (25.92) 1 (4.35) 2 (18.18) 3 (11.54) - 
Abnormal urine, n (%) 10 (37.03) 1 (4.35) 3 (27.27) 2 (7.69) - 

Proteinuria, n (%) 7 (25.92) 1 (4.35) 3 (27.27) 0 (0) - 
Anemia past, n (%) 3 (11.1) 1 (4.35) 0 (0) 0 (0) - 

Low platelet count, n (%) 8 (29.62) 2 (8.69) 2 (18.18) 1 (3.85) - 
Low WBC, n (%) 18 (66.67) 6 (26.09) 2 (18.18) 7 (26.92) - 
Pleuritis, n (%) 1 (3.70) 1 (4.35) 0 (0) 0 (0) - 
Arthritis, n (%) 17 (62.96) 3 (13.04) 1 (9.09) 6 (23.08) - 

Myopathy, n (%) 2 (7.4) 0 (0) 0 (0) 0 (0) - 
CNS involvement, n (%) 3 (11.1) 1 (4.35) 4 (36.36) 0 (0) - 
PNS involvement, n (%) 0 (0) 0 (0) 2 (18.18) 1 (3.85) - 

Mucositis, n (%) 10 (37.03) 0 (0) 2 (18.18) 4 (15.38) - 
Cutaneous active lupus, n (%) 19 (70.37) 1 (4.35) 1 (9.09) 2 (7.69) - 

Cutaneous chronic lupus, n (%) 5 (18.51) 0 (0) 1 (9.09) 4 (15.38) - 
Photosensitivity, n (%) 22 (81.48) 2 (8.69) 1 (9.09) 13 (50) - 

Puffy fingers, n (%) 2 (7.4) 0 (0) 0 (0) 0 (0) - 
Sicca, n (%) 12 (44.44) 21 (91.30) 1 (9.09) 9 (34.62) - 

Inflammation, n (%) 17 (62.96) 10 (43.48) 1 (9.09) 13 (50) - 
PGA, mean (SD)  28.52 (21.61) 30.78 (18.97) 47.27 (29.44) 30.28 (18.2) - 

Fever, n (%) 0 (0) 2 (8.69) 1 (9.09) 2 (7.69) - 
Hypergammaglobulinemia, n (%) 12 (44.44) 12 (52.17) 0 (0) 9 (34.62) - 

Venous thrombosis, n (%) 2 (7.4) 0 (0) 6 (54.54) 1 (3.85) - 
Raynaud’s phenomenon, n (%) 8 (29.62) 2 (8.69) 1 (9.09) 11 (42.3) - 

Miscarriage, n (%) 2 (7.4) 1 (4.35) 7 (63.63) 0 (0) - 
Statin use, n (%) 2 (7.4) 2 (8.69) 1 (9.09) 2 (7.69) - 

Prednisone (>5 mg/day), n (%) 7 (25.92) 3 (13.04) 1 (9.09) 9 (34.62) - 
Prednisone dose, mean mg/day 7.55 8.62 7  5.67 - 

HCQ use, n (%) 19 (70.37) 9 (39.13) 8 (72.72) 13 (50) - 
Immunosuppressant use, n (%) 10 (37.04) 2 (8.69) 0 (0) 3 (11.54) - 

Note: SLE, systemic lupus erythematosus; SjS, Sjogren’s syndrome; PAPS, primary antiphospholipid 
syndrome; UCTD, undifferentiated connective tissue disease; HC, healthy controls; SD, standard 
deviation. ANA, anti-nuclear antibodies; anti-Ro60/SSA and anti-La/SSB, 
anti-Sjögren’s-syndrome-related antigen A and B; anti dsDNA, anti-double stranded DNA; anti Sm, 
anti-Smith antibodies; ACL, anti-cardiolipin antibodies; anti B2GP, anti-beta2glicoprotein-I 
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antibodies; RF, rheumatoid factor; GERD, gastro-esophageal reflux; WBC, white blood cells; CNS, 
central nervous system; PNS, peripheral nervous system; PGA, physician’s global assessment scale; 
HCQ, hydroxychloroquine. For clinical data the occurrence of symptom in the medical history 
(“ever”) is counted as an entry. For therapies, the current use is listed. 

3.1. Microbiomic Analysis 

After performing microbiome quality filtering (Supplementary File 1), our alpha diversity 
analysis found no differences either in richness or in evenness of taxa among the study groups 
(Supplementary Figure S1). Similarly, principal coordinate analysis (PCoA) analysis of beta 
diversity could not separate any disease from the others, albeit HCs tended to cluster apart from 
SADs (Supplementary Figure S2). On the contrary, classification algorithms discriminated the 
different diseases with AUROC = 0.727 ± 0.034, F1 = 0.704 ± 0.024, and BA = 0.654 ± 0.018 when all of 
the genera were considered. A similar discrimination could be obtained after feature selection, 
highlighting the importance of selecting a subset of bacteria in differentiating the different classes: 
AUROC = 0.730 ± 0.025, F1 = 0.717 ± 0.034, and BA = 0.663 ± 0.031. The final model included 29 
genera (Supplementary Table 1) and almost completely separated HCs from SADs, as shown in 
Figure 1; the capability of this subset of bacteria to differentiate the SADs and HCs (pairwise 
comparisons) according to the different classification metrics is represented in Supplementary 
Figure 3. According to FreeViz representation, HCs emerged as an isolated cluster, while UCTD 
patients had the highest degree of overlap with the other autoimmune diseases. 

 

Figure 1. Clustering of selected microbiome genera. Visual representation by FreeViz projections of 
selected microbiome genera that best maximize the global pairwise goodness of fit (mean of all the 
possible one-vs.-one comparisons). The graphical representation is optimized to maximize the 
compactness and separation of clusters as measured by silhouette scores. Note: Red = healthy 
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controls; purple = systemic lupus erythematosus; green = Sjogren’s syndrome; blue = primary 
antiphospholipid syndrome; yellow = undifferentiated connective tissue disease. Shaded areas 
indicate 99%, 95%, and 90% confidence ellipse intervals (from darkest to lightest). 

Univariate analysis showed that the abundance of some genera was statistically different in 
SADs compared to HCs. Namely, the abundance of Bifidobacterium, Ruminiclostridium, Streptococcus, 
U. m. of Coriobacteriaceae family, U. m. of Enterobacteriaceae family, and Collinsella was significantly 
lower in the HCs group compared to the other groups (Supplementary Figure 4), while the 
abundance of Lachnoclostridium, Lachnospira, and Sutterella was significantly increased in HCs 
compared to SLE, SjS, PAPs, and UCTD (Supplementary Figure 5). 

The subanalysis of microbiome comparing anti Ro60/SSA positive versus anti Ro60/SSA 
negative patients did not show significant results (BA and AUROC < 0.6). 

3.2. Metabolomic Analysis 

Feature selection in our metabolomic analysis slightly reduced the original fit of the complete 
model. A reduced model comprised of 41 metabolites was capable of performing a fair joint 
pairwise classification of diseases with an AUROC = 0.748 ± 0.021 (vs. 0.766 ± 0.015 of the full 
model), F1 = 0.684 ± 0.015 (vs. 0.702 ± 0.023), and BA = 0.671 ± 0.013 (vs. 0.674 ± 0.02). The selected 
significant peaks are detailed in Supplementary Table 2, while their multidimensional 
representation is illustrated in Figure 2. The metabolites were identified by the comparison of the 
MS results (mass exact, isotopic distribution, and MS/MS fragments) and the information from the 
metabolomic databases. However, despite the efforts in the identification, a number of peaks 
remained unknown because this stage is currently the bottleneck in the field of metabolomics [42]. 
Pairwise comparisons are illustrated in Supplementary Figure 6, in which select metabolites could 
discriminate HCs from SADs, while their performance in SAD-to-SAD comparisons was less 
remarkable. 

A number of peaks were differentially distributed in the analyzed groups according to 
univariate statistical analysis, as highlighted in Supplementary Table 2. Not surprisingly, most of 
the differences were due to reduced or increased normalized peak area values in HCs compared to 
one or more disease groups. 

The analysis in anti-Ro60/SSA positive versus anti-Ro60/SSA negative patients showed that the 
two groups could weakly, albeit non-substantially be distinguished from the metabolic point of 
view (average AUROC = 0.689; BA = 0.569). 
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Figure 2. Clustering of selected metabolites. Freeviz representations of selected metabolites (see 
legend to Figure 1 for details). 

3.3. Cross-Correlation Analysis 

Supplementary Figure 7 represents the cross-correlation matrix corrected for age and 
concurrent therapies among microbial genera and metabolites; correlations significant at the 0.05 
threshold after permutation test and with an absolute Pearson’s r > 0.3 are highlighted. According 
to partial correlation coefficients, we could distinguish 7 bacterial and 9 metabolite clusters. Data 
aggregation of individual data within these clusters yielded the simplified cross-correlation matrix 
illustrated in Figure 3. Attempts were made to identify metabolites within the clusters yielding the 
most significant partial correlation values. We could observe an enrichment of specific metabolites 
within each cluster: Cluster 1: Acylcarnitines; Cluster 2: Caffeine/Tryptophan; Cluster 3: mixed; 
Cluster 4: Kynurenine/Phenylalanine; Cluster 5: Aminoacids; Cluster 6: phosphatidylcholine (PC) 
and sphingomyelin (SM); Cluster 7: Fatty acids and tryglicerides (TG) and PC; Cluster 8: 
phosphatidylserine (PS) and PC; Cluster 9: LysoPC. 



J. Clin. Med. 2019, 8, 1291 10 of 15 

 

 

Figure 3. Simplified cross-correlation. Partial correlation analysis of aggregated microbiome and 
metabolome data after correction for confounding variables (age, hydroxycloroquine, steroid and 
immunosuppressant use). Aggregated clusters are calculated from the full correlation matrix shown 
in Supplementary Figure 7, as described in the methods and manually annotated. Note: Diamonds, 
positive partial correlations; circles, negative partial correlations; p values assessed after 
permutation testing. 

4. Discussion 

To our knowledge, this is the first study to investigate and compare the gut microbiota and 
plasma metabolome profiles of 4 distinct SADs (SLE, SjS, UCTD and PAPS). Instead of focusing on 
specific alterations that may explain putative differences between HCs and single diseases, we tried 
to discover a common set of alterations jointly capable of discriminating SADs from HCs. Albeit 
with individual differences, our findings indicate that SADs share similar etiologic factors and 
pathophysiological mechanisms similar to the common genetic background or similar epigenetic 
processes that have been described in these disease states [43]. Among the analyzed SADs, the 
microbiota and metabolome profiles of patients with UCTD overlapped with other disease groups, 
likely due to the fact patients with this phenotype have nonspecific clinical features of the other 
SADs under study [44]. 

In terms of specific microbial findings, we observed an increased relative abundance of 
Bifidobacterium, Ruminiclostridium, Streptococcus, U. m. of Coriobacteriaceae family, and U. m. of 
Enterobacteriaceae family in all of the SADs compared to HCs. Bifidobacterium is known to be 
increased in active phase of inflammatory bowel disease [45]; similarly, Streptococcus has been 
associated with inflammatory intestinal conditions [46]. Taxa belonging to the order of Clostridiales 
(i.e., Ruminiclostridium) have been found in lower abundance in Crohn’s disease. In murine models 
of RA, the expansion of Clostridiales was correlated with transcription of pro-inflammatory 
cytokines (Th1/Th17) [47]. Similarly, a high relative abundance of Streptococcus has been associated 
with relapsing-remitting multiple sclerosis and increased Th17 cell frequency [48]. Interestingly, in 
our SLE and PAPS subjects, we noticed an increased relative abundance of Collinsella, another 
taxon, which was increased in RA patients and correlated with IL-17a [49]. 

Conversely, we found a reduction of Lachnoclostridium, Lachnospira, and Sutterella in all SADs 
groups compared to HCs. Lachnoclostridium and Lachnospira are part of Lachnospiraceae, a family of 
bacteria capable of producing SCFA (such as butyric acid) with a highly pro-regulatory, tolerogenic 
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role on immune functions [50]. Our results are, thus, aligned with several previous observations of 
a depletion in tolerogenic bacteria in patients affected by SADs [9,10,47]. 

Consistent with our microbiomic findings, the metabolomic analysis revealed that SADs had 
unique metabolomic features distinguishing them from HCs. A relatively small subset of peaks (n = 
41) was able to maximize the discrimination among groups. Despite the observation that some 
metabolites were differentially represented in selected SADs compared to HCs, a unifying 
discriminative pattern could not be identified. These findings highlight the complex interaction 
among metabolites in SADs and underline that several metabolic pathways may be non-linearly 
involved in their phenotypic expression. Our results are in accordance with Bengtsson et al., where 
very few metabolites withstand statistical correction, yet provide a good separation between SjS 
and HCs or SLE, and to a lesser extent between SLE and HCs when jointly considered [17]. Of 
interest, among the annotated peaks in our reduced classification model we could identify several 
members of the acylcarnitine family, suggesting a deregulation of β-oxidation processes in SADs, as 
already suggested in RA, SLE, or SjS [17,51–54]. 

As a confirmation of the concordant behavior of the microbiomic and the metabolomic profile 
observed by our data mining analysis, we observed a moderate-to-strong correlation among 
selected individual metabolic peaks and bacterial genera. Although a causal relationship cannot be 
established by this kind of analysis, we could extract some metabolite and bacterial clusters that 
correlated with each other. In particular, a cluster enriched by acylcarnitine metabolites was 
significantly directly correlated with a group mostly represented by Prevotella genera. In support of 
this correlation, a dietary intake of carnitine has been implicated in trimethylamine N-oxide 
(TMAO) production, an amine oxide obtained from carnitine, betaine, and choline through gut 
microbiota metabolism. Bacterial families implicated in TMAO production include 
Enterobacteriaceae and Prevotellaceae [55]. Koeth et al. found a significant increase in plasma TMAO 
related to an enterotype rich in Prevotella and peculiar of omnivore subjects [56]. 

On the contrary, an inverse correlation between the acylcarnitine family cluster and a cluster of 
bacteria mainly composed of butyrate-producing strains was found. This cluster includes 
Anaerostipes, Subdoligranulum, Intestinimonas and Flavonifractor [57], Eisenbergiella [58], Megamonas 
[59], and Cloacibacillusg [60]. Butyrate-producing bacteria are immunologically pro-tolerogenic 
strains that metabolize SCFA mostly obtained from fruits and vegetables, while on the contrary 
carnitine intake from diet derives mostly from red meat. Additionally, we also found an inverse 
correlation between a PC-enriched cluster and the butyrate-producing, bacteria-enriched cluster. In 
complex experiments and putative explanatory models, butyrate was shown to upregulate cytosolic 
phospholipase A2 (PLA2) activity in macrophages and secretory PLA2 activity in adipocytes and 
macrophages to ultimately suppress lipolysis [61]. As lipolysis participates in inflammatory 
signaling processes, we may hypothesize that in SADs the (loss) of butyrate-producing bacteria 
may influence inflammation, disrupting PC and lysoPC homeostasis [62,63]. 

While a number of results from our study are intriguing, we shall acknowledge some 
drawbacks of our work. Mechanistic studies on animal models would be a fundamental integration 
of the observed data to better define the functional role of identified bacteria. Moreover, even if the 
overall number of enrolled patients is satisfactory and unprecedented in SADs studies, there is a 
lack of homogeneity because PAPs are underrepresented compared to the other. Geographical 
implications on microbiome and metabolome results should also be taken into account and we 
cannot guarantee that our findings are generalizable to genetically diverse populations with 
different lifestyles and dietary habits. Lastly, a thorough analysis comparing patents with different 
autoantibody subsets could have provided additional microbiomic and metabolomic information. It 
is known that the presence of specific autoantibodies may be more informative than the clinical 
phenotypic stratification [64,65] and may have omic implications as well [66,67]. Unfortunately, 
despite our attempts, the subanalysis based on Ro60/SSA specificity yielded inconclusive results, 
most likely due to the inadequate number of patients and to the unbalanced nature of data. As 
such, more focused and powerful studies are required to solve this issue. 

5. Conclusions 



J. Clin. Med. 2019, 8, 1291 12 of 15 

 

Our findings indicate that SLE, UCTD, SjS, and PAPS patients share common intestinal 
microbiome and metabolomic profiles. Although specific causative explanations cannot be made, a 
correlation between microbial genera and metabolites affirm the hypothesis that an interaction 
between intestinal microbiota and metabolic function exists. These data indirectly support the 
notion that modulation of microbiota, either by diet or by other means, may be a potential strategy 
to tackle the systemic consequences of dysbiosis, including inflammation and autoimmunity 
[64,65]. The optimal strategy to modulate dysbiosis in SADs remains elusive, yet the study of the 
metabolome appears to be a valuable option to monitor the effect of such an intervention and 
warrants further research. 
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