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Supplementary Materials and Methods 

1. Study Participants 

We recruited two patients with RA and two unrelated healthy donors without any autoimmune 

diseases from the same geographic area through advertisement. One RA patient was 64 years old 

female, negative for rheumatoid factor and anti-citrullinated protein antibodies (ACPA), erythrocyte 

sedimentation rate (ESR) 23 mm/h, C‐reactive protein (CRP) 4.99 mg/dL, negative for joint erosions. 

The other RA patient was 64 years old female negative for joint erosions and rheumatoid factor, but had 

multiple poor prognosis factors, including positive for ACPA, ESR 112 mm/h, CRP 12.08 mg/dl [1]. All 

participants reported their ethnic group as Han Chinese. RA patients fulfilled the American College 

of Rheumatology (ACR) 1987 revised criteria and 2010 ACR/European League Against Rheumatism 

(EULAR) classification criteria for RA. The study was conducted in accordance with the Declaration 

of Helsinki and ethical approval was granted by the Kaohsiung Medical University Hospital 

institutional review board (KMUHIRB-G(II)-20180031). 

2. DNA and RNA Extraction 

Peripheral blood mononuclear cells (PBMCs) were separated by the Ficoll-Paque method, either 

for DNA extraction or for RNA isolation. DNA was extracted using a commercial kit (Geneaid, New 

Taipei, Taiwan). Total RNA was isolated by QIAmp RNA Blood Mini Kit (Qiagen, Hilden, 

Germany). The RNA quantity and quality were evaluated using the ND-1000 spectrophotometer 

(Nanodrop Technology, Wilmington, DE, USA) and the Agilent RNA 6000 labchip kit with Agilent 

2100 Bioanalyzer instrument (Agilent Technologies, Santa Clara, CA, USA), respectively. The 

qualities of extracted RNA were shown in supplementary Table S1. 

3. Methyl-Seq 

For methylome profiling, TruSeq Methyl Capture EPIC protocol was adopted. Briefly, DNA 

was sonicated via ultrasonication to obtain products of 180–220 base pairs. DNA was then 

end-repaired, adenylate-tailed, ligated with methylated indexed-adapters to create pre-capture 

DNA libraries. The pre-capture libraries were hybridized to the EPIC oligos, purified by capture 

with Streptavidin beads and washed twice to remove nonspecific binding. After the last elution, 

hybridized products were subjected to bisulfite conversion with the reagent provided in the TruSeq 

Methyl Capture EPIC Library Prep Kit. The bisulfite-treated libraries were PCR-amplified for 11 

cycles with Kapa HiFi HotStart Uracil + polymerase (Kapa Biosystems). Libraries were clustered on a 

V3 paired-end read flow cell and sequenced for 100 cycles (PE100) on an Illumina HiSeq 2500. 

Quality control of read sequences was performed using FastQC, removing reads with phred score < 

30. FastQC was run on the trimmed sequences to verify quality control. Quality-trimmed paired-end 

reads were analyzed with MethylSeq v1.0, which employed Bismark (v0.12.2) for reads mapping 

and aligned to the reference human genome (hg19) using Bowtie2 (v2.2.2). Duplicated reads were 

removed. We used the surrogate variable analyses (SVA) method to capture unmeasured cellular 

effects and batch effects to remove interference from cellular composition [2-3] 

4. RNA-Seq 

Agilent's SureSelect Strand Specific RNA Library Preparation Kit was utilized for library 

construction. Briefly, RNA was first purified and fragmented employing poly-T oligo-attached 

magnetic beads followed by complementary DNA (cDNA) strand synthesis. Next, cDNA 3' ends 

were adenylated, and adapters ligated followed by library amplification. The libraries were 

size-selected with AMPure XP Beads (Beckman Coulter). The sequence was determined adopting 

sequencing-by-synthesis technology with the TruSeq SBS Kit. Raw sequences were obtained from 

the Illumina Pipeline software bcl2fastq v2.0 to generate 30 million reads per sample. The sequences 
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generated then went through a filtering process to obtain qualified reads. Trimmomatic was applied 

to trim or discard the reads based on the quality score. Qualified reads after filtering low-quality 

data were analyzed for gene expression estimation using TopHat/Cufflinks method. The gene 

expression level was normalized by calculating Fragments Per Kilobase of transcript per Million 

mapped reads (FPKM). We retrieved mRNA with FPKM > 0.3 since a threshold FPKM value of 0.3 

balanced the numbers of false positives and false negatives [4]. SVA was utilized to adjust 

expression variation due to cell type and batch effects [5]. Statistical analysis was performed using 

Cuffdiff (Cufflinks version 2.2.1), with P value calculation for non-grouped samples using blind 

mode, in which all samples were treated as replicates of a single global condition and used to 

blind one model for a statistic test. Benjamini-Hochberg method for false discovery rate 

calculation was performed.  

5. Principal Component Analysis (PCA) and Hierarchical Clustering (HC) of Methylation in RA 

and Healthy Donors 

PCA is a technique that measures variations among samples within a multidimensional dataset 

and is useful at reducing the dimensionality of the dataset. PCA reduces the high dimensionality of a 

dataset by transforming the large number of regions to a few principal components. A given 

principal component (PC) describes a specific pattern of DNA methylation across samples. Each 

sample in the dataset is assigned a score for each principal component, indicating the relative 

contribution of each PC-related pattern to the sample’s overall variation. Each PC is independent 

from the others and accounts for a particular amount of variance within the dataset. The principal 

components are ordered so that the first few include most of the variation present in the original 

data and are used to emphasize grouping structure in the data. A plot of the first two principal 

components reveals a biologically meaningful clustering of the samples. MethylKit was applied for 

PCA to assess relevance of differential methylation to RA [6]. Following the PCA, HC analysis 

employing Ward’s clustering method with squared Euclidean distances was performed to assess 

similarities in methylation and to identify clusters of samples (Figure 1, Step 1).  

6. OmicCircos Visualization 

To explore whether the methylation pattern changed with regards to chromosome location and 

chromosome number, the methyl-seq data were first categorized according to their respective 

chromosome number and then ordered by their location in respective chromosome. The methylation 

difference of RA and healthy donors in every sequenced CpG site was calculated by subtracting 

mean methylation level of healthy donors from mean methylation level of RA. For a visual 

representation of methylation level of RA, methylation level of healthy donors, and methylation 

difference for every sequenced CpG sites, Omiccircos was employed (Figure 1, Step 2) [7].  

7. CpG Features Mapping 

To map CpG sites to CpG features, CpG islands ((1) GC content above 50%, (2) ratio of 

observed-to-expected number of CpG dinucleotides above 0.6, and (3) length greater than 200 base 

pairs), CpG shores (2 kilobase upstream/downstream from the ends of the CpG islands), CpG shelf 

(2-4 kilobase upstream/downstream of the CpG islands), and open seas (otherwise) were identified 

[8]. Mapping of CpG sites to CpG features was provided by the annotatr package (Figure 1, Step 3) 

[9]. Differences between groups were assessed with analysis of variance (ANOVA) and post hoc 

Tukey’s test. 

8. Genic Characteristics Annotation 

To identify enhancers, promoters, gene bodies and intergenic regions, we utilized HACER and 

ChIPpeakAnno [10-11]. HACER integrated ENCODE transcription factor ChIP-seq, FANTOM5 Cap 

Analysis of Gene Expression (CAGE) profiles, GRO-seq and PRO-seq dataset, expression 

quantitative trait locus (eQTL) analysis and 4DGenome chromatin interaction studies to catalogue 
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and annotate cell-type-specific enhancers [10]. Genomic coordinates of enhancer regions in 38 PBMC 

cells (Supplementary Table S2) were retrieved from HACER [10]. Genomic coordinates of promoters 

(region from -2500 to 500 bp relative to the transcription start site) [12], gene body (other transcribed 

region), and intergenic regions (otherwise) were recorded with ChIPpeakAnno suite of programs 

[11]. CpG sites were annotated to enhancers, promoters, gene bodies, and intergenic regions 

accordingly (Figure 1, Step 4). Methylation differences between different genic characteristics were 

evaluated using ANOVA with post hoc Tukey’s test. 

9. Methylation-Expression Correlation 

To explore the correlation between methylation and expression, we integrated methyl-seq and 

RNA-seq results (Figure 1, Step 5). The variance of methylation and variance of gene expression 

(FPKM log2 ratio) was calculated for all CpG sites and genes, similar to previous protocols [13]. CpG 

sites with methylation variance above mean methylation variance were categorized as CpG sites 

with high methylation variance. CpG sites with methylation variance below mean methylation 

variance were categorized as CpG sites with low methylation variance. The variance of gene 

expression between CpG sites with high methylation variance and CpG sites with low methylation 

variance was compared by Student’s t test.  

10. Identification of Differentially Methylated Region and Annotation of Genes with 

Differential Methylation and Differential Expression 

The mapped reads of methyl-seq were used as input in methylKit for further analysis [6]. To 

identify extended differentially methylated region, logistic regression test was applied to compare 

fraction of methylated CpG sites across RA and healthy donor groups in differentially methylated 

regions. Following the differential methylation test and calculation of P values, Benjamini-Hochberg 

method was implemented to derive false discovery rate for P value correction. Regions with false 

discovery rate less than 0.05 were defined as significantly differentially methylated (Figure 1, 

Step 6a). GenomicRanges was used to map identified differentially methylated region annotation 

to respective genes. Similarly, genes with expression false discovery rate less than 0.05 were 

defined as the significantly differentially expressed (Figure 1, Step 6b).  

11. Integration of Methylome and Transcriptome Data 

Since enhancer and promoter methylation correlated with decreased gene expression and gene 

body methylation was associated with increased gene expression [14-15], we identified upregulated 

genes in RNA-seq with enhancer/promoter hypomethylation or gene body hypermethylation in 

methyl-seq and downregulated genes in RNA-seq with enhancer/promoter hypermethylation or 

gene body hypomethylation in methyl-seq (Figure 1 Step 7). Genes with concomitant differential 

methylation and differential expression were entered as input for following analysis.  

12. Genetic-Epigenetic Interaction Investigation 

To explore the interaction between the genes with concomitant differential methylation and 

differential expression and the RA genetically associated genes, we integrated past genome-wide 

association study (GWAS) results and protein-protein interaction information from BioGRID, 

similar to previous approaches [16-17] (Figure 1 Step 8, supplementary Figure S1). In brief, a 

snapshot of the GWAS catalog was downloaded on 28 December 2018 from the NHGRI 

(https://www.ebi.ac.uk/gwas). For each reported single nucleotide polymorphism (SNP), SNPs in 

linkage disequilibrium (LD) were defined based on 1000 genomes Project Consortium phase 1 data 

as those with r2≥0.8, using HaploReg [17]. The SNPs associated with RA or in LD with SNPs 

associated with RA were considered RA-associated loci. Traits-associated loci were all SNPs and 

SNPs in LD with SNPs for any disease/trait in GWAS catalog. RA-associated loci and 

traits-associated loci were annotated to respective genes to obtain RA genetically associated genes 

and traits genetically associated genes with the aid of FUMA [18]. FUMA was an integrative 
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web-based platform accommodating information from multiple biological resources to facilitate 

positional and expression quantitative trait loci (eQTL) mapping to provides gene-based, pathway 

and tissue enrichment results. SNPs are subsequently mapped to genes based on integration of 

positional context and functional consequences on genes. NonRA genetically associated genes 

were obtained by excluding RA genetically associated genes from traits genetically associated 

genes. Interaction targets of RA genetically associated genes and nonRA genetically associated 

genes were curated by BioGRID. The enrichment of RA genetically associated genes with 

differential methylation and differential expression or targeting genes with differential 

methylation and differential expression was evaluated with Chi-square test [17]. 

13. Ingenuity Pathway Analysis 

To clarify the function of genes with differential methylation and differential expression, 

Ingenuity Pathway Analysis (Qiagen) was applied to annotate the most over-represented canonical 

pathways and related diseases (Figure 1 Step 9) by submitting the gene lists as defined above. P 

values less than 0.05 were considered significant. 

14. Upstream Regulator Deduction 

The iRegulon plugin was used to reveal candidate transcription factors regulating genes with 

differential methylation and differential expression in RA PBMCs (Figure 1 Step 10) [19]. iRegulon 

utilized cis-regulatory sequence analysis to reverse-engineer the transcriptional regulatory network 

underlying a co-expressed gene set. It integrated the transcription factor information from various 

databases including Transfac, Jaspar, Encode, Swissregulon and Homer, and detected enriched 

transcription factor motifs and optimal sets of their direct targets by means of genome-wide ranking 

and recovery. The corresponding Normalized Enrichment Score (NES) was obtained from iRegulon. 

The higher the scores were, the more reliable the results were. 

14. Validation of Genes with Concomitant Differential Methylation and Differential Expression 

PBMCs contained multiple cellular subsets, including CD4 T cells, CD8 T cells, and B cells and 

monocytes. To confirm differential methylation of enhancer/promoter/gene body and differential 

expression of genes between RA and healthy donors, we searched existing literature and GEO 

database for methylation and transcription profiles of CD4 T cells, CD8 T cells, B cells and 

monocytes in RA and healthy donors. Only CD4 T cells and B cells had concurrent dataset of 

methylation and expression. Thus, we retrieved methylation and expression profiles of CD4 cells 

(GSE71841, GSE4588) and methylation and expression profiles of B cells (GSE87095, GSE4588) in RA 

and healthy donors (Figure 1, Step 11). Methylation and expression profiles obtained from GEO 

dataset were analyzed with GEO2R [20]. P values less than 0.05 were considered statistically 

significant. 
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Table S1. Next-generation sequencing RNA quality of rheumatoid arthritis and healthy donor 

peripheral blood mononuclear cells. 

 OD260/OD280 RIN 

RA1-PBMC 1.97 9.7 

RA2-PBMC 1.96 9.5 

HD1-PBMC 1.96 9.4 

HD2-PBMC 1.99 9.8 

RA1-PBMC, RA2-PBMC: Rheumatoid arthritis peripheral blood mononuclear cells; HD1-PBMC, 

HD2-PBMC: Healthy donor peripheral blood mononuclear cells; OD: Optical Density; RIN: RNA 

integrity number. 
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Table S2. HACER source cells utilized in enhancer annotation. 

ARH-77 ATN-1 BALL-1 CD4 

CTB-1 Daudi DAUDI DS-1 

GM12004 GM12750 GM12878 GM12878 ENCODE 

HD-Mar2 HPB-ALL HuT 102 TIB-162 Jurkat 

KHYG-1 Ki-JK Ly-1 MLMA 

Mo MV4-11 MV-4-11 Nalm6 

NALM-6 PCM6 P30 P31 

RAJI REH RPMI1788 SKW-3 

SLVL THP-1 U936 U-937 DE-4 

WIL2-NS XPL 17   

Table S3. Top ten pathways identified by Ingenuity Pathway Analysis (IPA) from differentially 

methylated and differentially expressed genes. 

Pathway Genes with differential methylation and differential expression 

Dendritic cell 

maturation 

ICAM1, MYD88, HLA-A, NFKBIE, TLR2, COL5A3, NFKBIA, IL1RN, 

FSCN1, HLA-DMB, FCER1G, IL1B, CD86, IRS2, LTBR, TNFRSF1B 

Inflammasome 

pathway 
MYD88, PYCARD, CTSB, IL1B, P2RX7 

iNOS signaling FOS, NFKBIA, MYD88, NFKBIE, IFNGR2, IRAK3 

LPS/IL-1 mediated 

inhibition of RXR 

function 

MYD88, CHST15, SMOX, IL1RN, SULT1A1, IL1B, ALDH3B1, CHST13, 

TNFRSF1B, RXRA, ABCC4, MGST3, ACSL1 

Neuroinflammation 

signaling pathway 

CD200, ICAM1, HLA-A, PYCARD, MYD88, TLR8, IFNGR2, FZD1, IRAK3, 

FAS, TLR2, HMOX1, FOS, HLA-DMB, IL1B, CD86, IRS2, P2RX7 

NF-κB signaling 
MYD88, NFKBIE, FLT4, TLR8, IRAK3, TLR2, NFKBIA, IL1RN, FCER1G, 

IL1B, IRS2, INSR, LTBR, TRAF5, TNFRSF1B, PDGFRB 

PPAR signaling 
FOS, NFKBIA, IL1RN, PDGFA, NFKBIE, IL1B, INSR, TNFRSF1B, RXRA, 

PDGFRB 

Toll-like receptor 

signaling 
TLR2, FOS, NFKBIA, MYD88, IL1RN, TLR8, IL1B, IRAK3 

TREM1 signaling TLR2, TREM1, ICAM1, MYD88, TLR8, IL1B, CD86 

Type I diabetes 

mellitus signaling 

SOCS3, NFKBIA, HLA-A, MYD88, NFKBIE, HLA-DMB, IFNGR2, FCER1G, 

IL1B, CD86, TNFRSF1B, FAS 
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Table S4. Top ten diseases identified by Ingenuity Pathway Analysis (IPA) from differentially 

methylated and differentially expressed genes. 

Disease Genes with differential methylation and differential expression 

Atherosclerosis FOS, FOSB, JUNB, KLF4, KLF6, ZFP36 

Atopic dermatitis 
CXCR4, DUSP1, FAM153A/FAM153B, FCER1G, FCER2, IFI30, JUNB, 

LGALS1, NR4A2, TNFSF10, ZFP36 

Hematopoietic 

neoplasm 
CD86, CEBPA, CELSR1, FAS, HMOX1, KIT, PDGFRB, TNFRSF8 

Inflammation of joint 

ADM, BLK, CCR1, CD72, CEBPB, CXCR4, DUSP1, FOS, FOSB, G0S2, 

GADD45B, HIST1H2AC, IL1B, KLF13, LGALS1, NFKBIA, NR4A1, 

NR4A2, PLAUR, THBS1, TLR2, VASH1, ZFP36, ZNF281 

Juvenile rheumatoid 

arthritis 

ADM, CCR1, CEBPB, FOS, FOSB, GADD45B, IL1B, LGALS1, NFKBIA, 

NR4A1, NR4A2, PLAUR, THBS1, VASH1, ZFP36, ZNF281 

Polyarticular juvenile 

rheumatoid arthritis 

ADM, CCR1, CEBPB, FOS, FOSB, GADD45B, IL1B, LGALS1, NFKBIA, 

NR4A1, NR4A2, PLAUR, THBS1, ZFP36 

Rheumatic disease 

ADM, BLK, BST2, CCR1, CD72, CEBPB, CXCR4, DUSP1, FOS, FOSB, 

G0S2, GADD45B, HIST1H2AC, IL1B, KLF13, LGALS1, MX1, NFKBIA, 

NR4A1, NR4A2, PLAUR, SLAMF7, THBS1, TLR2, TYMP, USP18, VASH1, 

ZFP36, ZNF281 

Rheumatoid arthritis 

ADM, CCR1, CEBPB, CXCR4, DUSP1, FOS, FOSB, G0S2, GADD45B, 

HIST1H2AC, IL1B, KLF13, LGALS1, NFKBIA, NR4A1, NR4A2, PLAUR, 

THBS1, TLR2, VASH1, ZFP36, ZNF281 

Systemic autoimmune 

syndrome 

ADM, BST2, CCR1, CEBPB, CXCR4, DUSP1, FAS, FOS, FOSB, G0S2, 

GADD45B, HIST1H2AC, IL1B, KLF13, LGALS1, MX1, NFKBIA, NR4A1, 

NR4A2, PLAUR, SLAMF7, THBS1, TLR2, TYMP, USP18, VASH1, ZFP36, 

ZNF281 

Viral infection 

ACSL1, CD86, CEBPD, CTSB, CXCR4, FAS, HIST1H2AC, ICAM1, IL1B, 

IRS2, NFIL3, NFKBIA, P2RX7, SIGLEC1, SLC2A3, TIMP2, TLR2, 

TNFSF10 

Table S5. Roles of identified transcription factors in immunity. 

 
Roles in immunity Reference 

CEBPA Regulates IFNγ expression in T cells [1] 

CEBPB 
Regulates differentiation of dendritic cells and macrophage and inhibits monocyte 

apoptosis 
[2-3] 

ETS2 Induces miR-155 which facilitates inflammation [4] 

FOS Regulator of IFNγ and TNF-α [5] 

FOSL2 Directs Th17 cell development [6] 

FOXM1 Induces NF-κB and JAK/STAT signaling, increases TNF-α and IL-6 production [7-8] 

HLCS Deficiency causes immunological and inflammatory disorder [9] 

NAP1L1 Higher expression in lymphoma and involved in DNA replication in B cells  [10-11] 

NFIC Modulates B cell number, IL-6, IL-8, and TNF-α expression  [12-13] 

NFKB1 Mutation causes immunodeficiency and autoimmune deficiency [14] 

NXPH3 
One of monocyte associated genes, up-regulated in macrophages phagocytizing 

infected cells 

[Supplementary Table 

S5 of 15, 

Supplementary Table 

S2 of 16] 

RXRA Alters T-lymphocyte proliferation and apoptosis [17] 

SNAI1 
Also called Snail, expressed in T cells and B cells, stimulates TNF-α and IL-6 

production 
[18-21] 
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Figure S1. Flowcharts of genetic-epigenetic interaction investigation. RA-associated single 

nucleotide polymorphisms (SNPs) in past genome-wide association studies (GWAS) (RA GWAS 

SNP) and SNPs associated with any traits in past GWAS (traits GWAS SNP) were downloaded from 

NHGRI. SNPs in linkage disequilibrium were identified to yield RA-associated loci and 

traits-associated loci. After FUMA annotation, RA genetically associated genes and traits 

genetically associated genes were retrieved. After excluding RA genetically associated genes from 

traits genetically associated genes, nonRA genetically associated genes were obtained. Intersection 

of RA genetically associated genes, differentially methylated and differentially expressed genes 

and BioGRID curation yielded RA genetically associated genes with differential methylation and 

differential expression or targeting genes with differential methylation and differential expression. 

Similarly, intersection of nonRA genetically associated genes, differentially methylated and 

differentially expressed genes and BioGRID curation yielded nonRA genetically associated genes 

with differential methylation and differential expression or targeting genes with differential 

methylation and differential expression. DM: differential methylation, DE: differential expression. 
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Figure S2. Principal component analysis (PCA) and hierarchical clustering (HC) results. (a) PCA plot 

with samples plotted in two dimensions using their projections onto the first two principal 

components were shown. Each dot represented a sample. The 2D coordinates of each sample were 

based on the scores of the first two principal components. (b) The dendrogram results of HC (Figure 

1, Step 1). 
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Figure S3. Circular representation of the methylome of rheumatoid arthritis peripheral blood 

mononuclear cells in different chromosomes. Different tracks denoted: methylation level of 

rheumatoid arthritis peripheral blood mononuclear cells (outer track, red), methylation level of 

healthy donor peripheral blood mononuclear cells (inner track, blue), and methylation differences 

(rheumatoid arthritis - healthy donor) between rheumatoid arthritis patients and healthy donors 

(middle track, green). Positive methylation difference means hypermethylation in rheumatoid 

arthritis. Conversely, negative methylation difference means hypomethylation in rheumatoid 

arthritis. 
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Figure S4. Distribution of methylation variance relative to transcription start sites (TSSs) in 

promoters. The plot shows the location between 2500 base pair upstream of TSSs and 500 base pair 

downstream of TSSs. The X-axis represented relative distance (kb) from the TSSs. The Y-axis 

represented the variance of methylation. 
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Figure S5. Transcriptional variance was associated with methylation variance at enhancers, 

promoters and gene bodies. (a) Density plot of log2ratio in transcript levels of enhancer CpG with 

low (purple) and high (yellow) methylation variance. (b) Barplot of variance in transcript expression 

from enhancer CpG with low (purple) and high (yellow) methylation variance. (c) Density plot of 

log2ratio in transcript levels of promoter CpG with low (coral) and high (cyan) methylation variance. 

(d) Barplot of variance in transcript expression from promoter CpG with low (coral) and high (cyan) 

methylation variance. (e) Density plot of log2ratio in transcript levels of gene body CpG with low 

(green) and high (pink) methylation variance. (f) Barplot of variance in transcript expression from 

gene body CpG with low (green) and high (pink) methylation variance. *: P<0.001. 
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Figure S6. Graphical representation of enrichment of RA genetically associated genes with 

differential methylation and differential expression or interacting with differentially methylated and 

differentially expressed genes. Of 449 RA genetically associated genes, 97 (21.60%) displayed 

differential methylation and differential expression or interacted with differentially methylated and 

differentially expressed genes, compared with 313/15400 (2.03%) of nonRA genetically associated 

genes (P<1.00×10-15). DM: differential methylation, DE: differential expression. 
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Figure S7. Top 10 significantly perturbed canonical pathways revealed by Ingenuity Pathway 

Analysis (IPA). The upregulated and downregulated pathways obtained from IPA were shown 

along the X-axis of the bar chart. The Y-axis indicated the statistical significance on the left. The 

dashed threshold line represented the default significance cutoff at P=0.05. The blue curve showed 

the ratio between the number of genes with differential methylation and differential expression and 

the total number of genes in each of these pathways. 



J. Clin. Med. 2019, 8, 1284 16 

 

 

Figure S8. Top 10 diseases associated with genes having concomitant differential methylation and 

differential expression in rheumatoid arthritis. The dashed line represented a P value of 0.05. 
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Figure S9. Proposed mechanism of CD86, RAB20, XAF1, FOLR3, LTBR, PDGFA, DOK7, PITPNM2, 

CELSR1 in B cells of rheumatoid arthritis. Enhancer hypomethylation with transcription 

upregulation of CD86 and RAB20 in B cells resulted in immune activation, while enhancer 

hypomethylation with transcription upregulation of XAF1 diminished proliferation and thus 

reduced arthritis. Promoter hypomethylation with transcription upregulation of FOLR3 and LTBR in 

B cells led to immune activation. Gene body hypomethylation with transcription downregulation of 

PDGFA in B cells inhibited proliferation and thus ameliorated arthritis, while gene body 

hypomethylation with transcription downregulation of DOK7, PITPNM2, and CELSR1 in B cells 

enhanced proliferation/activation and aggravated arthritis. 
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