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Abstract: Attention Deficit Hyperactivity Disorder (ADHD) is one of the most prevalent
neuropsychiatric disorders in childhood and adolescence and its diagnosis is based on clinical
interviews, symptom questionnaires, and neuropsychological testing. Much research effort has been
undertaken to evaluate the usefulness of neurophysiological (EEG) data to aid this diagnostic process.
In the current study, we applied deep learning methods on event-related EEG data to examine whether
it is possible to distinguish ADHD patients from healthy controls using purely neurophysiological
measures. The same was done to distinguish between ADHD subtypes. The results show that the
applied deep learning model (“EEGNet”) was able to distinguish between both ADHD subtypes
and healthy controls with an accuracy of up to 83%. However, a significant fraction of individuals
could not be classified correctly. It is shown that neurophysiological processes indicating attentional
selection associated with superior parietal cortical areas were the most important for that. Using the
applied deep learning method, it was not possible to distinguish ADHD subtypes from each other.
This is the first study showing that deep learning methods applied to EEG data are able to dissociate
between ADHD patients and healthy controls. The results show that the applied method reflects a
promising means to support clinical diagnosis in ADHD. However, more work needs to be done to
increase the reliability of the taken approach.
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1. Introduction

Attention Deficit Hyperactivity Disorder (ADHD) is one of the most prevalent neuropsychiatric
disorders in childhood and adolescence [1]. Its major symptoms refer to inattention, hyperactivity,
and impulsivity [2]. Depending on the strength of these symptoms, different subtypes can be
distinguished. The most prominent ones are the inattentive (ADD) and the combined subtype
(ADHD-C) [3,4]. Patients with both diagnostic subtypes are characterized by significant attention
problems, but only patients with ADHD-C are additionally characterized by impulsivity/hyperactivity.
A variety of models try to explain the underlying etiology, with the most widely accepted theories
relating to dopaminergic processing and changes in prefrontal cortex functioning [5–7]. Currently,
the standard diagnostic procedure in ADHD is based on clinical interviews, symptom questionnaires
completed by different raters, neuropsychological testing, and the exclusion of other underlying causes
that may also lead to the observed symptoms (e.g., other psychiatric conditions, poor vision/hearing,
abnormalities in thyroid functioning, or EEG, etc.). In recent years, significant research effort has been
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undertaken to evaluate the usefulness of neurophysiological (EEG) and functional imaging data to aid
this diagnostic process [8–15]. A major problem for this is that there is rarely a one-to-one relationship
between neural signals and the phenotypic expression of the disease [16]. However, the advent of
machine learning approaches and in particular deep learning using (neuro)physiological data may
offer new opportunities for diagnostic purposes [17,18]. Deep learning allows computational models
to learn representations of data with multiple levels of abstraction [19] using all information that
the dataset has to offer [17,18]. This is a major advantage over more conventional machine learning
approaches that only use a small number of features [17]. A small number of studies have so far used
deep learning for the classification of EEG data. However, pre-proposed architectures were applied to
very specific data sets [20–22] and a new deep learning architecture (EEGNet) [23] has been developed
in order to decode brain states in Brain–Computer Interfaces.

In the current study, at first taking a three-class problem approach, we ask whether it is possible to
use deep learning methods to differentiate between patients with ADHD, those with ADD, and healthy
controls. We subsequently further examine those participants who the deep learning architecture is able
to classify significantly above the chance level when solving the three-class problem. This was done by
turning to a two class-problem, in which we used the same deep learning architecture (EEGNet). For
the two-class problem, we asked how well the model is able to distinguish between healthy controls
and patients with ADHD or ADD, separately. In addition, we aimed to determine whether it is possible
to differentiate between patients diagnosed with different ADHD subtypes. These analyses were based
on event-related EEG recording, while ADHD patients and controls performed an interval-timing task.
Such tasks examine the precision of executing a motor action after a particular time interval has passed.
Since interval timing depends on dopaminergic mechanisms and fronto-striatal networks [24–26],
it taps into neurobiological processes affected in ADHD very well. Previously, interval timing has
reliably been shown to be altered in ADHD [24,27–33] and seems to be useful to distinguish between
‘real ADHD’ and ‘pseudo-ADHD’ [34]. All these, together with evidence that interval timing processes
differ between ADHD subtypes [35], make neurophysiological processes underlying interval timing
a suitable starting point to evaluate the capability of deep learning to differentiate between ADHD
subtypes and healthy subjects, as well as between the ADHD-C and ADD subtype.

2. Experimental Section

2.1. Participants

The study was approved by the local ethics committee. Informed written assent/consent
was obtained from all participants/their legal guardians in accordance with the Declaration of
Helsinki. The ethics committee of the Technical University of Dresden approved the study. The data
structure containing all analyzed data can be found at https://osf.io/6594x/. The EEGNet architecture
which we used for the data analyses has already been deposited and can be downloaded from
https://github.com/vlawhern/arl-eegmodels.

In total, data from N = 144 children was included in the analysis (whole sample). N = 100 of them
were patients with AD(H)D for whom diagnoses had been determined according to standard clinical
guidelines by child and adolescent psychiatrists and psychologists using family and school interviews,
questionnaires, and IQ and attention testing. Further, possible somatic differential diagnoses were
excluded via blood analyses, EEG, audiometry, and vision testing. N = 52 participants (10 female, age:
10.9± 2.4; IQ: 100± 12) fulfilled criteria for ADD according to ICD-10 (F98.8), while the remaining n = 48
were diagnosed with the combined subtype (ADHD; ICD-10 F90.0 or F90.1) (12 female, age: 10.6 ± 1.9;
IQ: 103± 13). The patients revealed no other severe or acute psychiatric co-morbidities (e.g., autism, tics,
depressive episode, etc.). The remaining N = 44 participants were healthy control children (15 female,
age: 11.3 ± 2.2; IQ: 103 ± 12). Using the AD(H)D Symptom Checklist [36], all parents rated their
children on a scale of 0 (no problems) to 3 (severe problems) in regards to AD(H)D core symptoms
(inattention: controls: 0.5 ± 0.4; ADD: 2.1± 0.43; ADHD: 2.2 ± 0.47; hyperactivity: controls: 0.14 ± 0.3;
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ADD: 0.7 ± 0.5; ADHD: 1.8 ± 0.6; impulsivity: Controls: 0.4 ± 0.5; ADD: 1.2 ± 0.64; ADHD: 2.4 ± 0.48).
Healthy controls had significantly lower scores than the two patient groups on all three subscales
(all F > 134.8, all p < 0.001). Patients with ADD and ADHD did not differ significantly in regards to
the degree of inattention (p = 0.06). As expected, and based on the different disorder characteristics,
hyperactivity (p < 0.001) and impulsivity (p < 0.001) were significantly more pronounced in patients
with ADHD than in those with ADD. Groups did not differ in age, IQ, or gender distribution (all F < 1.5,
all p > 0.3).

After the initial analysis with the whole sample had been performed, we then focused further
analyses on those participants for whom the deep learning architecture was able to yield classification
accuracy significantly above the chance level. This well-classified sample contained N = 18 patients with
ADHD, N = 15 patients with ADD, and N = 25 healthy controls. This sub-sample did not differ from
the whole sample in regards to age (t(212) = −0.12; p = 0.9), IQ (t(212) = −0.29; p = 0.77) and inattention
(t(212) = 1.18; p = 0.24), hyperactivity (t(212) = −0.40; p = 0.69), or impulsivity (t(212) = 0.71; p = 0.48).
This was also the case when these comparisons between the whole and the well-classified sample were
performed separately for the healthy controls, the patients with ADD, and those with ADHD.

2.2. Task

During the task, participants were required to estimate a time of 1200 ms following visual stimulus
(white square on black background) [35,37,38]. They were asked to press a button whenever they
thought that this time had elapsed. Responses given between 1000 and 1400 ms were regarded
as in-time, correct responses. Visual feedback was provided to inform the participants about the
correctness of their response. A green “smiley” was shown for correct responses, a red “frowney”
together with the statement “too early”/“too late” was presented when responses were given outside
of the required time window. The experiment consisted of 300 trials that were equally divided into
three blocks. The inter-trial interval was randomized between 800 and 2200 ms. Between the blocks,
participants were asked to take a break for one minute.

2.3. EEG Recording and Analysis

EEG was recorded from 60 Ag/AgCl electrodes using a BrainAmp amplifier (Brain Products Inc,
Munich, Germany). For further analysis, electrodes P9, P10, P11, and P12 were removed from the data
set due to their high susceptibility to high electrode impedances and thus unreliable EEG recordings.
Thus, 56 electrodes were used for further analysis in deep learning. The sampling rate was 500 Hz and
electrode impedances were lower than 5 kΩ. The reference electrode was positioned at Fpz, the ground
electrode at coordinates θ = 58, φ = 78. Before deep learning was conducted, the standard EEG data
pre-processing was run. This included band-pass filtering between 0.5 and 20 Hz (slope of 48 dB/oct).
Then, technical artifacts were removed through a raw data inspection. Pulse artifacts and horizontal
and vertical eye movements were removed using independent component analysis (ICA, infomax
algorithm). This was followed by a segmentation procedure in which the data was stimulus-locked
and segmented from −200 ms before to 3000 ms after target onset. The interval from −200–0 ms before
the stimulus was used for baseline correction. Afterward, an automated artifact rejection procedure
was applied to exclude any remaining trials containing artifacts (amplitude criterion: 200 µV/−200 µV;
maximal value difference: 200 µV in a 200 ms interval; low activity: below 0.5 µV in a 100 ms period).
A current source density (CSD) transformation was used to allow a reference-free evaluation of the
EEG data [39]. These single-trial segmented data were then used for the deep learning approach. For
the control group, N = 10,129 trials were included, for the ADD group, N = 13,031 trials were included,
and for the ADHD group, N = 10,742 trials were included.

Since low resolution brain electromagnetic tomography (sLORETA) provides a single linear
solution for the inverse problem without localization bias [40–42], and has been validated by combined
fMRI/EEG and TMS/EEG studies [42,43], this method was used for source estimations. For the
current study, sLORETA was used to estimate the source of electrical activity, which the deep
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learning model turned out to be the most predictive for group membership. sLORETA requires
standard electrode coordinates according to the 10/10 or 10/20 system as input. sLORETA uses a
three-shell spherical head model and the covariance matrix was calculated using the single subject’s
baseline. For sLORETA, the intra-cerebral volume is partitioned into 6239 voxels using a spatial
resolution of 5 mm and the standardized current density is calculated for every voxel, using an
MNI152 head model template. To calculate the statistics on the sLORETA sources, we utilized
voxel-wise randomization tests with 2500 permutations and statistical nonparametric mapping
procedures (SnPM). Locations of voxels that were significantly different (p < 0.01) are shown in the
MNI-brain www.unizh.ch/keyinst/NewLORETA/sLORETA/sLORETA.htm. Activations shown in the
brain represent critical t-values corrected for multiple comparisons.

2.4. Deep Learning

As mentioned, we used EEGNet as a deep learning architecture in the current study. The EEGNet
performance was previously examined in regards to components such as the P300, visual-evoked
potentials, error-related negativity responses (ERN), movement-related cortical potentials (MRCP),
and sensory motor rhythms (SMR) [23]. Details of the EEGNet architecture, including the parameters
used in this study, can be found in Table 1.

Table 1. Details of the EEGNet architecture.

Layer Layer Type Filters Size Parameters Output
Dimension Activation Mode

1

Input (C, T)

Reshape (1, C, T)

Conv2D F (1,64) 64*F (F, C, T) Linear same

BatchNorm 2*F (F, 1, T)

DepthwiseConv2D F (C,1) C*F (F, 1, T) Linear valid

BatchNorm (F, 1, T)

Activation (F, 1, T) ELU

SpatialDropout2D (F, 1, T)

2

SeparableConv2D

F

(1,8) 8 ∗ F + F2 (F, 1, T) Linear same

BatchNorm 2*F (F, 1, T)

Activation (F, 1, T) ELU

AveragePool2D (1,4) (F, 1, T//4)

SpatialDropout2D (F, 1, T//4)

3

SeparableConv2D

2*F

(1,8) 2 ∗ F ∗ 8 +
(2 ∗ F)2 (2*F, 1, T//4) Linear same

BatchNorm 2*F (2*F, 1, T//4)

Activation (2*F, 1, T//4) ELU

AveragePool2D (1,4) (2*F, 1, T//16)

SpatialDropout2D (2*F, 1, T//16)

4
Flatten (2*F, 1, T//16)

Dense N Softmax

C = number of channels, T = number of time points, F = number of filters and N = number of classes.

EEGNet consists of two main blocks and the input has a shape (C, T) where C and T represent
the number of channels and time points in EEG data, respectively. In the first block, F1 temporal
feature maps were produced by applying convolutional filters with a width of 64 samples. After
that, for each temporal feature map, D spatial filters spanning all EEG channels were learned by
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applying depths-wise convolution. Unlike ordinary convolution, which is fully connected into all
previous feature maps, depth-wise convolution is connected just in one previous feature map and D is
a parameter that controls the number of spatial filters the model must learn for each temporal filter.
Therefore, for each temporal feature map, D spatial filters were employed. After applying temporal
and spatial filters, batch normalization followed by exponential linear unit (ELU) nonlinearity as an
activation function, average pooling over four times steps with a stride of four and dropout were
applied. This resulted in outputs with the shape of (F1*D, 1, T//4). In the second block, a separable
convolution consisting of depth-wise temporal filters of width 16 followed by point-wise convolution
was used. Separable convolution is a very helpful technique since it has fewer parameters than
ordinary convolution. Therefore, it is possible to train a model that is less prone to over-fitting. Again,
batch normalization followed by ELU activation function, average pooling over eight times steps
and dropout were used. Finally, the classification part is done using a dense layer with a softmax
activation function.

To apply EEGNet, we first created two-dimensional arrays from every single trial in our data set in
which all channels are represented in rows and the time points are represented in columns. Moreover,
the batch size was set to 32 and we used the dropout technique with a dropout rate of 0.25. The number
of temporal and spatial filters (F1, D) were set to (4, 2), as suggested in Reference [23]. For training,
we used the ADAM optimization method [44] and the “leave one out subject” (LOOS)-approach for
evaluating the classification performance. In this approach, one subject is selected for testing, while
the remaining subjects are used for training the classifier. Moreover, for each group, four subjects
from the training subjects were randomly selected as validation subjects. Please note that validation
subjects were only used for model selection (i.e., picking the models with lowest cross entropy) and all
classification results reported in this paper are based on the test set. The process of randomly selecting,
testing, and training subjects was repeated until each subject was used as a test once. We trained for
500 epochs and saved the model with the lowest cross entropy loss in the validation set. After that, the
test data was used to evaluate classification performance. To measure classification performance, we
calculated the respective mean and standard deviations of classification accuracy among all subjects
based on LOOS. It is important to mention that when we want to evaluate classification performance
based on the LOOS method, the amount of data in the test set is equal to the number of trials that
a subject performed. Therefore, this method is different from “leave one out” (LOO), which just
considers one data in the test time. As a result, problems that have been discussed in Reference [45],
such as maximizing variance of the test set or overfitting, are less of an issue in LOOS. Finally, the
K-fold validation method provides a better estimation of the model’s performance, since it reduces
variance in the test set. However, since we want to predict model performance at the subject level, it
is necessary to partition the data based on subjects. Using the k-fold method, which partitions data
based on a fixed rate, this is not possible. LOOS is comparable to the k-fold method with the difference
that we partitioned data based on subjects instead of partitioning it based on a fixed rate.

We applied a class-weight to the loss function since our data is imbalanced (unequal number of
trials for each class). The class-weight applied is the inverse of the proportion in the training data, with
the majority class set to one. To extract what the model learned best, and which input features (time
points/channels) have the highest impact on the classification decision, we employed a “saliency map”
approach [41]. In such visualization methods, the aim is to identify the features in each individual
data that contribute most to the classification process. In other words, the aim of saliency maps is
to determine what input features cause a classifier to make a decision. It is calculated by taking the
gradient of the classification score (i.e., before softmax-activation function) with respect to the input
data. This provides information about how the output category value (classification score) changes
with respect to a small change in input data. By using a saliency map for each input data, we have a
visualization map that equals the input feature dimension (i.e., number of channels and time points). In
order to provide better visualization of the results (i.e., performance of the applied method), all saliency
maps of every single trial belonging to a specific group were averaged and shown in the results section.
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We also used a normalization method in which the minimum and maximum of the averaged relevance
scores were set to zero and one, respectively. Using this approach, values close to one indicate that the
specific feature at the specific time points contributes most to classification accuracy

Importantly, to test classification accuracy statistically, we calculated a threshold indicating
classification accuracies significantly above the chance level by assuming that classification error obeys
a binomial cumulative distribution. As suggested in Reference [46], we used the MATLAB function
“binoinv” to compute the statistically significant threshold std(α) = binoinv

(
1− α, n, 1

c

)
∗

100
n , where α

is the significance level, n is the number of predictions (i.e., number of data in test set) and c is the
number of classes. This function provides a threshold, which means that a classification accuracy
higher than this threshold is considered as significantly above the chance level. Permutation tests are
also popular for testing classification accuracy statistically and work based on estimating the error
distribution empirically. In permutation tests, we randomly assign a label to each data and train the
model to compute classification accuracy. In order to estimate error distribution, we should perform
this process for several times (i.e., 1000 times). However, training a deep learning model with lots
of parameters such as EEG Net for 1000 times is impractical and very time-consuming. Thus, in this
research, we used the binomial cumulative distribution approach to estimate error distribution, which
is not time consuming since we do not need to train the model. As mentioned in Reference [46], this
method is particularly well suited for large sample size (i.e., N~100). A comparative study showed
no major differences between permutation testings and the binomial method we used [46]. Since the
number of samples in the test set is equal to the number of trials that a subject performed (235 ± 50 in
the current study; i.e., greater than 100), both permutation and binomial, result in similar significant
chance levels.

3. Results and Discussion

3.1. Behavioural Analysis

Behaviorally, both, patients with ADD (47 ± 17%; p ≤ 0.001) and patients with ADHD (47 ± 15;
p ≤ 0.001) showed significantly fewer correctly timed responses than healthy controls (64 ± 11%;
F(2,137) = 20.2; p ≤ 0.001). This is in line with previous findings (Bluschke et al., 2018b). The whole
and the well-classified sample did not differ in regards to behavioral performance (all p > 0.20). This
was also the case when the healthy controls, the patients with ADD, and those with ADHD were
considered separately.

3.2. Deep Learning Results

We used LOOS for evaluating the classification performance of EEGNet in distinguishing patients
with ADHD/ADD from healthy controls using single-trial EEG data (three-class problem). The data
showing the accuracy to classify the individual participant’s ‘identity’ correctly (i.e., as belonging
to the control, the ADD or the ADHD group) on the basis of the single-trial EEG data from these
individual subjects are shown in Figure 1A. The mean and standard deviation of accuracy are 39% and
30%, respectively.

As can be seen in Figure 1, the classification accuracy using single-trial EEG data of the whole sample
varied considerably between subjects and ranged between 1% and 99% classification accuracy. The
distribution of classification accuracy was not different between the three tested groups (Kruskal–Wallis
test: H = 0.78; p > 0.676). This shows that the model reveals no accuracy differences between groups to
classify the subjects on the basis of the single-trial EEG data. However, only in a subset of subjects,
the applied model was able to perform classification above the chance level. For each subject, we
computed a threshold (i.e., significantly above chance level) based on the binomial distribution. If the
classification accuracy was higher than this threshold, this subject was included in further analyses.
An above significant chance level classification was possible in N = 25 subjects in the control group,
N = 15 subjects in the ADD group, and N = 17 subjects in the ADHD group. For all of these groups,
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classification accuracy was significantly above chance level (all t > 3.99; p < 0.001). The degree of
classification accuracy for subjects classified above chance did not differ between the groups, as
indicated by the non-significant Kruskal–Wallis test (H = 2.55; p = 0.231). Thus, the data show that
the neurophysiological dynamics revealed by the subjects can only be used for an above-chance
classification in a subset of participants and patients.
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accuracy of 69 ± 28% for distinguishing patients with ADHD or ADD from healthy controls (see 
Figure 1 B) (chance level at approximate 33%, see above). 

Concerning the two class problem, a classification accuracy significantly above chance level 
among subjects for Control vs. ADD, Control vs. ADHD, and ADD vs. ADHD lies at 55.5 ± 0.95% 55.5 
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patients with ADD or ADHD from healthy control in two class problems is 83 ± 23% and 80 ± 21%, 
respectively. Confusion matrices for these two analyses are shown in Figure 2. 

Figure 1. Plots showing distribution of classification accuracy in the whole sample (A) and in the
well-classified sample (B) for all three groups. Y-axis indicates classification accuracy, x-axis indicates the
individual participants ranked by classification accuracy (from highest to lowest). In (A), the single-trial
EEG data recorded during the time estimation was used to classify each individual participant as
belonging to the healthy control, the Attention Deficit Disorder (ADD), or the Attention Deficit
Hyperactivity Disorder (ADHD) group. To account for potential artifacts and outliers, any participants
with a classification accuracy below chance level (33%, as indicated by vertical line) were not included
in subsequent analyses. In (B), the same analysis of classification accuracy was run a second time.
Here, only the single-trial EEG data of participants belonging to the well-classified sample were used.
Importantly, the plots show the distribution of classification accuracy.

3.3. Classification Accuracy

However, when evaluating whether the model is well able to classify between groups of subjects in
those individuals where the model was already able to reliably use the single-trial EEG data to identify
the individual’s group membership as significantly above chance level (see above), the following
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picture emerged: The EEGNet architecture revealed a three class problem classification accuracy of
69 ± 28% for distinguishing patients with ADHD or ADD from healthy controls (see Figure 1 B)
(chance level at approximate 33%, see above).

Concerning the two class problem, a classification accuracy significantly above chance level among
subjects for Control vs. ADD, Control vs. ADHD, and ADD vs. ADHD lies at 55.5 ± 0.95% 55.5 ± 0.98%
and 55 ± 0.6%, respectively. The two class problem classification accuracy for distinguishing patients
with ADD or ADHD from healthy control in two class problems is 83 ± 23% and 80 ± 21%, respectively.
Confusion matrices for these two analyses are shown in Figure 2.J. Clin. Med. 2019, 8, x FOR PEER REVIEW 8 of 14 
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Figure 2. (A) Confusion matrix showing the model performance to classify controls vs. ADD
patients. (B) Confusion matrix showing the model performance to classify controls vs. ADHD patients.
(C) Confusion matrix showing the model performance to classify ADD vs. ADHD patients. For each
plot, the sensitivity and specificity are also provided.

In both cases, the actual classification accuracy range does not have any overlap with the significant
chance level range. Thus, model performance is statistically above chance level. Therefore, specific
aspects of single-trial EEG data recorded during a time estimation task can distinguish between healthy
controls and patients with a very high accuracy.

In contrast, the two-class problem classification accuracy (67 ± 29%) was very close to chance level
(55%) when aiming to distinguish between patients with ADD and those with ADHD. Thus, when the
model was aiming to distinguish between patients with ADD and ADHD, there was a large overlap
between the actual classification accuracy and the significant chance level. Therefore, single-trial EEG
data recorded during a time estimation task cannot reliably distinguish between patients with ADD
and ADHD.

3.4. Most Important Neurophysiological Features

Thus, single-trial EEG data cannot provide sufficient information for discriminating between these
two ADHD subtypes. This is the first study that used a deep learning architecture (i.e., EEGNet) [23]
to differentiate between patients with different ADHD subtypes and healthy subjects. In contrast to
other, more conventional machine learning approaches, deep learning allows computational models to
learn representations of data with multiple levels of abstraction [19] using all the information a dataset
has to offer [17,18]. As mentioned, in a subset of cases, our analyses revealed very high classification
accuracies (around 80%) between healthy controls and patients with ADHD/ADD. However, this was
only the case if the classification performance of EEGNet in distinguishing patients with ADHD/ADD
from healthy controls using single-trial EEG data was significantly above chance level. In both cases,
the deep learning architecture revealed that time ranges between 100 and 200 ms contributed most to
the distinction between ADHD/ADD patients and healthy controls (refer to Figures 3 and 4).
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Figure 3. (A) Visualization maps showing the relevance of all time points and electrodes for classification
between patients with ADD and healthy controls. Values close to 1 indicate that the specific feature
at the specific time points contributes most to classification accuracy. The blue frame highlights the
most important time range. Based on visual inspection, electrodes Fp1, O2, and TP1 carried the highest
relevance. (B) Corresponding waveforms (event-related potentials) at the most relevant electrodes are
shown with the relevant time range according to the applied machine learning algorithm highlighted
in blue. Time point zero denotes stimulus onset in the interval timing task. The black line denotes
healthy controls, the red line denotes patients with ADD. Topographic maps show cortical activity in
the highlighted time ranges. Blue values denote negativities, red values show positive activations.
(C) Results of sLORETA source localization show activation in (superior) parietal areas to be different
between healthy controls and patients with ADD in the relevant time range.
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Figure 4. (A) Visualization maps showing the relevance of all time points and electrodes for classification
between patients with ADHD and healthy controls. Values close to 1 indicate that the specific feature
at the specific time points contributes most to the classification accuracy. The blue frame highlights
the most important time range. Based on visual inspection, electrodes O1 and O9 carried the highest
relevance. (B) Corresponding waveforms (event-related potentials) at the most relevant electrodes are
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shown with the relevant time range according to the applied machine learning algorithm highlighted
in blue. Time point zero denotes stimulus onset in the interval timing task. The black line denotes
healthy controls, the red line denotes patients with ADD. Topographic maps show cortical activity in
the highlighted time ranges. Blue values denote negativities, red values show positive activations.
(C) Results of sLORETA source localization show for activation in superior parietal areas to be different
between healthy controls and patients with ADHD in the relevant time range.

These time windows correspond to the time window in classic event-related potential (ERP) where
components like the P1, N1, and P2 occur (refer Figures 3 and 4). The source localization revealed that
parietal areas (i.e., BA7) and parieto-occipital areas (i.e., the precuneus, BA 19) are associated with these
areas (refer Figures 3 and 4). However, especially superior parietal areas were consistently found in each
of the examined groups (i.e., ADHD and ADD). It is well-known that the P1 and N1 ERP-components
reflect bottom-up perceptual gating and attentional selection processes [47–50] and that these functions
have been shown to be compromised in ADHD [51]. As such, the deep learning architecture used
to distinguish ADHD/ADD patients from healthy controls identifies neurophysiological processes
associated with attentional processes and superior parietal structures to be of highest relevance.
Several lines of imaging research show that superior parietal structures play an important role in
ADHD/ADD [52,53] and suggest that there is a good correspondence between anatomical circuitry
mediating cognitive functions and patterns of structural changes [52]. Especially superior parietal
cortices have been suggested to be important for the representation of task-related signals and for
the modulation of incoming information by attention [54]. Based on that, it seems that early sensory
and attentive processes are the most important to distinguish between different ADHD subtypes and
healthy controls. Interestingly, it has been shown that ERPs in the time windows identified by the
applied deep learning approach show a good test–retest reliability in ADHD [55]. It is, however,
important to note that previous work did not always reveal differences between ADHD patients and
controls when focusing on P1 and N1 ERP-components [56–60]. While this may seem to be at odds
with the current findings revealing a high classification accuracy, it is important to consider that the
deep learning approach revealed such a high accuracy when considering the entire dataset. While the
features in the time interval between 200 and 250 ms strongly contribute to classification accuracy, these
alone are not sufficient to achieve high classification accuracy. Relevant time ranges thus also extend to
mechanisms of response preparation and timing processes per se, which directly follow the attentional
processes. This fits well with findings showing that interval timing processes are particularly altered in
ADHD [24,27–33] and seem useful to distinguish between ‘real ADHD’ and ‘pseudo-ADHD’ [34].

3.5. General Discussion

Taking all this together, the current findings suggest that neurophysiological correlates with
attentional selection and interval timing in combination with deep learning methods and may prove
useful to support a currently applied diagnostic procedure to distinguish ADHD from healthy subjects.
Currently, hardly any focus is directed towards these aspects of perception/cognition during the
diagnostic processes and the associated clinical assessment methods. Our results suggest that the
basic sensory perception processes may, in particular, play a bigger role in this regard than is currently
assumed. Thus, it may be important to emphasize these processes during the diagnostic procedure
and especially within the associated neuropsychological assessments. It is, however, important to
note that the current data cannot answer the question of as to whether this approach is sufficiently
specific for diagnostic decisions. This is a limitation of the study. Future studies may also compare
different deep learning architectures to evaluate whether there are differences in the sensitivity between
algorithms in supporting diagnostic decisions. Further, deep learning algorithms might, in the future,
also be used when aiming to distinguish between different psychiatric disorders that are characterized
by overlapping symptoms. Deep learning approaches might thus also have the potential to support
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diagnostic decisions in the clinical setting. However, even though classification accuracy of patients
with AD(H)D versus healthy controls reached a satisfactory magnitude in the current study, caution is
clearly warranted when discussing the potential applicability of this approach in the clinical setting.
Following further methodological refinement, it may be feasible to apply such machine learning-based
approaches as one element among the other irreplaceable diagnostic procedures in the future. This
may help to reduce variance in the diagnostic process, limit the influence of possible biases, and result
in more consistent, valid, and reliable AD(H)D diagnoses [61].

Relating to that, the deep learning algorithm applied in the current study was not able to
differentiate between different ADHD subtypes, i.e., classification was at chance level (i.e., 67 ± 29 %),
even within the group of subjects in which a reliable classification of controls vs. ADD/ADHD was
possible. While this may suggest that EEGNet is not useful to support the more subtle differentiations
within a disorder, it needs to be noted that the validity of these subtypes is increasingly criticized [62].
In particular, the validity of the DSM-based subtype model is compromised by minimal empirical
support for the distinction between ADHD and ADD on the basis of studies on academic as well
as cognitive functioning, treatment responses, and the considerable longitudinal instability of the
subtypes [62]. It can therefore not be ruled out that the inability of the applied algorithm to detect
differences between the included ADHD subtypes may simply reflect a lack of validity in the clinical
distinction between different ADHD subtypes. This supports previous critical appraisals of the validity
of distinguishing ADD and ADHD, which overall only seem to find limited evidence for this distinction
on the neurophysiological/neuroanatomical level [62,63]. Additionally, it is possible that other deep
learning models may perform differently and allows for a better classification of ADHD subgroup.
This should be subject to future studies. Similarly, more effort is needed to delineate the boundary
conditions under which the applied model is able to perform a reliable classification of individual
subjects. Currently, a reliable classification is only possible for some patients/participants and it is
unknown what aspects in the EEG data determines whether it is possible or not to perform a reliable
classification at the single-subject level.

4. Conclusions

This is the first study showing that deep learning methods applied to EEG data are able to
dissociate between patients with ADHD and healthy controls. We showed that rather early attentional
selection processes associated with superior parietal cortical structures contribute most to classification
accuracy. In a subset of patients/controls, the classification accuracy was high (i.e., up to 86%). However,
the deep learning approach was not able to distinguish between patients with ADD and ADHD. This
may reflect known problems related to the clinical validity of these ADHD subtypes. The results show
that deep learning methods based on EEG data represent a promising method for both basic research
and clinical applications, but more work needs to be done to increase the reliability of this method for
these purposes.
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