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Abstract: Histological evaluation of renal biopsies is currently the gold standard for acquiring
important diagnostic and prognostic information in diabetic nephropathy (DN) patients. Nevertheless,
there is an unmet clinical need for new biomarkers that allow earlier diagnosis and risk stratification.
As biochemical changes in tissues must precede any symptomatic or morphological expression
of a disease, we explored the potential of near-infrared (NIR) spectroscopy in the detection of
a biochemical signature associated with DN. Kidney tissue sections were investigated using NIR
spectroscopy, followed by principal component analysis and soft independent modelling of class
analogy. A biochemical signature indicative of DN was detected, which enabled perfect discrimination
between tissue sections with normal histological findings (n = 27) and sections obtained from DN
patients (n = 26). Some spectral changes related to carbamoylation and glycation reactions appeared to
be similar to the ones obtained in patients with DN. In addition, treatment with the deglycating enzyme
fructosamine-3-kinase resulted in partial to pronounced restorations of the spectral pattern. Significant
relationships were found between spectral features and laboratory parameters indicative of glycemic
and uremic load, such as hemoglobin A1c, urea, creatinine, estimated glomerular filtration rate, and
proteinuria. The presented method could be a useful tool to complement histopathological analysis
in order to prevent or delay further disease progression, especially in the setting of post-transplant
surveillance kidney biopsies.

Keywords: near-infrared spectroscopy; diabetic nephropathy; post-translational modifications;
renal tissue

1. Introduction

Around 20%–40% of patients with type 1 or type 2 diabetes mellitus (DM) develop diabetic
nephropathy (DN) [1]. The latter is a clinical syndrome characterized by persistent albuminuria
(>300 mg/24 h or > 300 mg/g creatinine), a decline in glomerular filtration rate (GFR), elevated blood
pressure, and an excess cardiovascular morbidity and mortality [1,2]. It is the single most common
cause of end-stage renal disease (ESRD) in many parts of the world, including Europe and the United
States [1,3]. While kidney transplantation (Tx) is often an effective treatment for ESRD, transplant
failure is common [4].

Monitoring of kidney transplants by obtaining serial serum creatinine levels is a widely accepted
part of post-Tx management. However, due to problems with sensitivity and specificity, some
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programs supplement serial serum creatinine levels with surveillance kidney biopsies [5]. At the
moment, histological evaluation of renal biopsies remains the gold standard for acquiring important
diagnostic and prognostic information. Unfortunately, early evidence of DN, such as glomerular
basement membrane thickening and mesangial expansion, is often not seen until several years after
Tx [4,6]. Consequently, there is an unmet clinical need for new biomarkers that allow earlier diagnosis
and risk stratification [7]. The early detection of recurrent DN could allow for more focused treatment
in order to delay its progression [1]. As changes in the biochemical composition and structure
must precede any symptomatic or morphological expression of a disease, vibrational spectroscopy is
an ideal candidate for the early detection of biochemical signatures associated with the generation and
progression of disease [8].

Detection of DN using vibrational spectroscopy was first reported by Varma et al. [4], who
employed spectroscopic imaging in the mid-infrared (MIR) range to identify early biochemical
changes associated with recurrence of disease in transplant patients prior to histologic changes. In
the complex situation of DN, chronic kidney disease and DM accelerate protein molecular ageing
through an increased intensity of non-enzymatic post-translational modifications (NEPTMs), such
as glycation and carbamoylation [9,10]. In addition, glycation of tissue proteins has been associated
with development of DN [11]. Near-infrared (NIR) spectroscopy is a different spectroscopic technique
well-suited to detect post-translational modifications in a simple and non-destructive way. In this
paper, we explored for the first time the potential of NIR spectroscopy to identify and unravel a
biochemical signature associated with DN on stained tissue sections.

2. Experimental Section

2.1. Study Population

The control group consisted of 27 renal cortex biopsy samples, with normal histological findings,
obtained from 22 post-Tx patients with DM (median time post-Tx: 90 days, IQR: 90.0–120.0 days),
3 non-post-Tx patients with DM, and 2 non-post-Tx patients without DM. Donor kidneys were derived
from patients without DM. The study population group included 26 patients with different stages
of DN. Apart from patients with DN, also 11 patients with DM and another renal pathology (renal
cell carcinoma (RCC), 10 clear cell and 1 papillary) but no DN were investigated to explore the
discriminative power of the technique. Diagnosis was based on the histological evaluation of renal
biopsies by trained pathologists. Characteristics of the study population are summarized in Table 1.
The study was approved by the local ethics committee (Belgian registration number B670201734663).
The authors complied with the World Medical Association Declaration of Helsinki regarding ethical
conduct in research involving human subjects.

Table 1. Characteristics of the study population.

Variable Ctr
(n = 27)

DN
(n = 26)

DM and RCC
(n = 11)

Ctr vs. DN
p-Value

Ctr vs. DM
and RCC
p-Value

DN vs. DM
and RCC
p-Value

Age (yr) 55 (47–61) 60 (50–66) 70 (66–73) N.S. <0.0001 0.0061
Women (%) 70 77 91 N.S. N.S. N.S.

DM (%) 89 100 100 N.S. N.S. N.S.
Creatinine (mg/dL) 1.2 (1.0–1.9) 1.9 (1.3–3.3) 1.4 (1.3–1.5) 0.0096 N.S. N.S.

eGFR (mL/min/1.73 m2) 54 (38–79) 36 (16–50) 53 (40.0–54) 0.0091 N.S. N.S.
Urea (mg/dL) 44.0 (31.8–66.3) 96.0 (54.0–124.0) 38.0 (33.0–41.0) 0.0011 N.S. 0.0011

Proteinuria (g/g creat) 0.2 (0.03–0.4) 2.7 (2.3–6.9) 0.0 (0.0–0.12) <0.0001 N.S. <0.0001
HbA1c (%) 6.6 (6.0–7.4) 7.4 (6.2–8.1) 6.6 (6.0–7.7) N.S. N.S. N.S.

Data are presented as median (interquartile range). Note: p-value = Mann-Whitney U test. Abbreviations:
ctr = control; create = creatinine; DM = diabetes mellitus; DN = diabetic nephropathy; eGFR = estimated glomerular
filtration rate; HbA1c = hemoglobin A1c; N.S. = non-significant; RCC = renal cell carcinoma; yr = year.
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2.2. Determination of Routine Laboratory Parameters

Hemoglobin A1c (HbA1c) was analyzed on ethylenediaminetetraacetic acid (EDTA) blood samples
using a Menarini 8160 high-performance liquid chromatography system (Menarini, Firenze, Italy).
Subjects were characterized as having diabetes based on the American Diabetes Association criteria [12].
Serum creatinine (mg/dL) and urea (mg/dL) were determined using a compensated rate-blanked
picrate assay and an enzymatic method on a Cobas 8000 platform (Roche, Mannheim, Germany),
respectively. The estimated glomerular filtration rate (eGFR) was calculated using the Chronic Kidney
Disease Epidemiology Collaboration (CKD-EPI) 2009 formula [13]. Total urinary protein (g/g creatinine)
was assayed by a pyrogallol red-molybdate method on a Cobas 8000 system (Roche Diagnostics, IN,
USA) [14].

2.3. Preparation of Tissue Sections

For the ex vivo model, renal cortex tissue obtained through biopsy (16-gauge Tru-Cut Needle)
was fixed with 10% neutral-buffered formalin for 6–24 h. After fixation, kidney biopsies were routinely
processed using a Tissue-Tek® VIP® (Sakura, Torrance, CA, USA), after which they were embedded in
paraffin. Subsequently, 2µm tissue sections were cut, stained with hematoxylin and eosin (HE), periodic
acid Schiff, Jones’ methenamine silver and Masson trichrome, and cover-slipped. Tissue sections were
subjected to standard histological examination. NIR spectroscopic analysis was performed on archived
HE-stained sections. In the cases of the (de)glycation and carbamoylation experiments, frozen sections
(5 µm) were prepared using a clinical cryostat (Leica CM1950, Leica biosystems, Nussloch, Germany) at
a temperature of −15 ◦C and mounted on SuperFrost® microscope slides (Thermo Scientific, Waltham,
MA, USA).

2.4. Carbamoylation and (de)Glycation of Tissue Sections

Biopsy material from a histologically normal cortex, obtained from a nephrectomy sample
originating from a non-diabetic 88-year-old male donor, was used for the preparation of frozen tissue
sections. Baseline measurements were performed on untreated samples. Carbamoylation of renal
tissue was achieved by covering frozen tissue sections with a potassium cyanate solution (100 mM in
phosphate buffered saline (PBS), Sigma-Aldrich, St. Louis, MO, USA), while glycation was achieved
by covering the sections with a glucose solution (50 mM in PBS, Sigma-Aldrich, St. Louis, MO,
USA at 37 ◦C for 72 h. Deglycation was initiated using ATP-dependent FN3K (Fitzgerald Industries
International, Acton, MA, USA). A solution containing 0.016 g/L ATP-dependent FN3K in PBS was
added (1:1) to a mixture of 5 mM ATP and 2 mM MgCl2 (Sigma-Aldrich) in PBS. Subsequently, glycated
tissue sections were covered with the FN3K solution at 37 ◦C for 48 h. After incubation, tissue sections
were carefully washed with distilled water and dried at 37 ◦C for 12 h. All experiments were performed
independently on seven separate tissue sections. In addition, NIR spectra of L-lysine powder (≥98%,
Sigma-Aldrich, St. Louis, MO, USA and its carbamoylated analogue, i.e., L-homocitrulline (≥95%,
Santa Cruz Biotechnology, Dallas, TX, USA) were recorded.

2.5. Near-Infrared Spectroscopic Analysis

Spectral data were obtained at ambient temperature using a NIR spectrometer
(AvaSpecNIR256-2.5-HSC, Avantes, Apeldoorn, The Netherlands), equipped with extended indium
gallium arsenide (InGaAs) array technology. Tissue sections were placed onto a white reference tile,
layered with immersion oil to eliminate loss of resolution due to different refractive surfaces (glass
versus air). Subsequently, an immobilized 50 mm integrating sphere (AvaSphere-50-LS-HAL-6-S1,
Avantes) with a 6 mm sample port diameter was placed directly onto the tissue sections for analysis.
Analysis was performed in the renal cortex zone, indicated by a pathologist. Figure 1 illustrates the
basic components of the proposed method. Spectra of the reflected light were recorded across the
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range of 1038–2354 nm at a resolution of 13 nm (128 averaged scans). All samples were analyzed in
batch to minimize external variabilities.
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Figure 1. Schematic representation of the near-infrared (NIR) spectroscopy-based setup. The basic
components include a computer, NIR-spectrometer, optical fiber, integrating sphere, and a white
reference tile layered with immersion oil.

2.6. Multivariate Data Analysis

NIR spectral data analysis was performed using SIMCA® software version 15.0 (MKS Data
Analytics Solutions, Umeå, Sweden). To remove irrelevant light scatter and standardize the spectroscopic
signal, different preprocessing methods, such as standard normal variate (SNV), derivatives, and
Savitzky-Golay (SG) smoothing, were examined. SNV eliminates additive baseline offset variations
and multiplicative scaling effects, which may be induced by differences in sample density and
sample-to-sample measurement variations. For more complex spectra (e.g., biological spectra),
differentiation is utilized to accentuate small structural differences and reduce baseline effects, which
facilitates spectral discrimination [15,16]. Furthermore, derivatives enhance spectral resolution, which is
helpful in resolving and locating overlapping bands. In the first derivative, resolution is enhanced since
the rate of change of absorbance (A) with respect to wavelength (λ) is examined (dA/dλ). The second
derivative measures alterations in the rate of change of absorbance (d2A/dλ2) [15]. SG smoothing can
be performed to reduce the level of noise, while keeping the spectral details [16].

After preprocessing, spectral data were analyzed by unsupervised pattern recognition methods,
such as principal component analysis (PCA), and supervised pattern recognition methods, such as soft
independent modelling of class analogy (SIMCA). PCA is a multivariate projection method that is
used to analyze the interrelationships among a large number of spectral data points and to explain
these variables into a few orthogonal principal components (PCs), such that an overview of the data
is obtained with a minimum loss of information [15]. The first PC is the line in the K-dimensional
space that best approximates the data in the least squares sense and passes through the average point.
One PC is often insufficient to model the systematic variation of a data set, and therefore a second
PC is calculated. The second PC is orthogonal to the first PC, goes through the average point, and
ameliorates the approximation of the X-data as much as possible. Two PCs together form a plane,
and by projecting all the observations onto this subspace and plotting the results, the structure of the
investigated data set can be visualized [15,17]. Scores are defined as the coordinates of the observations
on this plane, while a score plot represents the plotting of such a projected configuration. However,
more PCs are often required to adequately summarize the information in a data set [15,17].
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Soft independent modelling of class analogy (SIMCA) was used to evaluate the predictive
properties of NIR spectroscopy on tissue sections. This method models each class of samples separately
by executing a PCA on each class and defines the optimal number of PCs required to describe each
class of samples individually by using a cross-validation procedure [15]. During cross-validation,
observations are omitted, predicted, and compared to the actual values using different numbers of
PCs. The same procedure is repeated until every data point has been kept out once. The PC model
that produces the minimum prediction error is retained. In contrast to most standard discrimination
techniques, SIMCA can work with as few as 10 samples per class without problems arising from
collinearity and chance classification.

2.7. Statistical Analysis

Statistical analysis was carried out using MedCalc Version 18.11 (MedCalc Software, Mariakerke,
Belgium). Differences between patient groups were assessed using the Mann-Whitney U test. To
investigate correlations between non-normal continuous variables, Spearman’s rho (ρ) was calculated.
A p-value < 0.05 was considered a priori to be statistically significant.

3. Results

3.1. Exploration of Discriminative Spectral Features in Diabetic Nephropathy Patients

Initially, potential zones of interests were identified by comparison of the SNV normalized, first
derivative, and SG smoothed (15 points) median spectra of the control and DN group (Figure 2A).
Since spectral changes were noted over the entire spectral range, the statistical significance of each
region was tested by applying a Mann-Whitney U test on its peak intensity. The peak intensities
at 1468 nm, 1949 nm, and 2279 nm were significantly lower (p = 0.0035, p = 0.024, and p = 0.0020,
respectively), while the intensities at 2082 nm and 2209 nm were significantly higher (p = 0.0058
and p = 0.044, respectively) in patients with DN in comparison with the control subjects (Figure 2B).
Next to these isolated peak intensities, statistically significant differences were found in the following
regions: 1189–1208 nm, 1273–1293 nm, 1384–1552 nm, 1603–1655 nm, 1719–1738 nm, 1910–1968 nm,
2025–2120 nm, 2184–2209 nm, 2241–2316 nm, and 2329–2354 nm. With relevant wavelengths identified,
we proceeded to evaluate the potential of NIR spectroscopy to detect DN by applying SIMCA.
To maximize the predictive potential, several classification models based on narrower spectral ranges
were developed. Eventually, a classification model based on the spectral region ranging from
1700–2165 nm was able to classify all control and DN samples with perfect accuracy.

During classification, the probability of belonging to a specific class is calculated for each sample in
the dataset. Samples with a probability of > 0.10 are considered to be inside the 90% confidence interval
(CI) of the normal probability curve, values between 0.10 and 0.05 are considered to be inside 95% CI,
and samples with a probability < 0.05 are deemed to be outside the class (outside 95% CI). However,
a model was applied that assigned each observation only to the nearest class. It is interesting to note
that 4 control patients, who were correctly classified to the control group, also showed a probability
> 0.05 for the class model of DN patients, and consequently, were also deemed to be inside the 95%
or 90% CI of the DN class model. One of these patients, a 15-year old girl with DM who initially
underwent a biopsy with normal histological findings in the context of proteinuria (the sample used for
NIR analysis), eventually was diagnosed with DN on a biopsy six years later. The other 3 patients did
not undergo surveillance biopsies after the first biopsy. Nevertheless, one of these patients, a 45-year
old male with DM who underwent a biopsy 3 months after Tx with normal histological findings,
developed a persistent and progressive albuminuria (>300 mg/g creatinine) with declined eGFR in
the follow-up period. Furthermore, a 55-year old women with DM, who also underwent a biopsy
3 months after Tx with normal histological findings, developed a longstanding proteinuria 3 years
after biopsy. Taken together, these findings could suggest a potential role of NIR spectroscopy in the
very early detection of DN prior to histological abnormalities. No follow-up data were available for
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the third post-Tx control patient, since a nephrectomy of the donor kidney was performed shortly after
biopsy due to arterial thrombosis.
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Figure 2. Discriminative spectral features in diabetic nephropathy (DN) patients. (A) First derivative
of the median spectra from the control group (green line, n = 27) and DN patients (blue line, n = 26).
Statistically significant differences (Mann-Whitney U test) in peak intensities between both groups
are indicated with an asterisk. In first derivative, resolution is enhanced since the rate of change of
absorbance (A) with respect to wavelength (λ) is examined (dA/dλ). (B) Box and whisker plots showing
decreased intensities at 1468 nm, 1949 nm, and 2279 nm in the group of DN patients, compared to the
controls. In contrast, the intensities at 2082 nm and 2209 nm showed significant increases.

3.2. Unravelling The Biochemical Nature of Discriminative Spectral Features

To unravel the biochemical nature of the most striking spectral differences in DN patients,
(de)glycation and carbamoylation experiments were performed on unstained tissue sections (Figure 3).
The same preprocessing steps as applied in the ex vivo model were executed and PCA was
performed on the most discriminative spectral region previously found in the spectra of DN patients
(i.e., 1700–2165 nm). The PCA model identified two outliers that were placed far outside the 95%
confidence interval of the Hotelling’s plot: one baseline sample and one glycated tissue section. Since
outliers might seriously bias the mean spectra, both samples were excluded. The resulting score plot
showed clear clustering of three groups (Figure 3A): baseline samples (green dots), deglycated samples
(yellow dots), and a separate group with the glycated and carbamoylated samples (red and blue dots,
respectively). With regard to the latter, spectral changes observed after glycation and carbamoylation
seemed to be very similar.
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Figure 3. Spectral signature of (de)glycated and carbamoylated tissue sections. (A) Score plot showing
clear clustering of three groups: baseline samples (green dots), deglycated samples (yellow dots),
and a separate group with the glycated and carbamoylated samples (red and blue dots, respectively)
based on the 1700–2165 nm spectral range. (B) First derivative of the mean spectra (full spectral range)
from the baseline samples (green line), carbamoylated (blue line), glycated (red line), and deglycated
samples (yellow line). Close-up on the zones of interest at 1468 nm (C), 1949 nm (D), 2082 nm (E),
2209 nm (F), and 2279 nm (G).

Mean spectra of baseline, (de)glycated, and carbamoylated tissue sections were visually compared
to expose differences (Figure 3B). The peak at 1468 nm, mainly attributed to N-H combination bands
from CONH2 groups [18], showed a decrease in intensity after the carbamoylation process (Figure 3C).
In addition, the first derivative spectrum of homocitrulline showed a modest decrease in the region
intensity compared to lysine (Figure 4A). Furthermore, it is known that O-H (2v) groups can provoke
spectral influence around this region [18]. After glycation, a similar decrease was observed in the
intensity of the 1468 nm peak. Deglycation with FN3K had little effect on the peak intensity. The peak
located at 1949 nm became less expressed after carbamoylation and glycation (Figure 3D). This can be
explained by the fact that this region can be assigned to N-H combination bands from CONH2 groups,
as well as O-H stretching and HOH bending combinations [18]. These findings were confirmed by
the spectrum of homocitrulline, showing a strong decrease in the 1949 nm peak intensity compared
to lysine (Figure 4A). Furthermore, FN3K treatment provoked a complete restoration, even beyond
baseline level, of the glycated tissue sections. Since a similar decrease was noted in the spectra of DN
patients, it is likely that carbamoylation and glycation are significant contributors to this spectral finding.
Furthermore, the 2082 nm peak, which is also associated with CONH2 groups and O-H bending and
C-O stretching combinations [18], showed an increased intensity after both the carbamoylation and
glycation process. The latter was confirmed by a partial restoration of the increased peak intensity in the
glycated tissue sections using FN3K (Figure 3E). However, the spectra of lysine and homocitrulline did
not reveal spectral differences, in line with our carbamoylation findings (Figure 4A). The 2209 nm peak,
associated with C-H stretching and C = O combination bands [18], showed a marked intensity increase
after glycation and carbamoylation. FN3K treatment caused a modest restoration of the increased
intensity observed in the glycated samples (Figure 3F). No clear spectral changes were observed in the
spectra of lysine and homocitrulline (Figure 4A). At last, the peak intensity at 2279 nm, associated
with CONH2 groups and O-H, C-O stretching combinations [18], showed a minimal decrease after
carbamoylation and glycation (Figure 3G). While a rather subtle intensity decrease was found in the
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spectrum of homocitrulline compared to lysine (Figure 4A), FN3K treatment resulted in a complete
spectral restoration of the glycated samples towards baseline level.

3.3. Discriminative Power of The Biochemical Signature

Figure 4B shows the spectra of two non-post-Tx control patients without DM and three non-post-Tx
control patients with DM. Comparison of spectra revealed striking similarities with the changes
observed during the (de)glycation experiment in the full spectral range. Although carbamoylation and
glycation-induced spectral changes in some regions also appeared to be similar to the ones obtained
in DN patients, it is likely that these NEPTMs can only be partially associated with the biochemical
signature observed in DN patients. This statement can be strengthened by the fact that all control
patients with DM but without DN were correctly classified as controls in the classification model
mentioned above. Furthermore, one patient with DM from the control group, who underwent a biopsy
10 years after Tx, was correctly classified in the control group despite having a longstanding high
glycemic and uremic load during follow-up.
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Figure 4. (A) First derivative spectra of lysine (green line) and homocitrulline powder (blue line).
The peaks of interest are indicated with an asterisk. (B) First derivative spectra of non-post-transplant
patients without DM (n = 2) and non-post-transplant patients with DM (n = 3).

In addition, tissue sections of patients with DM and another renal pathology (RCC) were analyzed
to investigate whether the biochemical signature is discriminatory for presence of true DN in patients
with DM. A classification model based on the first derivative of the whole spectral range (SNV
normalized and SG smoothed) was designed to discriminate controls, DN patients, and patients with
DM and RCC. The model generated a correct classification ratio of 93.8%. In the control group (n = 27),
one sample was misclassified as DN, while 2 samples were incorrectly classified as DM with RCC.
In the DN group (n = 26), one sample was misclassified as DM with RCC. At last, all tissue sections in
the group of DM patients with RCC (n = 11) were correctly classified. Consequently, we can assume
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that the biochemical signature seems to be discriminatory for presence of true DN in patients with DM,
and is more than just a reflection of a patient’s glycation or carbamoylation status.

3.4. Correlation of Spectral Markers with Routine Laboratory Parameters and Age

Correlations of spectral markers with urea, creatinine, eGFR, HbA1c, proteinuria, and age were
investigated. Tissue sections obtained from post-Tx patients (n = 22) were excluded since the detected
NEPTMs can reflect the past dynamics of average blood urea and glucose levels from the donor and not
from the acceptor. HbA1c values were unavailable in three DN patients. A significant correlation with
HbA1c was found for the peak intensities at 1949 nm (ρ = −0.47, p = 0.012, Figure 5A) and 2209 nm
(ρ = 0.42, p = 0.027, Figure 5A), which is in-line with the results obtained during the (de)glycation
experiment. Furthermore, a significant correlation with proteinuria was noted for the peak at 1468 nm
(ρ = −0.39, p = 0.039) and 1949 nm (ρ = −0.39, p = 0.038). While the 2279 nm peak showed a nearly
significant correlation with proteinuria (ρ = −0.36, p = 0.053), no significant correlations were observed
for the other peaks of interest.

J. Clin. Med. 2019, 8, x FOR PEER REVIEW 9 of 12 

 

we can assume that the biochemical signature seems to be discriminatory for presence of true DN in 
patients with DM, and is more than just a reflection of a patient’s glycation or carbamoylation status. 

3.4. Correlation of Spectral Markers with Routine Laboratory Parameters and Age 

Correlations of spectral markers with urea, creatinine, eGFR, HbA1c, proteinuria, and age were 
investigated. Tissue sections obtained from post-Tx patients (n = 22) were excluded since the detected 
NEPTMs can reflect the past dynamics of average blood urea and glucose levels from the donor and 
not from the acceptor. HbA1c values were unavailable in three DN patients. A significant correlation 
with HbA1c was found for the peak intensities at 1949 nm (ρ = -0.47, p = 0.012, Figure 5A) and 2209 
nm (ρ = 0.42, p = 0.027, Figure 5A), which is in-line with the results obtained during the (de)glycation 
experiment. Furthermore, a significant correlation with proteinuria was noted for the peak at 1468 
nm (ρ = -0.39, p = 0.039) and 1949 nm (ρ = -0.39, p = 0.038). While the 2279 nm peak showed a nearly 
significant correlation with proteinuria (ρ = -0.36, p = 0.053), no significant correlations were observed 
for the other peaks of interest. 

Nonetheless, next to the initially defined peaks of interest, several other spectral features showed 
significant correlations with HbA1c and urea. The peak intensity at 1879 nm, 1987 nm, and 2222 nm 
showed the best correlations with HbA1c (ρ = 0.46, p = 0.014; ρ = -0.49, p = 0.0085; and ρ = 0.52, p = 
0.0048, respectively, Figure 5A). The link of these regions with the glycation status was confirmed by 
the glycation experiment, revealing spectral changes in all these regions and FN3K treatment causing 
marked spectral restorations. Moreover, best correlations with urea were found for the intensities at 
1403 nm and 1732 nm (ρ = -0.47, p = 0.0083; ρ = -0.60, p = 0.0003, respectively; Figure 5B). The region 
around 1403 nm can be assigned to N-H (2v) symmetric vibrations, while the intensity at 1732 nm 
can be linked to CONH2 groups (specifically due to C = O hydrogen bonded to the N-H of the peptide 
link termed the α-helix structure) [18]. Both regions became less expressed after carbamoylation and 
the spectrum of homocitrulline showed subtle intensity decreases in these regions compared to lysine 
(Figure 4A). In addition, significant correlations with creatinine and eGFR were found for both the 
intensity at 1403 nm (ρ = -0.44, p = 0.012; ρ = 0.47, p = 0.0072, respectively) and 1732 nm (ρ = -0.47, p = 
0.0084; ρ = 0.47, p = 0.0070, respectively). No significant correlations were found with age.  

 
Figure 5. Correlation of spectral markers with routine laboratory parameters. (A) Scatterplots
illustrating Spearman’s correlations between first derivative intensities at 1879 nm, 1949 nm, 2209 nm,
1987 nm, 2222 nm, and hemoglobin A1c (HbA1c) (%). (B) Scatterplots illustrating correlations between
first derivative intensities at 1403 nm, 1732 nm, and urea (mg/dL). The solid and dashed lines represent
the 95% prediction interval and 95% confidence interval, respectively.

Nonetheless, next to the initially defined peaks of interest, several other spectral features showed
significant correlations with HbA1c and urea. The peak intensity at 1879 nm, 1987 nm, and 2222
nm showed the best correlations with HbA1c (ρ = 0.46, p = 0.014; ρ = −0.49, p = 0.0085; and ρ = 0.52,
p = 0.0048, respectively, Figure 5A). The link of these regions with the glycation status was confirmed by
the glycation experiment, revealing spectral changes in all these regions and FN3K treatment causing
marked spectral restorations. Moreover, best correlations with urea were found for the intensities at
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1403 nm and 1732 nm (ρ = −0.47, p = 0.0083; ρ = −0.60, p = 0.0003, respectively; Figure 5B). The region
around 1403 nm can be assigned to N-H (2v) symmetric vibrations, while the intensity at 1732 nm can
be linked to CONH2 groups (specifically due to C = O hydrogen bonded to the N-H of the peptide
link termed the α-helix structure) [18]. Both regions became less expressed after carbamoylation and
the spectrum of homocitrulline showed subtle intensity decreases in these regions compared to lysine
(Figure 4A). In addition, significant correlations with creatinine and eGFR were found for both the
intensity at 1403 nm (ρ = −0.44, p = 0.012; ρ = 0.47, p = 0.0072, respectively) and 1732 nm (ρ = −0.47,
p = 0.0084; ρ = 0.47, p = 0.0070, respectively). No significant correlations were found with age.

4. Discussion

In the present paper, we have demonstrated for the first time the use of NIR spectroscopy to assess
DN in renal biopsies from a single stained tissue section. The spectral range between 1700–2165 nm,
a region potentially and partially associated with both carbamoylation (CONH2 groups) and glycation
(O-H stretching and HOH bending combinations, O-H bending, and C-O stretching combinations)
reactions, allowed perfect discrimination. In addition, several control patients, who were also deemed
to be inside the 95% or 90% CI of the DN class model, developed histological or clinical signs
associated with DN during follow-up. This could suggest a potential role of NIR spectroscopy in
the very early detection of DN prior to histological abnormalities. Carbamoylation and glycation
derived spectral changes in some regions appeared to be similar to the ones obtained in DN patients.
Based on our results, NEPTMs are likely to be contributors to some of the observed spectral changes.
This is further supported by the significant relationships found between spectral features and routine
laboratory parameters, such as HbA1c, urea, creatinine, eGFR, and proteinuria. When isocyanic acid
(carbamoylation) or glucose (glycation) makes a stable attachment to a protein, it takes on the half-life
of that protein [19]. As kidney proteins are characterized by a long half-life, the spectral features can be
seen as time-integrated markers, which allow to reveal the past dynamics of average blood urea and
glucose levels within a long-time window. Nevertheless, since we were able to discriminate patients
with DM but without DN from patients with DN, we can assume that the biochemical signature is not
solely a reflection of a patient’s glycation or carbamoylation status. This is of importance, as not all
patients with kidney disease and diabetes do have DN [20].

Our results are in line with the MIR imaging results reported by Varma et al. [4], wherein
a biochemical signature of DN was linked to tissue glycation [21]. However, it has to be mentioned that
their study was faced with some limiting factors such as the inclusion of only a few study participants,
the lack of an in vitro model to better characterize the relationship between spectral findings and their
biochemical nature, and more importantly the use of a complex and expensive analytical technique,
which makes the method only suitable for clinical research purposes. Therefore, we developed
a practical and portable method based on a considerably higher amount of study participants in
an entirely different range of the electromagnetic spectrum by using a different analytical technique.
Our novel method is not restricted to very specialized laboratories and can be performed on routine
stained tissue sections without the need for additional sample preparation. However, in contrast
to imaging, our setup is not able to specifically target key structures in renal biopsies, but provides
a rather general insight into tissue biochemistry.

Next to the analytical innovation, the proposed method has the ability to impact clinical care on
multiple fronts. Treatment for DN is often not very satisfying, possibly because renal involvement is
discovered too late using the conventional diagnostic techniques [4]. Since biochemical alterations
precede histopathological changes, early NIR identification of DN could be useful to complement
histopathological analysis in order to prevent or delay further disease progression with more focused
interventions, especially in the setting of post-Tx surveillance kidney biopsies. In addition, NIR
spectroscopy may also be helpful in monitoring the effect of instituted therapies. Since there is a need
for better biomarkers that can predict which patients with DM are at highest risk for progression of
their disease [22], future research could focus on the potential of the spectral features as prognostic
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biomarkers for progressive DN. Nevertheless, studies on a larger number of patients are needed to
confirm the external validity of our results. Full validation studies with adequate training and test sets
have to be designed.

In conclusion, a biochemical signature associated with DN was detected in an objective and
non-destructive way by NIR spectroscopic analysis of stained tissue sections without additional sample
preparation. The reported method could be a useful adjunct to standard histopathological analysis.
However, large-scale prospective follow-up studies are indispensable to further assess its clinical value
in the early detection of DN prior to the occurrence of histological abnormalities.
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