Table S1. Optimal quantile cut-offs for dichotomization of patients for NLR, ALC, and ANC based on maximal Harrel's C-index.

	NLR					ALC					ANC				
$\begin{gathered} \text { QUANTI } \\ \text { LE [\%] } \end{gathered}$	CUTOFF NLR			C- INDEX_ PFS	$\begin{gathered} \mathrm{C}- \\ \text { INDEX_ } \\ \text { OS } \\ \hline \end{gathered}$	$\begin{aligned} & \text { CUTOFF } \\ & \text { ALC } \end{aligned}$		N 2 (ALC_ $\mathrm{HI})$	$\begin{gathered} \text { CIND } \\ \text { _PFS } \end{gathered}$	$\begin{gathered} \text { C- } \\ \text { INDEX_ } \\ \text { OS } \\ \hline \end{gathered}$	CUTOFF ANC			$\begin{aligned} & \text { CIND } \\ & \text { _PFS } \end{aligned}$	$\begin{gathered} \text { C- } \\ \text { INDEX_ } \\ \text { OS } \\ \hline \end{gathered}$
26	3.00	39	102	0.5339	0.5879	0.874	37	104	0.5488	0.5944	4.094	37	104	0.4856	0.5467
27	3.00	39	102	0.5339	0.5879	0.896	38	103	0.5499	0.5986	4.164	38	103	0.4815	0.5519
28	3.12	40	101	0.5300	0.5778	0.902	40	101	0.5509	0.6095	4.222	40	101	0.5280	0.5603
29	3.20	42	99	0.5337	0.5894	0.928	41	100	0.5591	0.6210	4.276	41	100	0.4768	0.5617
30	3.30	46	95	0.5293	0.5845	0.950	44	97	0.5485	0.6071	4.390	44	97	0.4764	0.5644
31	3.30	46	95	0.5293	0.5845	0.954	44	97	0.5485	0.6071	4.396	44	97	0.4764	0.5644
32	3.30	46	95	0.5293	0.5845	0.976	45	96	0.5563	0.6056	4.449	45	96	0.4733	0.5636
33	3.40	49	92	0.5432	0.5995	0.984	47	94	0.5540	0.5999	4.552	47	94	0.4711	0.5722
34	3.40	49	92	0.5432	0.5995	1.006	48	93	0.5596	0.6010	4.566	48	93	0.4767	0.5711
35	3.50	51	90	0.5414	0.6045	1.010	51	90	0.5515	0.6137	4.570	50	91	0.4771	0.5648
36	3.54	51	90	0.5414	0.6045	1.018	51	90	0.5515	0.6137	4.638	51	90	0.5291	0.5710
37	3.60	54	87	0.5419	0.6087	1.038	52	89	0.5488	0.6102	4.750	52	89	0.5352	0.5764
38	3.62	54	87	0.5419	0.6087	1.050	56	85	0.5514	0.6091	4.782	54	87	0.5228	0.5789
39	3.70	56	85	0.5501	0.6087	1.050	56	85	0.5514	0.6091	4.827	55	86	0.5247	0.5802
40	3.80	59	82	0.5558	0.6219	1.060	58	83	0.5506	0.6057	4.850	57	84	0.4840	0.5632
41	3.80	59	82	0.5558	0.6219	1.064	58	83	0.5506	0.6057	5.024	58	83	0.4849	0.5675
42	3.88	59	82	0.5558	0.6219	1.070	60	81	0.5534	0.6068	5.068	59	82	0.4800	0.5705
43	4.00	62	79	0.5509	0.6149	1.092	61	80	0.5512	0.6035	5.112	61	80	0.4865	0.5557

[^0]Table S2. Comparison of baseline characteristics between anti-VEGF exposed and anti-VEGF naïve advanced NSCLC patients receiving PD-1/PD-L1 blockade.

	No Prior/Concomitant Anti-VEGF Therapy $\mathrm{N}=125$	Prior/Concomitant Anti-VEGF Therapy * $\mathrm{N}=17$	P-value
Median age (range)	67 (26-89)	63 (50-76)	$0.068 \ddagger$
Sex			0.336
male	73 (58\%)	12 (71\%)	
female	52 (42\%)	5 (29\%)	
ECOG performance status			0.424
0	33 (27\%)	6 (35\%)	
1	75 (60\%)	11 (65\%)	
2	14 (11\%)	0 (0\%)	
3	3 (2\%)	0 (0\%)	
Histology			0.002
non-squamous	79 (63\%)	17 (100\%)	
squamous	46 (37\%)	0 (0\%)	
Smoking history			0.546
smoker	103 (87\%)	13 (93\%)	
never-smoker	15 (13\%)	1 (7\%)	
missing	7 (6\%)	3 (18\%)	
TNM stage			0.131
III	15 (12\%)	0 (0\%)	
IV	110 (88\%)	17 (100\%)	
ALK translocation			0.519
no	115 (98\%)	16 (100\%)	
yes	3 (2\%)	0 (0\%)	
missing	7 (6\%)	1 (6\%)	
EGFR mutation status			0.830
wild-type	114 (93\%)	16 (94\%)	
mutant	9 (7\%)	1 (6\%)	
missing	2 (2\%)	0 (0\%)	
CNS involvement			0.708
no	98 (78\%)	14 (82\%)	
yes	27 (22\%)	3 (18\%)	
PD-L1 status			0.024
positive	70 (67\%)	5 (36\%)	
negative	35 (33\%)	9 (64\%)	
missing	20 (16\%)	3 (18\%)	
PD-L1 status category			0.052
$<1 \%$	35 (34\%)	9 (64\%)	
1-50\%	35 (34\%)	4 (29\%)	
>50\%	34 (32\%)	1 (7\%)	
ICB therapy line			0.002
$1^{\text {st }}$ line	38 (30\%)	2 (12\%)	
$2^{\text {nd }}$ line	62 (50\%)	5 (29\%)	
$\geq 3^{\text {rd }}$ line	25 (20\%)	10 (59\%)	
Immune-checkpoint inhibitor			0.215

nivolumab	67 (54\%)	12 (71\%)	
pembrolizumab	49 (39\%)	3 (17\%)	
atezolizumab	9 (7\%)	2 (12\%)	
Tertiary oncologic center			0.994
Salzburg	44 (35\%)	6 (35\%)	
Linz	81 (65\%)	11 (65\%)	
Prior/concomitant denosumab application			0.854
no	93 (74\%)	13 (77\%)	
yes	32 (26\%)	4 (23\%)	
Prior radiotherapy*			0.201
no	72 (58\%)	7 (41\%)	
yes	53 (42\%)	10 (59\%)	
Subsequent therapy			0.555
no therapy	77 (62\%)	8 (47\%)	
taxane-based	17 (14\%)	2 (12\%)	
TKI	14 (11\%)	3 (18\%)	
other	17 (14\%)	4 (23\%)	
Antibiotic treatment during ICB\$			0.458
no	69 (55\%)	11 (65\%)	
yes	56 (45\%)	6 (35\%)	

ECOG: Eastern Cooperative Oncology Group, EGFR: epidermal growth factor receptor, ALK: Anaplastic lymphoma kinase, PD-L1: programmed cell death ligand 1, ICB: immune-checkpoint blockade, VEGF: vascular endothelial growth factor, TKI: tyrosine kinase inhibitor. \ddagger two-sided Wilcoxon rank-sum test, * bevacizumab, ramucirumab or nintedanib, \S^{\S} administration of antibiotics within a time frame of one month before or one month after initiation of immune-checkpoint blockade, \#to the primary tumor or metastases.

Figure S1. Kaplan-Meier curves for PFS (A) and OS (B) from initiation of PD-1/PD-L1 blockade in 142 advanced NSCLC patients. medPFS is median progression free survival and medOS is median overall survival; 95% confidence interval in brackets.

Figure S2. Kaplan-Meier curves for PFS and OS according to PD-L1 expression status on tumor cells. Comparison of Kaplan-Meier curves for PFS (A) and OS (B) between PD-L1+ and PD-L1- advanced NSCLC groups. HR is hazard ratio, 95% confidence interval in brackets.

Figure S3. Therapy line adjusted survival curves for PFS and OS according to absolute lymphocyte count and ECOG performance status. Comparison of survival curves in advanced NSCLC patients with a baseline ALC $>0.93 \times 10^{9} / \mathrm{L}$ versus $\leq 0.93 \times 10^{9} / \mathrm{L}$ for PFS (A) and OS (B), and with a baseline ECOG
performance status >1 versus ≤ 1 for $\operatorname{PFS}(\mathbf{C})$ and $\operatorname{OS}(\mathbf{D})$. dotted lines: original; solid lines: adjusted for therapy-line ($1+2$ versus ≥ 3). HR is hazard ratio, 95% confidence interval in brackets.

Figure S4. Kaplan-Meier curves for PFS and OS according to antibiotic treatment status. Comparison of Kaplan-Meier curves for PFS (A) and OS (B) between antibiotic-positive and antibiotic-negative group in advanced NSCLC. Antibiotic exposure in temporal proximity to immune-checkpoint inhibitor therapy start was defined as antibiotic therapy administration within one month before or one month after initiation of ICB. HR is hazard ratio, 95% confidence interval in brackets.

[^0]: Individual selected cut-offs are indicated as bold (maximal C-indices are yellow). N 1 and N 2 are number of patients in the two dichotomized groups.

