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Abstract: Artificial intelligence (AI) classification holds promise as a novel and affordable screening 
tool for clinical management of ocular diseases. Rural and underserved areas, which suffer from 
lack of access to experienced ophthalmologists may particularly benefit from this technology. 
Quantitative optical coherence tomography angiography (OCTA) imaging provides excellent 
capability to identify subtle vascular distortions, which are useful for classifying retinovascular 
diseases. However, application of AI for differentiation and classification of multiple eye diseases 
is not yet established. In this study, we demonstrate supervised machine learning based multi-task 
OCTA classification. We sought 1) to differentiate normal from diseased ocular conditions, 2) to 
differentiate different ocular disease conditions from each other, and 3) to stage the severity of each 
ocular condition. Quantitative OCTA features, including blood vessel tortuosity (BVT), blood 
vascular caliber (BVC), vessel perimeter index (VPI), blood vessel density (BVD), foveal avascular 
zone (FAZ) area (FAZ-A), and FAZ contour irregularity (FAZ-CI) were fully automatically extracted 
from the OCTA images. A stepwise backward elimination approach was employed to identify 
sensitive OCTA features and optimal-feature-combinations for the multi-task classification. For 
proof-of-concept demonstration, diabetic retinopathy (DR) and sickle cell retinopathy (SCR) were 
used to validate the supervised machine leaning classifier. The presented AI classification 
methodology is applicable and can be readily extended to other ocular diseases, holding promise to 
enable a mass-screening platform for clinical deployment and telemedicine. 

Keywords: ophthalmology; diabetic retinopathy; sickle cell retinopathy; quantitative analysis; 
computer aided diagnosis; artificial intelligence; support vector machine; optical coherence 
tomography angiography 

 

1. Introduction 

Machine learning based artificial intelligence (AI) technology has garnered increasing interest in 
medical applications over the past few years [1]. An AI-software platform is designed to mimic the 
perception of the human brain for information processing and making objective decisions. Recent 
studies have demonstrated AI applications in detecting retinal disease progression [2–5], identifying 
malignant or benign melanoma [6], and classifying pulmonary tuberculosis[7]. In ophthalmic 
research, application of AI technology has led to excellent diagnostic accuracy for several ocular 
conditions such as diabetic retinopathy (DR), age related macular degeneration (AMD), and sickle 
cell retinopathy (SCR) [2,4,8,9]. 

In the current clinical setting, mass screening programs for common ocular conditions such as 
DR or SCR are heavily dependent upon experienced physicians to examine and evaluate retinal 
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images. This process is time consuming and expensive, making it difficult to scale up to incorporate 
the millions of individuals who harbor systematic diseases which are prone to affect the retina. 
Patients with early onset of retinopathies such as DR or SCR are initially asymptomatic yet require 
monitoring to ensure prompt medical interventions to prevent vision losses. However, it is not 
feasible to screen 65 million people in the USA over the age of 50 years [1] to identify for individuals 
with signs of early retinopathy (AMD, DR or other disease). An AI-based diagnostic tool with 
capability for multiple-disease differentiation would have tremendous potential to advance mass-
level screening of eye diseases [10]. 

To date, most of the reported studies of AI diagnostic systems in literature are based on color 
fundus imaging [11–14]. Fundus imaging is one of the most common clinical imaging modalities and 
has been widely used in evaluating retinal abnormalities. Supervised and unsupervised machine 
learning based diagnostic systems using fundus images have been developed by researchers for 
staging of individual retinopathies as well as to identify multiple ocular diseases [8,15–18]. However, 
these demonstrated AI-based diagnostic tools generally face two major challenges. Firstly, fundus 
images provide limited resolution and retinal vascular information, limiting its capability to quantify 
subtle micro-vascular distortions near the foveal area and in different retinal layers. Thus, diagnostic 
systems using supervised machine learning algorithms suffer from low-performing quantitative 
feature analysis and concurrently low diagnostic accuracy. Secondly, systems using unsupervised or 
deep machine learning require a large and well documented database (ranging from 100,000 to 
millions) for training and optimizing convolutional neural networks. Even if an AI system is 
successfully trained, the intrinsic variance among different database from multiple imaging centers 
makes it extremely difficult to provide robust accuracy metrics. Additionally, in case of new retinal 
imaging modalities such as optical coherence tomography (OCT) angiography (OCTA), it is quite 
challenging to accumulate large, multi-center database for efficient clinical deployment of AI-based 
diagnostic tools. 

As a potential solution to overcome these challenges, we propose a supervised machine learning 
based approach to train and evaluate a support vector machine (SVM) classifier model with 
quantitative OCTA features for multi-task AI classification of retinopathies. By providing excellent 
capability for depth-resolved visualization of retinal vascular plexuses, quantitative OCTA holds 
genuine promise for AI screening of retinopathies. Although the comparatively smaller data size of 
OCTA presently limits deep-learning based strategies, the sensitivity of OCTA features to detect 
onset and progression of retinopathies make it readily useful for supervised AI based screening. 
Recent studies have established several quantitative OCTA features correlated with subtle 
pathological and microvascular distortions in the retina. OCTA features such as blood vessel 
tortuosity (BVT), blood vascular caliber (BVC), vessel perimeter index (VPI), blood vessel density 
(BVD), foveal avascular zone (FAZ) area (FAZ-A), and FAZ contour irregularity (FAZ-CI) have also 
been validated for objective classification and staging of DR [5,19] and SCR [20], individually. Our 
recent studies demonstrated that DR and SCR show different effects on OCTA features, and thus 
quantitative OCTA analysis promises the potential of multiple-task classification to differentiate 
retinopathies and stages. In this study, we propose to test the feasibility of using these quantitative 
OCTA features for machine leaning based multi-task AI screening of different retinopathies. For easy 
comparison with our recent studies, DR and SCR were selected as the two diseases for technical 
validation of the proposed AI screening methodology. The AI system containing an SVM classifier 
model utilizes a hierarchical backward elimination technique to identify optimal-feature-
combination for the best diagnostic accuracy and most efficient classification performance. The AI-
based screening tool performs multi-layer hierarchical tasks to perform 1) normal vs. disease 
classification, 2) inter-disease classification (DR vs. SCR), and 3) staging of DR (mild, moderate and 
severe non-proliferative DR (NPDR)) and SCR (mild and severe). The performance of the AI system 
has been quantitatively validated with manually labeled ground truth, using sensitivity, specificity 
and accuracy metrics along with graphical metrics, i.e., receiver operation characteristics (ROC) 
curve.  
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2. Methods 

Figure 1 illustrates the step by step methodology for the machine learning based multi-task AI 
classification. Each classification task involved primarily three steps. The first step was OCTA image 
data acquisition and feature extraction (DA and FE). The second step is optimal feature identification 
(OFI) using a hierarchical backward elimination technique for the specific classification task. The 
third step was to validate multiple-task classification (MTC) using the identified optimal-feature-
combinations. 

 
Figure 1. (A) Step by step methodology of artificial intelligence (AI) based classification. (B) Optimal 
feature selection with hierarchical backward elimination technique. DA and FE: data acquisition and 
feature extraction; OFI: optimal feature identification; MTC: Multiple-task classification. 

2.1. Data Acquisition and Feature Extraction 

2.1.1. Data Acquisition 

This cross-sectional study was approved by the Institutional Review Board (IRB) of the 
University of Illinois at Chicago (UIC) and complied with the ethical standards stated in the 
Declaration of Helsinki. Both the DR and SCR patients were recruited from UIC Retinal Clinic. All 
patients underwent complete anterior and dilated posterior segment examination (JIL, RVPC). For 
DR, a retrospective study of consecutive type II diabetes patients was conducted on those who 
underwent OCT/OCTA imaging. The patients are representative of a university population of 
diabetic patients who require imaging for management of diabetic macular edema and DR. Two 
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board-certified retina specialists classified the patients based on the severity of DR (mild, moderate, 
severe NPDR) according to the Early Treatment Diabetic Retinopathy Study (ETDRS) staging system. 
In case of SCR, disease stages were graded according to the Goldberg classification (stage I-V, from 
mild to severe). Only stage II (mild) and III (severe) SCR data were included in this study as stage I 
OCTA data were limited in number while stage IV OCTA images were unreliable due to distortions 
caused by hemorrhages and vessel proliferation. For simplification in the classification process, we 
define the stage II and III as mild and severe stage SCR, respectively. The control OCTA data were 
obtained from healthy volunteers (no history of retinopathy) who gave informed consent for 
OCT/OCTA imaging. Both eyes (OD: right and OS: left) were examined and imaged. We did not 
include eyes with other ocular disease or any pathological features in their retina such as epiretinal 
membranes and macular edema. Additional exclusion criteria included eyes with prior history of 
vitreoretinal surgery, intravitreal injections or significant (greater than a typical blot hemorrhage) 
macular hemorrhages. 

Spectral domain (SD) -OCT and OCTA image data were acquired using an Angiovue SD-OCT 
device (Optovue, Fremont, CA, USA), consisting of a 70,000 Hz A-scan rate, and axial and lateral 
resolutions of ∼5 μm and ~15 μm, respectively. All OCTA images used in this study were 6 mm × 6 
mm scans; OCTA images were acquired from both superficial and deep capillary plexuses (SCP and 
DCP). All the images were quantitatively examined, and OCTA images with severe motion or 
shadow artifacts [21] were also excluded. The OCTA image quality was quantified with scan quality 
metric provided in the Angiovue’s software interface, ReVue. Any OCTA image with scan quality 
score less than 5 were excluded. The OCTA images were exported from imaging device and custom-
developed MATLAB procedures were used for image processing, feature extraction and classification 
as described below. 

2.1.2. Data Pre-processing and OCTA Feature Extraction 

All the OCTA images used in this study had a field of view (FOV) of 6 mm × 6 mm (304 × 304 
pixels). The OCTA images were normalized to a standard window level based on the maximum and 
minimum intensity values to account for light and contrast image variation. Bias field correction and 
contrast adjustment of the OCTA images improved the overall reliability of the extracted features 
and concurrently the performance of the classifier model to identify OCTAs from different cohorts. 

Six different quantitative OCTA features were extracted from each OCTA image (Figure 2) for 
the AI classification. The vascular features were BVT, BVC, VPI, and BVD, while the foveal features 
were FAZ-A and FAZ-CI. Before measuring the vascular features, the vessel map and skeleton map 
were extracted from the OCTA image (i.e., Figure 2A2 and 2A3). For the vessel map, we used a 
Hessian based multi-scale Frangi filter [22] to enhance vascular flow information. This method 
utilized the Eigen vectors of the Hessian matrices and calculated the likeliness of an OCTA region to 
be vascular structures. Adaptive thresholding along with morphological functions were furthers 
used for cleaning the vessel map and removing noise. From the vessel map, a skeleton map was 
generated using morphological shrinking functions. The extracted vessel and skeleton maps from 
OCTA images had an average area of 47.34% and 25.81% respectively. 

A brief description of the feature measurement procedure is as follows: 
BVT: The BVT was measured in the SCP. For BVT measurement, the BVT of each vessel branch 

is measured from the skeleton map and average BVT was measured as [23], 

BVT = 1n Geodesic distance of a vessel branch iEuclidean distance of a vessel branch i   (1) 

Euclidean distance =  (x − x ) + (y − y )  (2) 

Geodesic distance =   dx(t)dt  +  dy(t)dt  dt (3) 
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where [xi,yi] are the two endpoints of a vessel branch. 
BVC: The BVC was measured from the SCP as the ratio of vascular area (calculated from vessel 

map) and vascular length (calculated from skeleton map) [23], BVC = Vascular areaVascular length (4) 

 

 
Figure 2. Representative optical coherence tomography angiography (OCTA) images for illustrating 
the feature extraction. (A1-A5) Control subject, (B1-B5) mild non-proliferative diabetic retinopathy 
(NPDR) subject, (C1-C5) moderate NPDR subject, (D1-D5) severe NPDR subject, (E1-E5) mild sickle 
cell retinopathy (SCR) (stage II) subject, (F1-F5) severe SCR subject. Column 1: OCTA image. Column 
2: Segmented blood vessel map including large blood vessels and small capillaries. Hessian based 
Frangi vesselness filter and fractal dimension (FD) classification provide a robust and accurate blood 
vessel map. Column 3: Skeletonized blood vessel map (red) with segmented foveal avascular zone 
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(FAZ) (marked green region) and FAZ contour (yellow boundary marked around FAZ). Column 4: 
Vessel perimeter map. Column 5: Contour maps created with normalized values of local fractal 
dimension. Scale bar shown in A1 corresponds to 1.5 mm and applies to all the images. 

VPI: The VPI was measured from the perimeter map (i.e., Figure 2A4) in the SCP as the ratio of 
vessel perimeter area and total image area [23], VPI = Perimeter areaTotal image area (5) 

BVD: The BVD was measured in both the SCP and DCP using the fractal dimension (FD) 
technique. The details and rationale about FD calculation is previously described [23]. Each pixel is 
assigned an FD value from 0 to 1 where 0 corresponds to avascular region and 1 corresponds to large 
vessel pixels. The FD of 0.7 to 1corresponds to vessel pixels and average BVD was measured as the 
vascular area to total image area. BVD = Vascular areaTotal image area (6) 

The BVD measurements were taken in three localized regions in the retina, three circular regions of 
diameter 2 mm, 4 mm and 6 mm (C1, C2, and C3) around the fovea (i.e., as shown in Figure 2A5). 
The segmented FAZ area was excluded when measuring BVD for improved diagnostic accuracy. 

FAZ-A: The FAZ-A was measured in both SCP and DCP. The fovea was demarcated 
automatically (i.e., blue area in Figure 2A3) and FAZ-A was measured as, FAZ − A (µm ) = Number of pixels is Fovea × Area of single pixel (7) 

The FAZ was measured using an active contour technique [23], where the seed point was 
automatically chosen as the center pixel of the OCTA image, since all the OCTA images were imaged 
as macula-centered scans. The automatically segmented FAZ area was compared to manually traced 
FAZ labelling and had 98.26% similarity with manually segmented ground truths. 

FAZ-CI: The FAZ-CI was measured in both the SCP and DCP. From the demarcated fovea, FAZ 
contour was segmented automatically [23] (i.e., green demarcated contour in Figure 2A3). From the 
segmented contour the FAZ-CI was measured as, FAZ − CI = Perimeter of the FAZ contour Perimeter of a circle with equivalant area to the FAZ (8) 

2.2. Optimal Feature Identification 

2.2.1. Statistics and Classification Model 

Statistical analyses were conducted using MATLAB (Mathworks, Natick, MA, USA) and 
OriginPro (OriginLab Corporation, MA, USA). All the OCTA features were tested for normality using 
a Shapiro-Wilk test. For normally distributed variables, one-versus-one comparisons were conducted 
using Student’s t-test and one way, multi-label analysis of variance (ANOVA) was used to compare 
differences among multiple groups. If the features were not normally distributed, we used 
independent sample t-test (Mann-Whitney) for one versus one comparisons and non-parametric 
Kruskal-Wallis test for comparing multiple groups. A Chi-square test was used to compare the sex 
and hypertension distribution among different groups. For age distribution, we used ANOVA. 
Spearman’s correlation coefficients (rs) were measured to analyze the relationship among the OCTA 
features and their correlation with DR or SCR severity. Statistical significance for univariate analysis 
and correlation test was defined with p < 0.05; however, the p values were Bonferroni-corrected for 
multiple simultaneous group comparisons. For the classification model that would be trained with 
OCTA features and perform the diagnosis prediction, we chose a support vector machine (SVM) 
classifier. In the case of logistic regression based backward elimination (Figure 1B), the initial critical 
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value of p was 0.15 for the univariate model while it was 0.1 for multi-variate model. In this case, a p 
value of 0.05 or less was too conservative and there may have been a possibility of losing valuable 
information from multivariate regression analysis of different features. 

2.2.2. Optimal Feature Selection with Backward Elimination 

We implemented feature optimization to choose a subset of OCTA features that delivered the 
best diagnostic prediction for each classification tasks, i.e., 1) identifying disease patients from 
control, 2) inter-disease (DR vs. SCR) classification and 3) staging of DR (mild, moderate, and severe 
NPDR) and SCR (mild and severe) respectively. Taking inspiration from Occam’s Razor, we aimed 
to choose the smallest classification model that fit the data. For choosing this optimal feature 
combination for each classification task, we used a stepwise backward elimination technique. The 
flowchart of necessary steps taken in backward elimination of features is illustrated in Figure 1B. 
Backward elimination starts with all of the predictors in the model. The variable that was least 
significant that is, the one with the largest p value with worst prediction performance in a regression 
analysis was removed and the model is refitted. Each subsequent step removed the least significant 
variable in the model until all remaining variables have individual p values smaller than critical p 
value (set at 0.05). After the SVM was trained with the optimal feature combination, we tested the 
classification model with a testing data set. This feature selection process using backward elimination 
was repeated for each of the steps and the SVM model was trained with corresponding optimal 
feature combination at each step for a specific classification task. For control vs. disease and DR. vs. 
SCR classification, the SVM performed a binary (one vs one) classification while for staging disease 
conditions (mild vs. moderate vs. severe NPDR and mild vs. severe SCR) the SVM performed a multi-
class classification. The prediction was performed on the testing database with 5-fold cross validation 
to control any overfitting. Once the SVM was trained with optimal feature combination, any new 
data could be directly inputted into the classifier to generate task-specific predictions. 

2.2.3. Performance Metrics 

The performance of the prediction model was evaluated with sensitivity, specificity, and 
accuracy metrics. Receiver Operation Characteristics (ROC) curves were also generated along with 
area under the ROC curve (AUC). The ROC curve plots the true positive rate (i.e., sensitivity) as a 
function of false positive rate (i.e., 1 - specificity) at different tradeoff points. Then AUC was measured 
to quantify how well the classifier was able to identify the different classes. The closer the curve to 
the upper left corner, the more accuracy the prediction was. A value of AUC equal to 1 or 100% 
represented a perfect prediction, and 0.5 or 50% represented a bad prediction. 

3. Results 

The OCTA image database in this study included 115 images from 60 DR patients (20 mild, 20 
medium and 20 severe NPDR), 90 images from 48 SCR patients (30 stage II mild and 18 stage III 
severe SCR), and 40 images from 20 control patients (representative images shown in Figure 2). 
Patient demographic data is shown in Table 1. There were no statistical significances in age and sex 
distribution between control, DR and SCR groups. (ANOVA, p = 0.14; chi-square test, p = 0.11 and p 
= 0.32, respectively). For DR, no significance in hypertension or insulin dependency between stages 
of disease groups was observed. 

3.1. Optimal Feature Selection Using Backward Elimination 

We employ a logistic regression-based model with backward elimination to select optimal 
combination of features for the multi-task classification. A summary of the quantitative univariate 
analysis of the OCTA features is shown in Table S1–S3 for comparing control vs. DR vs. SCR, NPDR 
stages and SCR stages respectively. In general, BVT, BVC and FAZ parameters increased with disease 
onset and progression whereas BVD and VPI decreased. The comparison of the diagnostic accuracy 
for each feature in the backward elimination process is shown in Table 2. Figure 3 provides further 
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support to the results shown in Table 2, showing relative changes of OCTA features in different 
groups. Each panel corresponds to four classification tasks respectively. The backward elimination 
initially started with all OCTA features and eliminated features one by one based on the prediction 
accuracy of the fitted regression model. The feature selection method identified an optimal feature 
combination for each classification task, i.e., perifoveal BVDSC3 (SCP, circular area: >4 mm), FAZ-AS 
(SCP) and FAZ-CID (DCP) for control vs. disease classification; BVTS (SCP), BVDSC3, FAZ-AS, and 
FAZ-CID for DR vs. SCR classification; BVDSC3 and FAZ-AS for NPDR staging; and BVTS, BVDSC3, and 
FAZ-CIS (SCP) for SCR staging. From Table 2, we can observe that the individual accuracy of the 
optimal features in each classification task were highest compared to the other features and the model 
fitted with the combination of these optimal features provided the best diagnostic accuracy. Also, 
from Figure 3, we can see that the relative changes in each cohort could only be observed in the chosen 
optimal OCTA features. 

Table 1. Demographics of control, DR and SCR subjects 

 Control DR SCR 

 
 

Mild NPDR Moderate 
NPDR 

Severe 
NPDR 

Mild SCR Severe SCR 

Number of subjects 20 20 20 20 30 18 
Sex (male) 12 11 12 11 17 11 

Age (mean ± SD) 42 ± 9.8 50.1 ± 12.61 50.8 ± 8.39 57.84 ± 10.37 51 ± 11.52 59.73 ± 8.26 
Age range 25–71 24–74 32–68 41–73 28–71 46–75 
Ethnicity 25% AA 

20% Ca 
45% A 

10% SA 

60% AA 
20% Ca 
15% A 
5% SA 

65% AA 
20% Ca 
15% A 

 

60% AA 
30% Ca 
10% A 

 

90% AA 
5% Ca 
5% A 

90% AA 
10% Ca 

Duration of disease - 19.64 ± 13.27 16.13 ± 10.58 23.40 ± 11.95 13.25 ± 8.78 18.43±10.7 
Diabetes type - Type II Type II Type II - - 

Insulin 
dependent(Y/N) 

- 7/13 12/8 15/5 - - 

HbA1C % - 6. 5 ± 0.6 7.3 ± 0.9 7.8 ± 1.3 - - 
HTN prevalence % 10 45 80 80 - - 

a DR: diabetic retinopathy, SD: standard deviation, HbA1C: Glycated hemoglobin, HTN: 
hypertension b AA: African American, Ca: Caucasian, A: Asian: SA, South-Asian. ‘-’ defines ‘Not 
Applicable or Available’. 

3.2. Multi-Task Classification 

The SVM classifier performed the classification tasks in a hierarchical manner. To evaluate the 
diagnostic performance in each step or task, we measured the sensitivity and specificity task. For 
each task, the ROC curves were also drawn (Figure 4) and AUCs were calculated. At the first step, 
the SVM identified diseased patients from control subjects with 97.84% sensitivity and 96.88% 
specificity (AUC 0.98). After identifying the diseased patients, the classifier sorted them to two 
groups: DR and SCR with 95.01% sensitivity and 92.25% specificity (AUC = 0.94). After sorting to 
corresponding retinopathies, the SVM conducted the condition staging classification: 92.18% 
sensitivity and 86.43% specificity for NPDR staging (mild vs. moderate vs. severe; AUC = 0.96), and 
93.19% sensitivity and 91.60% specificity for SCR staging (mild vs. severe; AUC = 0.97). The 
sensitivity, specificity and AUC metrics were calculated for the SVM model trained with optimal 
feature combination. Table 3 shows the performance metrics in further details. 
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Table 2. Diagnostic accuracy measured during hierarchical backward elimination. 

Parameters Diagnostic accuracy (%) 

 Control vs. Disease DR vs. SCR NPDR Staging SCR Staging 

BVTS 81.75 81.64 71.26 89.15 

BVCS 79.88 75.59 78.51 71.92 

VPIS 76.49 76.83 78.39 65.46 

BVDSC1 72.11 53.14 62.02 55.19 

BVDSC2 80.02 77.98 75.83 74.98 

BVDSC3 89.01 83.49 82.67 83.67 

BVDDC1 69.35 52.17 64.30 58.02 

BVDDC2 78.53 75.83 78.54 76.20 

BVDDC3 80.69 70.28 77.13 65.59 

FAZ-AS 91.67 83.66 85.02 78.84 

FAZ-AD 88.48 80.09 80.46 76.11 

FAZ-CIS 88.74 81.57 79.34 80.95 

FAZ-CID 89.05 82.65 78.95 75.69 

Optimal feature combination 97.45 94.32 89.60 93.11 

a Superscript S and D denote SCP and DCP respectively. In case of BVD, C1–C3 denote circular area 1,2 and 3 
respectively as shown in Figure 2. 
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Figure 3. Normalized feature trends for different cohorts. (A) Change in disease group (DR and SCR) 
compared to control. (B) Change in SCR compared to DR. (C) Change in moderate and severe NPDR 
compared to mild NPDR. (D) Change in severe SCR compared to mild SCR. Error bars represent 
standard deviation. 

Table 3. Performance evaluation of multi-task classification algorithm using optimal feature 
combination. 

Parameters Classification performance 
 AUC  Sensitivity (%) Specificity (%) 

Control vs. Disease 0.98 97.84 96.88 

DR vs. SCR 0.94 95.01 92.25 

NPDR Staging 0.96 92.18 86.43 
SCR Staging 0.97 93.19 91.60 

a AUC = area under the receiver operation characteristics (ROC) curve. 
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Figure 4. ROC curves illustrating classification performances of the prediction model using optimal 
combination of features. (A) Control vs disease classification. (B) DR vs. SCR classification. (C) NPDR 
staging. (D) SCR staging. 

4. Discussion 

We herein demonstrate the feasibility of a supervised machine learning based AI screening tool 
for multiple retinopathies using quantitative OCTA technology. In a hierarchical manner, this 
diagnostic tool can perform multiple tasks to classify i) control vs. disease, ii) DR vs. SCR, iii) different 
stages of NPDR and SCR, using quantitative features extracted from OCTA images. These OCTA 
images can provide visualization of subtle microvascular structures in intraretinal layers which 
permits a comprehensive quantitative analysis of pathological changes due to systematic retinal 
diseases such as DR and SCR. Morphological distortions such as impaired capillary perfusion, vessel 
tortuosity and overall changes in foveal size and complexity etc. were quantitatively measured and 
compared for identifying onset and progression of DR or SCR in diabetes and SCD patients 
respectively. The SVM classifier model demonstrated a robust diagnostic performance in all 
classification tasks. The classification model also utilized a backward-elimination strategy for 
choosing an optimal combination of OCTA features for getting the best diagnostic performance with 
highest efficiency. Proper implementation of this AI-based tool in primary care centers would 
facilitate a quick and efficient way of screening and diagnosis of vision impairment due to systematic 
diseases. 

For any screening and diagnostic prediction system, sensitivity is a patient safety criterion [24]. 
The AI-based tool’s major role is to identify patients prone to vision impairment due to retinopathies. 
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In the control vs disease classification task, the 94.84% sensitivity of our system represents the 
capability to identify individual eyes with retinopathies (DR and SCR) from a general pool of control, 
DR and SCR eyes. Furthermore, the system can identify patients with DR or SCR with 95.01% 
sensitivity. This is crucial for screening purposes, as those patients should be referred to eye care 
specialists. Similarly, specificity is also an important factor because it will represent the capability of 
detecting subjects that do not require referral to an eye care specialist. When the data pool equals 
millions of patients, this discriminatory capability is crucial for efficient clinical effectiveness in mass-
screening. Our system demonstrates 96.88% specificity which means the control subjects would 
rarely be erroneously referred for treatment of retinopathies; additionally, 92.25% specificity in DR 
vs. SCR classification means the patients with DR or SCR would not be referred with an incorrect 
diagnosis. This is relevant since certain advanced stages of a disease tend to progress faster than 
others and hence require more expedient evaluation and management upon referral. In mass-
screening applications, the AI classification tool will be useful to identify proper referral for patients 
with systematic diseases (i.e., diabetes or SCD) and avoid unnecessary referral for patients who do 
not need specialized care at that time point. 

Our study demonstrated that an optimal combination of OCTA features can achieve maximum 
diagnostic accuracy for all classification tasks. As supported by results from Table 2 and Figure 3, we 
can observe that, in all performance metrics, the classification model trained with optimal feature 
combination demonstrated better diagnostic proficiency compared to the model trained with 
individual features or combination of all features. The OCTA features analyzed in this study 
represent vascular and foveal distortions in retina due to retinopathy from both superficial and deep 
layers as well as localized circular regions in the retina (BVD). Out of all these OCTA features, the 
feature selection strategy identified the most sensitive features for each classification tasks to 
significantly distinguish different cohorts. The high diagnostic accuracy of the SVM classifier trained 
with optimal feature combination highlights the importance of the most relevant feature selection in 
automated classification. Few features that showed significance in the univariate analysis 
(Supplementary Tables) were not selected in the final set of optimal features. This suggests a contrast 
between clinical applicability and overall difference of OCTA features among different patient 
groups. Ashraf et. al. [19] observed a similar phenomenon when using feature selection for 
automated staging of DR eyes. In all the classification tasks, the most sensitive features also had low 
correlation amongst themselves. Figure 5 illustrates a scatter plot showing correlation analysis for 
DR vs. SCR classification. We can observe that only FAZ parameters had positive correlation with 
each other; BVT and BVD both were not significantly correlated with FAZ parameters (Spearman’s 
rank test, p > 0.05), suggesting that all the features provided different pathological aspects of the 
diseased retina. Therefore, the four optimal features were objective for identifying DR or SCR 
associated distortions and their combination yielded strong classification performance. 
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Figure 5. Correlation analysis among four most sensitive features. The scatter plot also shows the 
distribution of control, DR and SCR patient data for different feature combination. 

The optimal OCTA features selected by the AI classification tool have been previously shown in 
the literature to be useful in quantitative analysis studies [25–35]. Both BVD and FAZ parameters 
(FAZ-A and FAZ-CI) have been shown to be significant in identifying DR stages [19,33,35,36]. 
Tortuosity metric, BVT is also an established predictor for SCR progression. In two separate studies, 
we previously demonstrated an SVM classifier for automated staging of DR groups (mild, moderate, 
severe) [5] and SCR groups (stage II and III) [20]. In our DR study, the most sensitive OCTA feature 
was observed to be BVD while for SCR, it was BVT and FAZ. These sensitive OCTA features are also 
selected to be included in the optimal feature set by the backward elimination technique in our 
current study for different classification tasks. Our current study, therefore, supports our previous 
findings and also demonstrates the clinical importance of identifying most sensitive features for 
different retinopathies. Furthermore, the optimal features included measurements from both SCP 
and DCP. Previous OCTA studies [19] including our recent studies [5,23] have suggested that the 
onset and progression of DR or SCR in diabetes or SCD patients affect both the retinal layers. By 
choosing optimized features from SCP and DCP, the AI-based model ensured representation of layer 
specific distortions due to retinopathies. 

For practical implementation of any AI-based tool in mass-screening at a clinical setting, a major 
challenge is the computation time required for overall feature extraction, optimization and diagnostic 
prediction. Our AI-based screening tool required only 4–6 seconds to extract features from each 
OCTA image. From the training data, the optimized features were chosen using backward 
elimination which takes approximate 40–50 seconds (done only one time) depending on the size of 
the dataset. After the training of the SVM classifier is completed, it takes 8–10 seconds for classifying 
the testing database used in this study. If new data is included for diagnosis prediction, it takes only 
1–2 seconds per OCTA image to use the trained model to classify control, DR or SCR eyes. However, 
at this point the AI-based tool is implemented in MATLAB (Mathworks, Natick, MA, USA), a 
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separate software not integrated in the OCTA imaging device (Angiovue from Optovue, Fremont, 
CA, in our case). Once the technology is integrated into the interface of the OCTA device, the users 
can view real-time prediction as soon as the OCTA image is captured in retina clinics. The diagnostic 
accuracy can be enhanced even further if the patient history or clinical information is integrated into 
the screening tool. 

Limitations of this study include relatively modest sample size for each of cohort and single 
imaging center. In future studies, we plan to include multiple imaging centers and a much larger 
OCTA database to test the robustness of our AI screening tool for practical implementation in retina 
clinics. Furthermore, we relied on the segmentation provided by the clinical device to identify the 
images from SCP and DCP. Thus, there is a possibility of segmentation error. The potential motion, 
projection artifacts in OCTA and error in reconstruction of OCTAs from SD-OCT volume data were 
few other limitations. However, we attempted to minimize the effect of these errors and artifacts in 
our study by excluding the images with severe artifacts, segmentation errors and patients with 
macular edema. 

5. Conclusions 

In conclusion, we present a supervised machine learning based multi-task AI classification tool 
that uses an optimal combination of quantitative OCTA features for objective classification of control, 
DR and SCR eyes with excellent diagnostic accuracy. Using the feature selection strategy, the 
classifier selected BVDSC3, FAZ-AS and FAZ-CID for control vs. disease classification; BVTS, BVDSC3, 
FAZ-AS, and FAZ-CID for DR vs. SCR classification; BVDSC3 and FAZ-AS for staging of NPDR severity; 
and BVTS, BVDSC3, and FAZ-CIS for staging of SCR severity. The optimal-feature-combination directly 
correlates to the most significant morphological changes in the retina for each classification task and 
provides the most effective classification performance with least computational complexity. Our 
diagnostic tool performs well with cross-validate data. However, further validation studies using 
larger cohorts of OCTA data from different centers and devices will facilitate future clinical 
implementation of a mass-level AI-based screening tool. 
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