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Supplemental Table S1. Diagnosis of BPPV 

Diagnosis Positional test Nystagmus patterns 

Right posterior 
canal BPPV 

Dix-Hallpike maneuver on 
right side 

Clockwise (CW) torsional- and upbeat-nystagmus 
after a latency of one or few seconds 

Left posterior 
canal BPPV 

Dix-Hallpike maneuver on 
left side 

Counterclockwise (CCW) torsional- and upbeat- 
nystagmus after a latency of one or few seconds 

Right superior 
canal BPPV 

1) Dix-Hallpike on one or
both sides 

2) Lying down or head
hanging 

Predominantly downbeat- and subtle CW- 
torsional nystagmus immediately or after a latency 

of one or few seconds 

Left superior 
canal BPPV 

1) Dix-Hallpike on one or
both sides 

2) Lying down or head
hanging 

Predominantly downbeat- and subtle CCW- 
torsional nystagmus immediately or after a latency 

of one or few seconds 

Right lateral 
canal BPPV 
(geotropic 

type) 

1) Supine roll test

2) Bow and lean test

Geotropic nystagmus after a brief latency or no 
latency 

Stronger geotropic nystagmus on right supine roll 
test or right horizontal nystagmus on bow position or 

left horizontal nystagmus on lean position 

Left lateral 
canal BPPV 
(geotropic 

type) 

1) Supine roll test

2) Bow and lean test

Geotropic nystagmus after a brief latency or no 
latency 

Stronger geotropic nystagmus on left supine roll test 
or left horizontal nystagmus on bow position or right 

horizontal nystagmus on lean position 

Right lateral 
canal BPPV 
(ageotropic 

type) 

1) Supine roll test

2) Bow and lean test

Ageotropic nystagmus after a brief latency or no 
latency 

Weaker ageotropic nystagmus on right supine roll 
test or left horizontal nystagmus on bow position or 

right horizontal nystagmus on lean position 

Left lateral 
canal BPPV 
(ageotropic 

type) 

1) Supine roll test

2) Bow and lean test

Ageotropic nystagmus after a brief latency or no 
latency 

Weaker ageotropic nystagmus on left supine roll test 
or right horizontal nystagmus on bow position or left 

horizontal nystagmus on lean position 
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Supplemental Text S1. Pre-processing and axis measurement for torsional nystagmus 

A template-matching algorithm with a normalized correlation coefficient was applied to calculate 

differences between patches, which are sliced images of templates with a uniform length, and the 

reference image. Median or mean differences between the reference and patches were calculated 

to produce single values representing overall change. The polarity of the torsional movement was 

determined by summing transient differences over all time points. Except for frames containing 

median and maximum changes, all frames displaying fast or slow movements were removed to 

ensure that our algorithm could successfully determine the overall direction of eye movement in 

each clip. 

Transient and overall velocity 

A transient velocity of nystagmus was calculated by subtracting the current pupil center with 

respect to the reference pupil center. The overall velocity of horizontal and vertical nystagmus was 

determined by a decision amplitude, which is the sum of transient velocity values from all the 

frames. Unlike horizontal, and vertical movements, a transient torsional rotation was measured by 

tracking changes in the iris striations. An iris area was deemed to be an annulus in Cartesian 

coordinate; it can be converted to a rectangle in polar coordinate by the following formula: 

�
𝑥𝑥
𝑦𝑦� = (R − r) �cos 𝜃𝜃

sin𝜃𝜃� 

, where R is the outer radius, and r is the inner radius. After the transformation, the rectangle (Fig 

1g) was divided into several overlapped patches by which we could calculate vertical difference 

or distance samples. These samples may contain outlier values at the top and bottom boundaries, 

which are striation patches around 0 and 2π of the annulus. Aside from them, the template matching 

algorithm can make mistakes as coincidentally there could be similar patterns coming from the 

other arcs in the iris. Thus, a median or mean of distance samples was used to reduce the effect of 
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outliers. 

Since in all three-axis measurements, the velocity of pupil and iris area changes non-linearly over 

time, the differentiation gives the velocity in a certain amount of time. 

𝑣𝑣𝑚𝑚 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, where m represents the axis of the movement, P is the template position of either pupil or iris, 

and t is the time. The changes in velocity of a template over whole time, T, can be formulated by 

the definite integral. 

S = s(T) − s(0) = � 𝑣𝑣𝑚𝑚
𝑇𝑇

0
 

The above integral by which the overall displacement of P can be approximated by the trapezoidal 

rule can be noted as follows: 

�
𝐷𝐷(𝜕𝜕𝑛𝑛−1) + 𝐷𝐷(𝜕𝜕𝑛𝑛)

2

𝑁𝑁

𝑛𝑛=1

∆𝜕𝜕𝑛𝑛 

, where N is the number of frames. D denotes the displacement by given time point t. The 

continuous nystagmus is sampled by a uniform time interval, e.g., frames per second. Thus, the 

above formula can be simplified as follows: 

S ≈
𝐷𝐷(𝜕𝜕0)

2
∆t + �𝐷𝐷(𝜕𝜕𝑛𝑛)

𝑁𝑁−1

𝑛𝑛=1

∆t +
𝐷𝐷(𝜕𝜕𝑁𝑁)

2
∆t 

Given that the initial sample serves as the reference position, thus the first term turns to zero. The 

last term having multiplied by two does not change the overall direction of the nystagmus pattern, 

meaning that it can be ignored. As the time interval is always same in all the videos, the formula 

can be far simpler. 
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S ≈  �𝐷𝐷(𝜕𝜕𝑛𝑛)
𝑁𝑁

𝑛𝑛=1

 

The direction of nystagmus is determined by a fast component, and the velocity below a threshold 

will be discarded. 

Supplemental Text S2.  Deep learning and grid images for training set  

Among 25530 possible combinations on the basis of diagnostic criteria of BPPV, 100,000 grid 

images were randomly sampled for the training datasets. The ‘left’ or ‘down’ direction was 

represented by values ranging from 0 to 127, and the ‘right’ or ‘up’ direction was represented by 

values ranging from 129 to 255. For instance, the right PSC-BPPV is characterized by upbeating 

and clockwise torsional nystagmus for the right Dix-Hallpike test. Thus, to generate a grid image 

representing the right PSC-BPPV, pixel values ranging from 129 to 255 were selected to represent 

the vertical and torsional nystagmus on the Dix-Hallpike test. All other unrelated grid values were 

subsequently grayed out. Right ASC-BPPV is characterized by down-beating and right torsional 

nystagmus when the patient is in the supine head-hanging position or Dix-Hallpike test. 

Nystagmus is also further enhanced during the left Dix–Hallpike maneuver. Thus, to generate a 

grid image representing the right ASC-BPPV, pixel values ranging from 0 to 127 and from 129 to 

255 were selected, respectively on the positional tests. 

Unlike PSC- and ASC-BPPV, the amplitude of direction in samples of LSC-BPPV was lost after 

data normalization. Hence, 16 amplitudes were re-calculated to recover this information. To reduce 

the probability of false predictions, nystagmus amplitudes and direction that were unassociated 

with the relevant BPPV type were grayed out.  For example, variables derived from the supine roll 

test and the bow-and-lean test do not affect the ability of the model to diagnose PSC-BPPV but, 
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instead, increase the odds of making a false prediction. An L2 regularization with a constant value 

of 0.001 was applied to reduce overfitting. Batch normalization was performed before rectified 

linear unit activation. The dropout technique was not used as we did not encounter a significant 

overfitting issue with L2 regularization while training the model. The softmax function was used 

to generate the final output layer, producing a prediction with one-hot encoding.  

A machine learning algorithm extracts features from a given dataset, 𝒟𝒟 = {𝑥𝑥,𝑦𝑦}, where input data 

x is given to predict target labels y. There is unsupervised learning by which the features in x are 

extracted in the way that datasets are given as 𝒟𝒟 = {𝑥𝑥, 𝑥𝑥𝑥}, but, in practice, supervised learning has 

been prevailing. In supervised learning, the training process evaluates errors based on a loss 

function ℒ = (y, ŷ), where ŷ is predicted by the model given input data x. The model parameter, 

𝜃𝜃, changes as training progresses. The training process is an attempt to find an optimal 𝜃𝜃, by which 

the loss is minimized. 

The neural network (NN) is the major structure to build a deep learning model in which neurons 

are connected through non-linear activation functions, σ, from the input to the output layer. 

α = σ(𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏) 

Here, 𝑤𝑤𝑁𝑁 denotes the transient weight values of neurons while b represents the bias terms. By both 

terms, the model parameter is defined as 𝜃𝜃 = {𝑤𝑤, 𝑏𝑏}. The number of hidden layers, N, between the 

input to the output layer, represents how deep the NN is. The activation of the output layer is 

dependent on the application, e.g., linear activations for a regression, logistic activations for a 

binary classification, and softmax activations for a multi-class classification. Recently, the cost or 

loss optimization has been often done by Adam, adaptive moment estimation 23, optimizer instead 

of a stochastic gradient descent algorithm. The term stochastic indicates that the training data are 

split into a set of mini-batches, and randomly shuffled before feeding to the input layer. 
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In an NN for multi-class classifications, the output layer is mapped to a posterior distribution over 

classes as follows: 

P(Y|X; w, b) =
𝑒𝑒𝑤𝑤𝑇𝑇𝑥𝑥+𝑏𝑏

∑ 𝑒𝑒𝑤𝑤𝑇𝑇𝑘𝑘𝑥𝑥+𝑏𝑏𝑘𝑘

If we assumed a data x being generated independently from an identical distribution, the joint 

probability distribution of data could be obtained by multiplication of individual probabilities, 

which is equal to the likelihood. 

ℒ(θ|𝑋𝑋) = �𝜕𝜕(
𝑘𝑘=1

𝑦𝑦𝑘𝑘|𝑥𝑥𝑘𝑘) 

Applying the logarithm function to the original formula changes multiplications to summations, 

and reduces exponential terms, leading to simpler calculus of optimization. The maximum 

likelihood estimation finds the best-fit parameters or weights given X, and Y. For the negative 

loglikelihood, the minimization would be applied. 

𝒪𝒪(θ) = argmin�−� log (𝜕𝜕(𝑦𝑦𝑘𝑘|𝑥𝑥𝑘𝑘; θ)
𝑘𝑘=1

� 

A set of weights determined by negative loglikelihood minimization were then stored and used to 

predict the diagnosis of BPPV. 

Softmax activation 

Given a dataset X and labels Y, Bayes’ theorem can be applied. 

P(Y|X) =
𝜕𝜕(𝑋𝑋|𝑌𝑌)
𝜕𝜕(𝑋𝑋) 𝜕𝜕(𝑌𝑌) 

Here, P(Y|X)  is posterior probability, 𝜕𝜕(𝑋𝑋|𝑌𝑌)  is likelihood or class-conditional density, 𝜕𝜕(𝑌𝑌)  is 

prior probability, and 𝜕𝜕(𝑋𝑋) is evidence. The prior probability represents what the label distribution 
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is. The likelihood is the probability distribution of X for each label. The posterior probability is the 

distribution of Y given data X. After the marginalization, the evidence can be written as follows: 

P(𝑋𝑋) = �𝜕𝜕(𝑋𝑋|𝑌𝑌𝑘𝑘)𝜕𝜕(𝑌𝑌𝑘𝑘)
𝑘𝑘

 

In a classification problem, the posterior probability is used as a determinant. 

X:𝑌𝑌1 if P(𝑌𝑌1|X) > P(𝑌𝑌2|X) 

X:𝑌𝑌2 if P(𝑌𝑌1|X) < P(𝑌𝑌2|X) 

Since the evidence is constant in both rules, the numerator, which is the multiplication of likelihood 

and prior probability, determines the posterior probability. To simplify the numerator, a logarithm 

function can be used, which is interchangeable with an exponential function. 

𝑚𝑚𝑘𝑘 = ln (𝜕𝜕(𝑋𝑋|𝑌𝑌𝑘𝑘)𝜕𝜕(𝑌𝑌𝑘𝑘) 

P(𝑌𝑌1|X) =
𝜕𝜕(𝑋𝑋|𝑌𝑌1)𝜕𝜕(𝑌𝑌1)

𝜕𝜕(𝑋𝑋|𝑌𝑌1)𝜕𝜕(𝑌𝑌1) + 𝜕𝜕(𝑋𝑋|𝑌𝑌2)𝜕𝜕(𝑌𝑌2) 
=

𝑒𝑒𝑚𝑚1

𝑒𝑒𝑚𝑚1 + 𝑒𝑒𝑚𝑚2
=

1
1 + 𝑒𝑒𝑚𝑚2−𝑚𝑚1

The log odds, M, which is a decision boundary value, can be defined. 

M = −(𝑚𝑚2 −𝑚𝑚1) = ln �
𝜕𝜕(𝑋𝑋|𝑌𝑌1)𝜕𝜕(𝑌𝑌1)
𝜕𝜕(𝑋𝑋|𝑌𝑌2)𝜕𝜕(𝑌𝑌2)�

 

For k-class classification problems, the posterior probability of class 1 can be derived from the 

Bayes’ theorem as follows: 

, 

P(𝑌𝑌1|X) =
𝜕𝜕(𝑋𝑋|𝑌𝑌1)𝜕𝜕(𝑌𝑌1)

𝜕𝜕(𝑋𝑋|𝑌𝑌1)𝜕𝜕(𝑌𝑌1) + 𝜕𝜕(𝑋𝑋|𝑌𝑌2)𝜕𝜕(𝑌𝑌2) + ⋯+  𝜕𝜕(𝑋𝑋|𝑌𝑌𝑘𝑘)𝜕𝜕(𝑌𝑌𝑘𝑘) =
𝑒𝑒𝑚𝑚1

∑ 𝑒𝑒𝑚𝑚𝑘𝑘𝑘𝑘

Finally, we can obtain the softmax regression function. 

P(Y|X) =
𝑒𝑒𝜃𝜃𝑖𝑖𝑥𝑥

∑ 𝑒𝑒𝜃𝜃𝑘𝑘𝑥𝑥𝑘𝑘𝑘𝑘

, where i indicates the class number. 


