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Abstract: Background: Diagnosis of benign paroxysmal positional vertigo (BPPV) depends on the
accurate interpretation of nystagmus induced by positional tests. However, difficulties in interpreting
eye-movement often can arise in primary care practice or emergency room. We hypothesized that
the use of machine learning would be helpful for the interpretation. Methods: From our clinical data
warehouse, 91,778 nystagmus videos from 3467 patients with dizziness were obtained, in which
the three-dimensional movement of nystagmus was annotated by four otologic experts. From each
labeled video, 30 features changed into 255 grid images fed into the input layer of the neural network
for the training dataset. For the model validation, video dataset of 3566 horizontal, 2068 vertical,
and 720 torsional movements from 1005 patients with BPPV were collected. Results: The model had
a sensitivity and specificity of 0.910± 0.036 and 0.919± 0.032 for horizontal nystagmus; of 0.879 ± 0.029
and 0.894± 0.025 for vertical nystagmus; and of 0.783± 0.040 and 0.799± 0.038 for torsional nystagmus,
respectively. The affected canal was predicted with a sensitivity of 0.806 ± 0.010 and a specificity of
0.971 ± 0.003. Conclusions: As our deep-learning model had high sensitivity and specificity for the
classification of nystagmus and localization of affected canal in patients with BPPV, it may have wide
clinical applicability.
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1. Introduction

Benign paroxysmal positional vertigo (BPPV) is characterized by brief recurrent vertigo with
positional nystagmus triggered by a change in head position with respect to gravity. Therefore,
a diagnosis of BPPV is based largely on the clinical features and patterns of nystagmus provoked by
specific positional maneuvers, such as those in the Dix–Hallpike test and the supine roll test [1–4].

Large population-based studies revealed that 15–20% of healthy adults have suffered from
dizziness yearly and the complaints annually account for about 5.6 million clinic visit in the United
States [5,6], wherein BPPV was estimated the most frequent vestibular disease with an overall lifetime
prevalence of 2.4% [7]. We concerned the majority of patients with BPPV visit either an emergency room
or a primary care practice before they are referred to a neurotology specialist, wherein 65% of these
patients undergo unnecessary diagnostic procedures, such as radiographic examination, even though
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the examination of nystagmus is critical to diagnose BPPV [8]. In addition, inappropriate treatment
due to delay of diagnosis lead to a higher risk of falling or reduced physical activity in daily life [2,9].
Thus, given the notable prevalence, inappropriate interventions in patients with BPPV could be the
leading cause financial burden of heath care system.

In recent years, machine-learning algorithms have been used to develop innovative diagnostic
systems for medical image analysis [10]. For instance, the Inception V3 model (Google LLC, Menlo Park,
California, USA) uses a mixed neural network of sub-convolutional neural network (CNN) structures to
predict severity in cases of diabetic retinopathy, performing as well as human experts [11]. Interestingly,
promising results have also been obtained by using deep learning to annotate scenes or detect
spatiotemporal differences within videos [12], suggesting that deep-learning algorithms may be able
to classify nystagmus patterns with spatiotemporal characteristics. Therefore, we hypothesized the
diagnostic support system using machine leaning would be helpful when interpreting eye movements
with spatiotemporal characteristics.

BPPV is highly prevalent and diagnosing the BPPV or classifying affected canal of BPPV can be
challenging in primary care practices. Additionally, when considering detailed examinations of eye
movements have greater sensitivity than neuroimaging for differentiating central lesions in patients
with isolated vertigo [13], the diagnostic support system for detecting eye movements might have
wider application in emergency units as well.

In this study, using an extensive set of nystagmus cases, we trained our deep-learning algorithm to
identify three-dimensional eye movements and confirm involved semicircular canal of BPPV, and then
validated the diagnostic performance of the model using clinical cases.

2. Methods

2.1. Data Collection

To develop our algorithm, we reviewed the medical records of 90,451 patients who underwent
the vestibular function test using infrared video goggles between January 2006 and February 2017.
From these records, we selected 91,778 video clips recorded positional nystagmus from 3467 patients who
reported symptoms of vertigo; the clips, which were reviewed by four otology experts, were classified
according to a pattern of three-dimensional eye movements (horizontal, vertical and torsional) induced
by ten positional tests, including bow and lean, lying down, the supine roll, head hanging, and the
Dix–Hallpike test. All video clips were deidentified in clinical data warehouse, and an exemption was
obtained from the institutional review board (Figure 1).



J. Clin. Med. 2019, 8, 633 3 of 10

Figure 1. Data collection flow. Electronic medical records (EMRs) of 90,451 patients were filtered
by keywords “vestibular function tests” and the video-clips recorded nystagmus were inspected by
experts to obtain diagnostic labels for each patient. Among video-clips, those recorded nystagmus with
typical movement on three axes were selected by experts and were used to create nystagmus directions
for feature extraction (labels). Video clips of BPPV patients were used to generate the validation set for
deep learning model. Grid images were randomly sampled using feature extraction, and the new set
was split into training set and test set before training the model.

2.2. Preprocessing and Axis Measurement on Eye Movement

Individual eye movements from each video clip were scored as a vector sum of three-dimensional
rotations in the horizontal, vertical, and torsional directions. The center of the pupil was tracked
with an algorithm based on the center of gravity [14]. The circle Hough Transform was applied to
detect ellipse-shaped pupils and identify eye-blinking [15]. If a pupil was found, edge-detection
and ellipse-fitting algorithms were used to localize the center of the pupil. The directions of the
horizontal and vertical movements were determined by the sum of the transient velocity, as previously
described [14,16,17]. The center of the pupil in the first frame of each video clip was used as the reference.

Torsional changes were measured by cross-correlating the gray-level distributions derived from
two sequential video frames along an arc of the iris [14]. Each pixel in the iris striations was projected
to polar coordinates, thus converting a rotational movement to a linear metric. The projected iris image
from a previous frame was used as the reference (Figure 2f), and the current image was used as the
template (Figure 2g). Details of the calculations of transient and overall velocities can be found in
the Supplemental Text S1. The algorithm determines whether the patient is normal by comparing
the overall velocities with threshold values. If a normal state is detected, the algorithm will instantly
terminate the process.
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Figure 2. Image processing order. (a) Original frame, (b) circle Hough Transform followed by edge
detection, (c) binarization by a threshold value, (d) pupil center and pupil area determined by ellipse
fitting, (e) iris area selected, (f) iris image from the previous frame (reference image) after polar
transformation (rotated 90◦ counterclockwise), and (g) iris image from the current frame (template
image) with overlapping patches (rotated 90◦ counterclockwise).

2.3. Training Datasets for Prediction of the Affected Canal in BPPV Cases

We represented hand-crafted features of amplitude and direction of nystagmus as a grid image,
which were obtained from the previous image processing stage and are fed to a simple 2D-CNN.
Although we have changed the initial convolutional and long short-term memory (LSTM)-based fusion
model to a simpler 2D-convolutional form, the core model can be replaced with a fully connected
network. The model was built by Keras package [18] in python and tuned by changing depths of
convolutional layers (1–12), the number of base neurons (2–512), and the number of random grid
images (1000–1,000,000). We chose an 80:20 split for the training data. All incidence of different types
of nystagmus in the training and test datasets were set to 12.5%, meaning that the number of incidence
is equal for eight BPPV types. For example, if we selected 10,000 for the number of random grid
images, there would be 10,000 training images and 1250 validation images for each BPPV type. In total,
there would be 80,000 and 10,000 validataion images for eight BPPV types (Figure 3).

A grid image consisted of thirty rectangles (grids) (The columns of the grid image denote the
results of ten positional test for BPPV, and the rows represent three axes movement of nystagmus;
3-demensional vector of nystagmus × 10 positional tests), each of which represented the amplitude of
nystagmus. The amplitudes were converted to pixel values ranging from 0 to 255 and overall nystagmus
amplitude from the video-dataset was adjusted to <1000, then normalized to 255. Each image was
filled by gray pixels (value 128) or values randomly sampled from the univariate Gaussian distribution
specific to a BPPV type. Details of the deep learning model using grid images for diagnsosis of BPPV
can be found in the Supplemental Text S2 and Video S1.

Figure 3. The convolution neural network architecture used to build the model for diagnosing benign
paroxysmal positional vertigo (BPPV). From each video, 30 features were extracted using an algorithm
to measure eye movement along three axes. These features were used as model inputs. In the model,
a convolution layer, a batch-normalization layer, and a rectified linear unit activation layer were
sequentially connected. The fully connected layer then employed the softmax function to diagnose
BPPV types. (R = right, L = left, PC = Posterior semicircular canal, LC = Lateral semicircular canal,
AC = Anterior semicircular canal).
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2.4. Diagnostic Algorithm for BPPV and Test Datasets

The diagnosis of BPPV was based on a typical vertigo presentation that was associated with
nystagmus induced by excitation of the semicircular canals by positional tests: torsional and upbeat
nystagmus was induced by the Dix–Hallpike maneuver, which excites the posterior semicircular canal
(PSC); horizontal nystagmus (geo- and ageotropic) was induced by the supine roll test, which excites
the horizontal semicircular canal (HSC); and torsional and downbeat nystagmus was induced by the
Dix–Hallpike on one or both side, or head-hanging test, which excites the anterior semicircular canal
(ASC). Model validation for detecting nystagmus patterns and affected canals was conducted using
video clips consisting of 3566 horizontal, 2068 vertical, and 720 torsional movements from 1005 patients
with BPPV labeled by the otologic experts based on diagnostic criteria in Supplementary Table S1.
The datasets for validation were selected with similar proportions of PSC, HSC and ASC BPPV as
much as possible from our clinical data warehouse to avoid biased evaluation.

2.5. Statistical Analyses

Reference standards were set by the otologic experts. To evaluate model performance, we employed
a one-vs.-rest multi-class strategy, in which the model regards a sample in one class as positive and all
the others as negative. Confusion matrices were used to assess the overall accuracy of the model with
the following formulae:

Accuracy = (TP + TN)/(TP + FP + TN + FN)
Precision = TP/(TP + FP)
Sensitivity = TP/(TP + FN)
Specificity = TN/(TN + FP)
False positive rate (FPR) = 1 − Specificity

F1 score =
(1+β2)×Precision×Sensitivity
β2×Precision+Sensitivity

where TP = true positive, TN = true negative, FP = false positive, FN = false negative, and β = 1.

The micro-average of each metric was calculated by summing up individual TPs, FPs, TNs,
and FNs of the different sets of predictions. By contrast, the macro-average was the mean of individual
metrics. The non-information rate (NIR) is the rate of the most frequent class in the test dataset. Thus,
NIR was used to determine the baseline accuracy of the model, as classifiers predicting the major
class would have high accuracy if some datasets had a class imbalance. The one-tailed binomial test
was used to determine if model accuracy were greater than the NIR. The area under the receiver
operating characteristic curve (AUROC) was calculated to measure the impact of changes in cutoff

values on prediction probability and model performance. Values were cross-validated and displayed
as mean ± 95% confidence interval.

3. Results

3.1. Model Performance in Detecting Nystagmus Types

Model validation for detecting nystagmus patterns was conducted with video clips consisting
of 3566 horizontal, 2068 vertical, and 720 torsional movements from 1005 patients with BPPV.
Model AUROCs for horizontal, vertical, and torsional movements were 0.966, 0.952, and 0.853,
respectively (Figure 4). When overall torsion was calculated using me an sample distance, the AUROC
was 0.807 due to outlier effects. The sensitivity values were 0.910 ± 0.036 and 0.879 ± 0.029 for
horizontal and vertical movements, respectively. The sensitivity of torsion detection was the lowest,
at 0.783 ± 0.040. This low sensitivity may have resulted from the low pixel resolution of iris patterns,
similar patterns in other iris areas, and errors that had accumulated during template matching.
The specificity values for horizontal, vertical, and torsional movements were 0.919± 0.032, 0.894 ± 0.025,
and 0.799 ± 0.038, respectively.
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Figure 4. The receiver operating characteristic curve (ROC) of model performance in classifying
nystagmus types after model training. The areas under (a) the ROCs for measuring horizontal and
vertical nystagmus were 0.966 and 0.952, respectively, and the area under (b) the ROC for measuring
torsional nystagmus was 0.853. When overall torsion was calculated using mean sample distance,
the area under of the ROC was 0.807 due to outlier effects.

3.2. Model Performance in Identifying the Canal Affected by BPPV

Our trained model was used to predict the semicircular canal affected by BPPV in each case in the
validation dataset. Model performance is summarized in Table 1. In comparison to the data annotations,
our model had a macro-average AUROC of 0.901 ± 0.008 and a micro-average AUROC of 0.901 ± 0.007,
indicating that model performance was excellent (Figure 5). The accuracy of the deep-learning model
was 0.800 ± 0.008, which is significantly higher than the NIR of 0.168 (p value < 0.001).

Figure 5. The receiver operating characteristic curve (ROC) of model performance in predicting the
canal affected by benign paroxysmal positional vertigo (BPPV) after model training. The macro-average
area under the ROC (AUROC) was 0.901 ± 0.008, and the micro-average AUROC was 0.901 ± 0.007,
suggesting that our model performed well in identifying which canals were affected in BPPV patients.
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Table 1. Model sensitivity and specificity in diagnosing types of benign paroxysmal positional vertigo
(BPPV) after 10-fold cross-validation using nystagmus videos of 1005 patients.

Affected Canal Precision Sensitivity Specificity F1-score N

R) PSC-BPPV 0.888 ± 0.014 0.560 ± 0.013 0.985 ± 0.002 0.686 ± 0.009 179
L) PSC-BPPV 0.753 ± 0.007 0.882 ± 0.005 0.952 ± 0.002 0.813 ± 0.005 144
R) geotropic LSC-BPPV 0.837 ± 0.009 0.916 ± 0.007 0.970 ± 0.002 0.875 ± 0.007 146
L) geotropic LSC-BPPV 0.771 ± 0017 0.941 ± 0.008 0.982 ± 0.002 0.847 ± 0.010 61
R) ageotropic LSC-BPPV 0.800 ± 0.012 0.957 ± 0.006 0.967 ± 0.003 0.871 ± 0.007 122
L) ageotropic LSC-BPPV 0.853 ± 0.010 0.934 ± 0.003 0.973 ± 0.002 0.891 ± 0.006 142
R) ASC-BPPV 0.775 ± 0.031 0.614 ± 0.015 0.986 ± 0.003 0.685 ± 0.015 73
L) ASC-BPPV 0.707 ± 0.022 0.663 ± 0.014 0.956 ± 0.005 0.684 ± 0.008 138
Average/Total 0.798 ± 0.015 0.808 ± 0.009 0.971 ± 0.002 0.794 ± 0.008 1005

R: right, L: left, PSC: posterior semicircular canal, LSC: lateral semicircular canal, ASC: anterior semicircular canal,
N: number of samples.

4. Discussion

The diagnosis of acute vertigo is thought to be reliant on clinical features and analysis of eye
movements. Detailed examinations of eye movements have also been shown to have greater sensitivity
than neuroimaging for the purpose of differentiating early phase central lesions in patients with
isolated vertigo [13]. Thus, we set the present work in the context of these initiatives. To do this,
we focused on classifying eye movements using a deep-learning model and collated video clips of
nystagmus from patients with BPPV, as it is the most common vestibular disease and the different
types of nystagmus—horizontal, vertical, and torsional—are clearly observed.

Additionally, our approach could provide a substantial progress in public health care system
because patients with BPPV frequently suffer from impaired quality of life due to delays in diagnosis or
treatment [19] and the delays may occur when BPPV patients visit primary care practice or emergency
departments even though the clinical treatment guidelines for BPPV are well-established [2,4,20,21].
In particular, only 10–20% of patients eventually receive canalith repositioning therapy [7,22],
which suggest an automated diagnostic support system that classifies nystagmus types based on our
initial idea would also be beneficial for primary care practice.

Model validation produced a sensitivity of 0.910 ± 0.036 and a specificity of 0.919 ± 0.032
for horizontal movement and a sensitivity of 0.879 ± 0.029 and a specificity of 0.894 ± 0.025 for
vertical movement, suggesting acceptable model performance for nystagmus screening. However,
detection of torsional movement by the model had lower sensitivity and specificity, at 0.783 ± 0.040
and 0.799 ± 0.038, respectively. This result may have been due to the low pixel resolution of iris
patterns, similar patterns in other iris areas, and errors that accumulated during template matching.
Sensitivity and specificity may be improved if the model were trained and validated using data from
high-resolution video goggles.

Methods for recording nystagmus using videonystagmography have been proposed
previously [23–26]. However, our study goes beyond recording nystagmus and directly provides
a method for classifying nystagmus types using a deep-learning architecture.

We have initially tried to train a deep learning model of mixed convolutional and LSTM blocks,
which are common in modelling action recognition tasks. The problem was that any spatio-temporal
features of nystagmus had not been captured by different depth and combination of hidden layers.
As a note, the fusion model was not better than random guesses in detecting the horizontal and vertical
direction of nystagmus, thereby it could not determine the torsional counterpart as well. In turn,
we decided to change the fusion model to a simpler form with a hand-crafted feature detector.

In another aspects, our work is superior to current technology of videonystagmography in that
our algorithm could be embedded in any device that can record eye movement. Considering that eye
tracking programs have been developed as a standard platform for a new generation of smartphones
or laptops, our works can unlock the potential of mobile health technology.
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In terms of predicting the affected canal in BPPV patients, the macro-average AUROC was
0.901 ± 0.008, and the micro-average AUROC was also 0.901 ± 0.007. However, because the accuracy
of detecting torsional movements strongly affects the accuracy of diagnoses of PSC- and ASC-BPPV,
the model sensitivity values for identifying PSC- and ASC-BPPV were relatively low. Additionlly,
the model sensitivity differed between the right and left PSC-BPPV, with right PSC-BPPV misdiagnosed
as left PSC-BPPV in 31.83 ± 1.20 cases. This may have resulted from errors in direction detection.
Nevertheless, because horizontal and vertical nystagmus were detected with high accuracy, the model
performed well in diagnosing cases of LSC-BPPV.

Limitation and Future Research

We note that vestibular diseases other than BPPV were not included in the current model.
Furthermore, our model cannot detect BPPV associated with multiple canals due to the nature of
our datasets. Nevertheless, we expect that, after training with typical BPPV features, our model
will be able to detect BPPV with involvement of multiple canal and atypical positional nystagmus
that is not associated with BPPV. Therefore, as with automated electrocardiogram interpretation,
our model could provide diagnostic support in primary care practices or emergency departments.
In addition, even though our findings were resulted from our single institute, it is expected that the
model can achieve much higher accuracy because our model was trained by random sampling of
whole population of all possible nystagmus patterns may induce by positional test.

Future model refinements would improve the accuracy of the torsional detection by capturing
torsional features with a recurrent neural network. Refining the time-series analysis would also help
with identifying multiple canals affected in BPPV patients. The final end product would be a diagnostic
support system based on deep-learning architecture that would be available in primary care practices
for diagnosing patients with acute vestibular syndrome including BPPV.

5. Conclusions

Our deep-learning model had high sensitivity and specificity for identifying the affected canal
in BPPV patients and for detecting nystagmus types. Further research will focus on validation in
real clinical settings after model refinement. We hope that, if our deep-learning model can accurately
diagnose positional nystagmus associated with BPPV, positional nystagmus that is not associated with
BPPV could also be detected by the model. This would increase the utility of employing an automated
diagnostic support system to examine patients with positional vertigo in primary care practices or
emergency rooms.

6. Patents

Domestic patent (1018984140000), PCT/KR2018/004844, USA patent in progress.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0383/8/5/633/s1,
Table S1: Diagnosis of BPPV, Supplemental Text S1: Preprocessing and axis measurement for torsional nystagmus,
Supplemental Text S2: Deep learning and grid images for training set, Video S1: Diagnostic process using our
deep leaning model and eye measurement algorithms.
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