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Abstract: Medical-image-based diagnosis is a tedious task‚ and small lesions in various medical 

images can be overlooked by medical experts due to the limited attention span of the human visual 

system, which can adversely affect medical treatment. However, this problem can be resolved by 

exploring similar cases in the previous medical database through an efficient content-based medical 

image retrieval (CBMIR) system. In the past few years, heterogeneous medical imaging databases 

have been growing rapidly with the advent of different types of medical imaging modalities. 

Recently, a medical doctor usually refers to various types of imaging modalities all together such as 

computed tomography (CT), magnetic resonance imaging (MRI), X-ray, and ultrasound, etc of 

various organs in order for the diagnosis and treatment of specific disease. Accurate classification 

and retrieval of multimodal medical imaging data is the key challenge for the CBMIR system. Most 

previous attempts use handcrafted features for medical image classification and retrieval, which 

show low performance for a massive collection of multimodal databases. Although there are a few 

previous studies on the use of deep features for classification, the number of classes is very small. 

To solve this problem, we propose the classification-based retrieval system of the multimodal 

medical images from various types of imaging modalities by using the technique of artificial 

intelligence, named as an enhanced residual network (ResNet). Experimental results with 12 

databases including 50 classes demonstrate that the accuracy and F1.score by our method are 

respectively 81.51% and 82.42% which are higher than those by the previous method of CBMIR (the 

accuracy of 69.71% and F1.score of 69.63%). 

Keywords: medical treatment; content-based medical image retrieval (CBMIR); artificial 

intelligence; residual network (ResNet); medical image classification 

 

1. Introduction 

Over the past few decades, computer-aided diagnosis (CAD) tools and techniques have been 

widely adopted for better medical treatment [1,2]. These modern tools support medical experts in 

many areas such as medical diagnosis and treatment for any specific disease or injury. In the current 

era of medical science, many computer-aided tools provide visual information for diagnosis and 

treatment such as magnetic resonance imaging (MRI), X-ray, angiography, computed tomography 

(CT), digital mammography, optical projection tomography (OPT), colonoscopy, ultrasonography, 

optical endoscopy, nuclear medical imaging‚ and positron-emission tomography (PET) [3,4]. These 

various medical imaging modalities provide visual insight into different hidden body organs, thus 

enabling better diagnosis and treatment. Medical image analysis is a challenging task due to the 
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complex structure of body organs‚ and medical experts are required for accurate interpretation [4]. 

To arrive at a sound decision about a serious medical condition, past relevant cases are explored by 

many medical experts. This practice can facilitate better diagnosis and treatment. However, due to 

the enormous number of medical visual records generated by many different imaging modalities, it 

is very difficult and time-consuming to retrieve relevant cases. This problem can be resolved by using 

a computer-based medical image retrieval system (MIRS), which helps medical experts in retrieving 

past relevant cases from previous patients’ databases. 

To develop such a MIRS, image classification is the key challenge due to the existence of highly 

correlated visual features among different classes, which ultimately results in low retrieval 

performance. This problem can be solved by using advanced machine learning tools and techniques 

that may result in better classification performance. Better performance can be achieved by exploring 

hidden features that the human visual system (HVS) finds very difficult to identify. In the past few 

years, significant advances have been made in the area of machine learning and artificial intelligence 

(AI) including deep learning framework [5]. The key idea behind deep learning is analogous to the 

operation of human brain, in which information is also processed through multiple layers of 

transformation [6,5]. 

Deep learning methods have shown significant performance in general content-based image 

retrieval (CBIR) applications [7]. In the past few years, deep learning models have made significant 

contributions in various medical domains [8,9] including brain tumor detection [1], blood flow 

quantification and visualization, diabetic retinopathy (DR), and many cancer detection applications. 

However, these methods are still in the developmental phase for content-based medical image 

retrieval (CBMIR) tasks, due to the rapid growth in medical imaging technology [10]. This paper 

mainly focuses on the analysis of different deep learning models used in medical image classification 

and retrieval. We analyze in depth the performance of the most recent convolutional neural network 

(CNN) models from the following standpoints, by considering: (1) different configuration modes of 

CNN models, (2) feature selection from different layers within a network, (3) training from scratch 

and fine-tuning, and (4) modification of the pre-trained model. In this way, we proposed the best 

CNN model after modifying the existing model to obtain the best classification accuracy. Finally, we 

provide a first pre-trained model for a heterogeneous medical database including the number of 

classes captured by different modalities, which is our main contribution, and we have also made our 

pre-trained model and image indices of experimental images publicly available for other researchers. 

CBMIR is an active area of research with significant applications in routine clinical diagnostic 

aid, medical education, and research. Many solved cases related to different diseases can be stored in 

a picture archiving and communication system (PACS) or in CBMIR systems with comprehensive 

patient record and treatment details. In the future, similar cases can be diagnosed in less time by 

exploring such previous records. In this way, medical experts can save precious time and improve 

diagnosis and treatment. Moreover, CBMIR is also helpful in medical teaching and research areas. 

The rest of the paper is organized as follows: In Section 2, we describe the related studies. Section 

3 summarizes the main contribution of this paper. The proposed CNN-based classification method 

for medical image retrieval is described in Section 4. In Sections 5 and 6, the experimental setup, 

performance analysis, and discussions are presented. Finally, Section 7 concludes our research. 

2. Related Works 

The present era of digital technology has made a significant contribution to medical science. The 

number of medical imaging modalities is growing rapidly with improvements in biomedical sensors 

and high-throughput image acquisition technologies. These devices generate an enormous collection 

of heterogeneous medical images that make a significant contribution to disease analysis and 

treatment. A medical expert can make a better diagnosis related to a similar situation in the past by 

retrieving relevant cases from this enormous collection of medical images. Before the advent of 

machine learning (ML) and AI algorithms, it was considered a tedious task to explore the huge 

multimodal database for getting assistance related to any complex problem. Hence, it is important to 

evolve an efficient MIRS that will support medical experts and thus improve diagnosis and treatment. 
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Conventional text-based image retrieval systems use certain textual tags that images are often 

manually annotated with as search keywords. Due to the enormous collection of heterogeneous 

medical image databases, this manual annotation task is very tedious and time-consuming. In many 

hospitals, the PACS [11] is deployed to manage a very large collection of medical images that is 

compatible with the digital imaging and communications in medicine (DICOM) file format [12]. This 

framework utilizes the textual information stored in the DICOM header for image retrieval; the 

header contains a patient identifier (ID), name, date, modality, body parts examined, etc. This header 

information is lost when a DICOM image is converted into another image format for efficient storage 

and communication such as tagged image file format (TIFF), joint photographic experts group (JPEG), 

portable network graphics (PNG), etc. To resolve this problem, CBMIR systems have been proposed 

by many researchers to assist medical experts. However, these systems are application-specific and 

can store or retrieve a specific type of medical image, e.g., a retrieval system for X-ray images of the 

chest as proposed in [13]. 

Although many researchers have studied the CBMIR by using handcrafted features [14–26], the 

overall performance of the existing systems is still low due to the growing heterogeneous medical 

images of multiclass database and conventional ML techniques. These techniques are unable to 

decrease the “semantic gap,” which is the information lost by converting an image (i.e., a high-level 

representation) into its visual features (i.e., a low-level representation) [27]. Recently, a significant 

breakthrough has occurred in the ML domain with the advent of the deep learning framework, which 

comprises many efficient ML algorithms that can show high-level abstractions in visual data with a 

minimum semantic gap [28]. Ultimately, these layers extract the complex deep features from the 

input data in a fully systematic way. Finally, the deep network learns from these features without 

using other handcrafted features. 

In recent studies, a significant breakthrough in deep learning has been done in the medical 

domain, and they are classified into two categories of single modality-based [29–36] and multiple 

modalities-based methods [28] of imaging. 

As the single modality-based method, a two-stage CBMIR framework is presented for automatic 

retrieval of radiographic images [29]. In the first stage, the main class label is assigned by using CNN-

based features, and in the second stage, outlier images are filtered out from the predicted class on the 

basis of low-level edge histogram features. Another CNN-based system is presented in [30] for 

categorization of interstitial lung diseases (ILDs) patterns by extraction of ILD features from the 

selected dataset. In [31], a convolutional classification restricted Boltzmann machine (RBM)-based 

framework is proposed for analyzing the lung CT scan by combining both generative and 

discriminative representation learning. A CNN-based automatic classification of peri-fissural 

nodules (PFN) is presented in [32], which has high relevance in the context of lung cancer screening. 

In [33], a two-stage multi-instance deep learning framework is presented for the classification of 

different body organs. In the first stage, a CNN is trained on local patches to separate discriminative 

and non-informative patches from training data samples. The network is then fine-tuned on extracted 

discriminative patches for the classification task. A detailed analysis of deep learning in CAD is 

presented in [37]. Three main characteristics (i.e., different CNN architectures, dataset scale, and 

transfer learning) of CNN are explored in this work. A deep CNN model pre-trained on the general 

dataset is then fine-tuned for a large collection of multimodal medical image databases. A fully 

automatic 3D CNN framework to detect cerebral microbleeds (CMBs) from MRI is proposed in [34]. 

CMBs are small hemorrhages near blood vessels whose detection provides deep insight into many 

cerebrovascular diseases and cognitive dysfunctions. In [35], an efficient CNN training method is 

proposed by dynamically choosing negative samples (misclassified) during the training process, 

which shows better performance in hemorrhage detection within a color fundus image. A multiview 

convolutional network (ConvNets)-based CAD system is proposed [36] for detecting pulmonary 

nodules from lung CT scan images. 

As the multiple modalities-based method, a deep-learning-based framework for multiclass 

CBMIR is recently proposed in [28] that can classify multimodal medical images. In this framework, 
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an intermodal dataset that contains twenty-four classes with five modalities (CT, MRI, fundus camera, 

PET, and OPT) is used to train the network. 

The maximum numbers of classes can usually increase the usability of CBMIR system in 

healthcare medical application [28]. In addition, it is reported that a large number of classes can help 

the medical expert in exploring the specific class of disease from a huge collection of medical record 

according to [38] and healthcare professional. Nevertheless, in previous researches, the maximum 

numbers of classes to be dealt with were limited as 31 [20,29], and we increased the numbers of classes 

as 50 in our research. For this purpose, we propose a deep-feature-based medical image classification 

and retrieval framework by using the enhanced residual network (ResNet) for CBMIR of large 

numbers of classes with nine modalities (CT, MRI, fundus camera, PET, OPT, X-ray, ultrasound, 

endoscopy, and visible light camera). The strengths and weaknesses of our proposed and existing 

methods are summarized in Table 1. 

Table 1. Comparison of our proposed and existing methods for medical image classification and 

retrieval. 

Imaging Modalities 

Method 

Number 

of 

Classes 

Strength Weakness 

Single 

modality 

CT 
Pre-trained CNN 

[32] 
2 

Classification 

performance reaches that 

of a human observer 

Classify only lung cancer CT 

scan images rather than 

multiclass images 

X-ray 

CNN + edge 

histogram features 

are selected [29] 
31 

High classification 

performance 

Limited dataset (i.e., 1550 

images) related to 31 classes 

(i.e., 50 images in each class) 

and only 10 images per class 

are selected for calculating 

system performance 

CT 
Deep CNN model 

[30] 
7 

High CAD sensitivity 

performance with less 

computation time 

Only classify infected and non-

infected lung CT scans 

CT 

Two-stage 

multiple instance 

CNN [33] 

12 
High classification 

accuracy 

Limited dataset and number of 

classes 

MRI 

3D CNN-based 

discrimination 

model [34] 

2 High sensitivity 

Only classify infected and non-

infected brain MRI scans (only 

2 classes) 

Fundus 

camera 

CNN + selective 

sampling (SeS) 

[35] 

2 
High average 

classification accuracy 

Uses the reference guide from 

a single expert 

CT 

Restricted 

Boltzmann 

machine (RBM) 

[31] 

5 
High average 

classification accuracy 

Suitable for smaller 

representations learning with 

smaller filters or hidden nodes 

CT 

Multiview 

convolutional 

network 

(ConvNets) [36] 

2 
False positive error is 

reduced 

The CAD sensitivity 

performance should be 

enhanced 

Multiple 

modalities 

CT, MRI, 

fundus 

camera, PET, 

OPT 

Content-based 

medical image 

retrieval system 

(CBMIR) by using 

CNN [28] 

24 
High classification 

accuracy 

- A limited number of 

experimental images 

- Performance was measured 

only by closed-world 

configuration 

CT, MRI, 

fundus 

camera, PET, 

OPT, X-ray, 

ultrasound, 

endoscopy, 

visible light 

camera 

Proposed method 50 

- High classification 

performance for multiple 

modalities data. 

- Number of classes is 

much larger than that in 

the previous work 

Using deeper CNN requires 

more training time 
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3. Contribution 

Our research is novel in the following six ways compared to previous works. The brief 

definitions of the closed-world, open-world, and mixed-world configurations in the 1st contribution 

are as follows. The closed-world configuration means the case that the classes in training are same as 

those used in testing whereas the open-world configuration represents the case that the classes in 

training are different from those used in testing and the classes in testing are unknown. The mixed-

world configuration is the combination of the closed-world and open-world configurations, and it 

means the case that some parts of testing data are not known in training process whereas the others 

of testing data are known in training process. Detail definitions of these three configurations are 

explained in Section 5.3.5. 

- This is the first approach toward classifying the large collection of multiclass medical image 

databases with multiple modalities based on the deep residual network in the closed-world, 

open-world, and mixed-world configurations. Different from our research, most of the previous 

studies [10,28–36] have been conducted only in a closed-world configuration. 

- In general, the problem for classification with larger numbers of classes is more difficult than 

that with fewer numbers of classes. Based on the theories in pattern recognition, the inter-

distance between classes in case of larger numbers of classes becomes smaller than that in case 

of fewer numbers of classes. This increases the possibility of overlapping of data from different 

classes, and consequent classification error is increased [39–41]. It is also experimentally 

confirmed that the previous method [28] shows the accuracy of F1.score as 69.63% with 50 classes 

whereas it presents the accuracy of F1.score as 99.76% with 24 classes [28]. 

- In our proposed medical image classification and retrieval framework, we modified the 

conventional ResNet50 [42] CNN model by replacing its last 7 × 7 average pooling layer with a 

7 × 7 × 2048 convolutional layer. Finally, the number of nodes in the last fully connected (FC) 

layer is also adjusted according to the number of classes in our dataset. 

- We deeply analyze the characteristics of various CNNs for multiclass medical images, and then 

check how a specific CNN structure can influence the classification performance of multiclass 

medical images. 

- We compare the performance of state-of-the-art CNN models, not only through fine-tuning and 

tuning from scratch but also against different handcrafted approaches. Our analysis is more 

detailed, in contrast to previous studies [10,28], which provided only a limited performance 

comparison for a small number of databases. 

- We analyze the performance of a CNN model based on feature selection from the different layers 

of the network. 

- We have made our trained model and image indices of experimental images publicly available 

through [43], so that other researchers can evaluate and compare its performance. 

4. Proposed Method 

4.1. An Overview of the Proposed Approach 

Figure 1 presents a brief flowchart for the classification of medical images by using our modified 

deep residual CNN framework. In the first step, the given medical image was resized into 

224 ×  224 ×  3 for input to our CNN model. The resized image was then passed to a deep residual 

CNN model for feature extraction from the last convolutional layer. In this way, a deep feature vector 

(1 ×  2048) was obtained, which represents the complex hidden structure of the given input image 

(i.e., high-level representation) as a feature vector (i.e., low-level representation). This extracted 

feature vector was compared one by one with the labeled feature vectors in the database by 

measuring the Euclidean distance. Finally, a class label was assigned to the given input image on the 

basis of the minimum distance score. A detailed explanation of our proposed model is provided in 

subsequent sections. 
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Figure 1. Overall procedure of the proposed method for classification. 

4.2. The Structure of our Modified Deep Residual CNN 

In our proposed medical image classification and retrieval framework, we modified the 

conventional ResNet50 [42] CNN model by replacing its last 7 × 7 average pooling layer with a 7 × 7 

× 2048 convolutional layer. The reasons for using 7 × 7 × 2048 convolutional layer are as follows. 

Compared to the classification of general images, the classification of medical images has the 

problems of high inter-class similarity. Therefore, more features which can be useful for the 

classification should be extracted from the CNN. The original ResNet50 [42] obtains the feature map 

of 1 × 1 × 2048 from the previous feature map of 7 × 7 × 2048 by using average pooling layer including 

one filter of 7 × 7, which can cause the loss of useful features. To solve this problem, our revised 

ResNet50 obtained the feature map of 1 × 1 × 2048 from the previous feature map of 7 × 7 × 2048 by 

using the additional convolution layer (Conv6 in Table 2) including 2048 filters of 7 × 7 × 2048, which 

can reduce the loss of useful features. In addition, the filter coefficients of average pooling layer in 

original ResNet50 are fixed ones, whereas the optimal filter coefficients of the additional 

convolutional layer in our revised ResNet50 can be obtained by training. In order to prove this, we 

experimentally compared the accuracies by original ResNet50 [42] using the average pooling layer 

including 1 filter of 7 × 7 with those by our revised ResNet50 using the additional convolution layer 

including 2048 filters of 7 × 7 × 2048. The accuracies by our method are higher than those by original 

ResNet50 [42]. 

Table 2. Layer configuration details of our deep residual convolutional neural network (CNN) 

architecture. 

Layer Name 
Feature Map 

Size 

Number 

of 

Filters 

Kernel Size Stride 

Number 

of 

Padding 

Number of 

Iterations 

Image input layer 224 × 224 × 3      

Conv1 112 × 112 × 64 64 7 × 7 × 3 2 3 1 

Max pool 56 × 56 × 64 1 3 × 3 2 0 1 

Conv2 

Conv2-1 

(1 × 1 Convolutional Mapping) 

56 × 56 × 64 

56 × 56 × 64 

56 × 56 × 256 

56 × 56 × 256 

64 

64 

256 

256 

1 × 1 × 64 

3 × 3 × 64 

1 × 1 × 64 

1 × 1 × 64 

1 

1 

1 

1 

0 

1 

0 

0 

1 

Conv2-2–Conv2-3 

(Identity Mapping) 

56 × 56 × 64 

56 × 56 × 64 

56 × 56 × 256 

64 

64 

256 

1 × 1 × 256 

3 × 3 × 64 

1 × 1 × 64 

1 

1 

1 

0 

1 

0 

2 

Conv3 
Conv3-1 

(1 × 1 Convolutional Mapping) 

28 × 28 × 128 

28 × 28 × 128 

28 × 28 × 512 

128 

128 

512 

1 × 1 × 256 

3 × 3 × 128 

1 × 1 × 128 

2 

1 

1 

0 

1 

0 

1 
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28 × 28 × 512 512 1 × 1 × 256 2 0 

Conv3-2–Conv3-4 

(Identity Mapping) 

28 × 28 × 128 

28 × 28 × 128 

28 × 28 × 512 

128 

128 

512 

1 × 1 × 512 

3 × 3 × 128 

1 × 1 × 128 

1 

1 

1 

0 

1 

0 

3 

Conv4 

Conv4-1 

(1 × 1 Convolutional Mapping) 

14 × 14 × 256 

14 × 14 × 256 

14 × 14 × 1024 

14 × 14 × 1024 

256 

256 

1024 

1024 

1 × 1 × 512 

3 × 3 × 256 

1 × 1 × 256 

1 × 1 × 512 

2 

1 

1 

2 

0 

1 

0 

0 

1 

Conv4-2–Conv4-6 

(Identity Mapping) 

14 × 14 × 256 

14 × 14 × 256 

14 × 14 × 1024 

256 

256 

1024 

1 × 1 × 1024 

3 × 3 × 256 

1 × 1 × 256 

1 

1 

1 

0 

1 

0 

5 

Conv5 

Conv5-1 

(1 × 1 Convolutional Mapping) 

7 × 7 × 512 

7 × 7 × 512 

7 × 7 × 2048 

7 × 7 × 2048 

512 

512 

2048 

2048 

1 × 1 × 1024 

3 × 3 × 512 

1 × 1 × 512 

1 × 1 × 1024 

2 

1 

1 

2 

0 

1 

0 

0 

1 

Conv5-2–Conv5-3 

(Identity Mapping) 

7 × 7 × 512 

7 × 7 × 512 

7 × 7 × 2048 

512 

512 

2048 

1 × 1 × 2048 

3 × 3 × 512 

1 × 1 × 512 

1 

1 

1 

0 

1 

0 

2 

Conv6 1 × 1 × 2048 2048 7 × 7 × 2048 1 0 1 

FC layer 50     1 

SoftMax 50     1 

Classification layer 50     1 

Finally, the number of nodes in the last FC layer is adjusted according to the number of classes 

in our dataset. The modified structure of the CNN with the complete layer configuration is presented 

in Figure 2 and Table 2. 

 

Figure 2. Overview of the proposed deep convolutional neural network (CNN) architecture used for 

feature extraction and classification. 

Our modified deep residual CNN network was made up of multiple residual units that can be 

considered as a basic building block. These residual units included both identity-mapping-based and 

1 × 1 convolutional-mapping-based shortcut connections [42]. The shortcut connection in identity-

mapping-based residual unit mapped the input feature map as it was, without changing its size and 

depth. On the other hand, the shortcut connection in the 1 × 1 convolutional-mapping-based residual 

unit increased the depth of the input feature map. Our deep residual network contained a total of 16 

residual units, in which there were 12 identity mapping units and four convolutional mapping units 

of 1 × 1, as shown in Figure 3. Using more residual units as identity mapping decreases the complexity 
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and training time. Furthermore, both identity and 1 × 1 convolutional shortcut connections make 

information propagation smooth in both forward and backward directions [44]. 

  
(a) (b) 

Figure 3. The residual building block of our modified ResNet50 with (a) identity-mapping-based 

residual unit, and (b) 1 ×  1 convolutional-mapping-based residual unit. 

The detailed layer configuration for our model is given in Table 2. Conv1–Conv6 was the 

convolutional layers stack in which Conv2–Conv5 represent the group of convolutional layers. Each 

individual group comprised multiple residual units including only one 1 ×  1  convolutional-

mapping-based residual unit and multiple identity-mapping-based residual units. The number of 

identity mapping units was different in each group, which is represented by the number of iterations 

in Table 2. In addition, max pool was a subsampling layer that was used to select the maximum value 

in a subregion of the feature map defined by the kernel size. Its main purpose was to reduce the 

feature map size by preserving information on key features. Finally, the FC layer, SoftMax, and the 

classification layer were used to classify the features extracted from the previous convolutional layers. 

4.2.1. Feature Extraction 

The convolutional layer stack was used for feature extraction by applying a traditional 2D 

convolution operation using a different number of filters with different sizes. These filters contained 

learnable parameters that were determined during the training procedure. When convolution was 

applied, the output feature map size changed depending upon the filter size, number of filters, the 

stride values for the horizontal and vertical directions, and the range of filter movement using 

padding options. All these parameters, known as hyperparameters, were defined during the network 

construction phase. Therefore, they were very important for constructing an efficient model. In our 

deep residual CNN, Conv1 had 64 filters of 7 ×  7 ×  3 and it explored the given input image �� of 

224 ×  224 ×  3, in both the horizontal and vertical directions with a stride of two pixel units, and a 

padding of three pixel units in both directions. The max pool layer had one filter of 3 ×  3 pixels 

that explored the output feature map �� of Conv1 in both the horizontal and vertical directions with 

a stride of two pixel units for each input channel, and generated a down-sampled feature map of 

56 ×  56 ×  64. 

Conv2–conv5 was the group of multiple convolutional layers that comprise multiple residual 

units. In each group, there was only one convolutional mapping unit at the start, followed by multiple 

identity mapping units. As given in Table 2, in the first group (Conv2), Conv2–1 presents the first 

convolutional-mapping-based residual unit, consisting of four convolutional layers with filters 

��,�, ��,�, ��,�, ��,�. In this residual unit, the first three and fourth convolutional layers were connected 

in a parallel fashion as shown in Figure 3b. The first three layers performed the convolution operation 

in sequential order for a given input ��  by applying filters ��,�, ��,�, ��,�  and generating the 

intermediate feature map as �(��, ��). The fourth layer converts the given input �� as �(��, ��) 

by applying a 1 ×  1 filter ��,� to equalize the depth size of �� according to �(��, ��). Finally, the 

output feature map ��  of 56 ×  56 ×  256  was obtained by adding �(��, ��)  and �(��, ��) . 

Conv2–2 presents the first identity-mapping-based residual unit including three convolutional layers, 
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as shown in Figure 3a. These three layers further processed the output �� in sequential order by 

applying three different filters ��,�, ��,�, ��,� and generated the intermediate feature map �(��, ��). 

The final feature map �� of 56 ×  56 ×  256 was generated by adding �(��, ��) and the previous 

output feature map ��. Similarly, Conv2–3 was the second identity-mapping-based residual unit, 

which performsed the same operation as in Conv2–2 and generated the feature map ��  of 

56 ×  56 ×  256. 

Similarly, all the other convolutional-mapping-based and identity-mapping-based residual 

units in groups Conv3, Conv4, and Conv5 performed the same operation as in Conv2. The only 

difference was the different number of filters and identity-mapping-based residual units in each 

group. Due to the different number of filters in each group, the input feature map depth also 

increased. Furthermore, the input feature map size decreased by a factor of two after passing through 

each successive group. The reason is that in each group, the first convolutional-mapping-based 

residual unit considers a unit stride of two pixels. In conclusion, each group, Conv3, Conv4, and 

Conv5, generated output feature maps (��, ���, and ���) of 28 ×  28 ×  512, 14 ×  14 ×  1024, and 

7 ×  7 ×  2048, respectively, as shown in Table 2. Finally, the optimal feature vector � of 1 ×  2048 

was obtained after convolving the output ���  of Conv5 with the last convolutional layer Conv6 

using a filter of 7 ×  7 ×  2048. Batch normalization and the rectified linear unit (ReLU) activation 

function were also applied after each convolutional layer on the basis of the mean and standard 

deviation of the data. The final feature vector � was further used as the input to the FC layer. 

4.2.2. Classification 

In our deep residual CNN method, we considered two classification architectures separately for 

both the training and testing phases. The 1st classification architecture used the 50 output nodes of 

classification layer in Table 2. For example, if the 2nd output node of classification layer with one 

input image showed the higher value than those from the other 49 nodes, the input image was 

determined as the class 2. The 1st classification architecture was used only for closed-world 

configuration. 

The 2nd classification architecture determines the class of input image based on the Euclidean 

distance matching with the 2048 features extracted by Conv6 of Table 2. For example, if the distance 

between the 2048 features of input and 2048 mean feature vector of class 3 was the smallest, the input 

image was determined as class 3. The 2nd classification architecture was used for both open-world 

and mixed-world configurations. 

For example, in open-world configuration, the data of C1, C2, … C25 were used for the training of 

CNN whereas those of C26, C27, … C50 were used for testing. Although the data of C26, C27, … C50 were 

not seen during the training, the 25 sets of 2048 mean feature vectors from C26, C27, … C50 were 

calculated and stored at our database in advance (the offline phase of Figures 4) for the Euclidean 

distance matching. For example, in mixed-world configuration, half of the data of C1, C2, … C40 were 

used for training of CNN whereas the other half data of C1, C2, … C40 and the whole data of C41, C42, 

… C50 were used for testing. In this case, the 10 sets of 2048 mean feature vectors from C41, C42, … C50 

were calculated and stored at our database in advance (the offline phase of Figure 4) for the Euclidean 

distance matching. 

The reason is that a variable number of testing classes can be considered in open-world and 

mixed-world configurations as compared to the closed-world configuration. In the closed-word 

configuration, the number of training and testing classes remained the same, and therefore there was 

no need to use a separate classifier for this operational mode. In this way, the FC part of our modified 

CNN model was used during the training phase. In the testing phase, our proposed deep-feature-

based variable node classification (VNC) framework was deployed for class-prediction-based 

retrieval, whereas the feature extraction part remained the same in both the training and testing 

phases. In the training phase, a fully connected part mainly comprised the stack of the FC layer, the 

SoftMax layer, and the classification layer as shown in Figure 2. The FC layer (including the number 

of nodes which is equal to the total number of classes) was followed by the last convolutional layer 

Conv6 of the feature extraction part. The main purpose of this layer was to identify the larger patterns 
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by combining all the features learned by the previous layers across the image. It multiplied the input 

feature vector obtained from Conv6 by a weight matrix and then added a bias vector. The next 

SoftMax layer of the classification part converted the output of the FC layer in terms of probability 

by applying the softmax function [45]. Finally, the classification layer took the output from the 

SoftMax layer and assigned each input to one of the 50 mutually exclusive classes using the cross-

entropy function [45]. 

In the testing phase, the deep-feature-based VNC framework was implemented to classify the 

input query image in all configuration modes (i.e., closed-world, open-world, and mixed-world). A 

simple flow diagram of the proposed VNC framework was represented in Figure 4. There were two 

operational phases in the proposed VNC framework as in any general CBIR system, called the offline 

and online phases. In the offline phase, a database of � mean feature vectors was built from the 

available training dataset. For each individual class, a single mean feature vector was obtained. In 

this way, a set consisting of a total of 50 mean feature vectors was obtained from the entire training 

dataset. In our proposed work, the offline phase was mostly used in the open-world and mixed-world 

configurations in which the reference feature database can be updated for new classes without 

repeating the training process. In the online phase, the classification was performed for a given input 

query image by extracting and comparing its feature vector with the set of mean feature vectors by 

taking the �� -norm. Ultimately, the final class label was assigned on the basis of the minimum 

distance. In this way, efficient class-prediction-based image retrieval was performed by retrieving the 

required images from the selected class label rather than by exploring the entire dataset. 

 

Figure 4. Proposed deep-feature-based variable node classification (VNC) framework. 

5. Experimental Setup and Performance Analysis 

Several experiments were performed to evaluate our deep-feature-based method from various 

perspectives. Different comparisons were made with many deep CNN and handcrafted feature-

based methods. For better performance analysis in a real-world scenario, the settings of the 

experiments were made in three different configuration modes (i.e., closed-world, open-world, and 

mixed-world). In this section, we describe the details of the selected dataset, experimental 

configurations as well as observations, and analysis of the results. 

5.1. Dataset and Experimental Protocol 

In our research, we focused on the classification-based retrieval of medical image having 

multiple classes with multiple imaging modalities. Medical image computing and computer assisted 

intervention (MICCAI) grand challenges share the medical images [46], but most of these images 

were used for the purpose of detection and segmentation instead of classification-based retrieval. 

Therefore, we did not use the benchmark of MICCAI grand challenges, but we categorized 12 

different publicly available databases [47–58] into 50 different classes (i.e., C1 to C50) on the basis of 

different medical imaging modalities, body organs, and disease types. Because our experimental 

images were not collected by us, we cannot make them open to other researchers. Instead, we made 

the websites [47–58] with the image indices of our experimental images and our trained CNN models 

available to other researchers through [43] in order for fair comparisons with our method. 
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In this multimodal dataset, we randomly selected a maximum of 1000 images for each class. In 

this way, a dataset of 45,464 images was selected for 50 different classes in our experiments as shown 

in Figure 5. Figure 6 shows the examples of experimental data of Figure 5 according to the anatomical 

district (row) and imaging modality (column). The challenges in our data were high intra-class 

variance and high inter-class similarity caused by using multiple classes with multiple imaging 

modalities as shown in Figures 7 and 8. We performed two-fold cross-validation by randomly 

dividing the whole dataset into almost 50% training and almost 50% testing. In other words, we used 

half images of �1, �2, �3, … �50 as training and the remaining half of �1, �2, �3, … �50 as testing in 

the closed-world configuration. In case of open-world configuration, we used all the images of 

�1, �2, �3, … �25  as training and those of �26, �27, �28, … �50  as testing. In the closed-world 

configuration, the training dataset mostly contained 500 images per class but in few classes, the 

number of training images was less than 500, which results in the class imbalance problem [59]. To 

avoid this problem, we generated some images by data augmentation using image translation and 

cropping, and in-plane rotation. This data augmentation was performed for only the training dataset. 

 

Figure 5. Examples from each class of total 50 classes. (a-1) Hip computed tomography (CT); (a-2) 

knee CT; (a-3) ultrasound; (a-4) cervix magnetic resonance imaging (MRI); (a-5) 4D lung CT; (a-6) 

head, neck MRI; (a-7) head, neck CT; (a-8) lung CT; (a-9) bladder MRI; (a-10) bladder CT; (b-1) chest 

X-Ray; (b-2) urography CT; (b-3) breast MRI; (b-4) prostate MRI; (b-5) uterus CT; (b-6) rectum MRI; 

(b-7) ovary CT; (b-8) liver MRI; (b-9) liver CT; (b-10) kidney, renal MRI; (c-1) kidney, renal CT; (c-2) 

retina; (c-3) CT topogram; (c-4) pancreas MRI; (c-5) pancreas CT; (c-6) stomach CT; (c-7) colonography 

CT; (c-8) esophagus CT; (c-9) malignant tumors; (c-10) sigmoid colon; (d-1) rectum; (d-2) colon; (d-3) 

breast mammogram; (d-4) caecum; (d-5) duodenal bulb; (d-6) normal esophagus; (d-7) benign tumors; 

(d-8) Crohn’s disease; (d-9) gastric fundus; (d-10) ulcerative colitis; (e-1) upper endoscopy; (e-2) facial 

acne; (e-3) hand, foot allergies; (e-4) brain MRI; (e-5) legs, arms allergies; (e-6) bones X-rays; (e-7) neck 

nerves; (e-8) cardiac MRI; (e-9) shoulder CT; (e-10) ankle CT. 
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Figure 6. Examples of experimental data of Figure 5 according to the anatomical district (row) and 

imaging modality (column). 

A similar data augmentation procedure was adopted in the open-world and mixed-world 

configurations for the training dataset. A detailed description of the training and testing dataset in 

two-fold cross-validation is given in Table 3, and class imbalance details with augmented images are 

shown in Table 4. 

Table 3. Summary of training and testing dataset in two-fold cross-validation (unit: images). 

Configurations Validation 
Training 

Testing Total 
Original Augmented 

Closed-world 
1st fold 22,732 2268 22,732 47,732 

2nd fold 22,732 2268 22,732 47,732 

Open-world 
1st fold 21,870 3130 23,594 48,594 

2nd fold 23,594 1406 21,870 46,870 

Mixed-world 
1st fold 18,435 1565 27,029 47,029 

2nd fold 18,435 1565 27,029 47,029 

Table 4. Class imbalance details with augmented images for the classes which contain less than 500 

images in training (unit: images). 
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Caption Detail 

as in Figure 5 
Class Name 

Class Imbalance Details 

Original Augmented Total Imbalance Ratio (%) 

d-3 Breast mammogram 161 339 500 67.8 

e-6 Bones X-rays 169 331 500 66.2 

e-9 Shoulder CT 455 45 500 9 

e-10 Ankle CT 75 425 500 85 

a-1 Hip CT 400 100 500 20 

a-2 Knee CT 175 325 500 65 

e-2 Facial acne 487 13 500 2.6 

e-3 Hand, foot allergies 238 262 500 52.4 

e-5 Legs, arms allergies 72 428 500 85.6 

All the images from each class were resized to 224 ×  224  and converted into a standard 

bitmap (BMP) file format due to the different size and format of the collected dataset. We used the 

class label provided in the original datasets for supervised learning. Example images from the 

selected classes including actual class labels are shown in Figure 5. 

Figures 7 and 8 show the degree of intra-class variance and inter-class similarity in our collected 

dataset, respectively. A significant intra-class variation occurs among different images of a single 

class as shown in Figure 7. In addition, high inter-class similarity can be observed among different 

classes as shown in Figure 8. For example, in Figure 8b (cervix MRI) and Figure 8f (bladder MRI), a 

significant structural correlation can be observed between these two classes. This high degree of intra-

class variance and inter-class similarity helps to analyze the performance of different models in a 

challenging scenario. 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 7. Selected example images for showing high intra-class variance; (a) chest X-ray in Figure 5b-

1; (b) urography CT in Figure 5b-2; (c) breast MRI in Figure 5b-3; (d) uterus CT in Figure 5b-5; (e) CT 

topogram in Figure 5 c-3; (f) rectum in Figure 5d-1; (g) colon in Figure 5d-2; (h) bones X-rays in Figure 

5e-6. 
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(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 8. Selected example images for showing high inter-class similarity; (a) and (e) hip CT in Figure 

5a-1 and knee CT in Figure 5a-2, respectively; (b) and (f) cervix MRI in Figure 5a-4 and bladder MRI 

in Figure 5a-9, respectively; (c) and (g) benign tumors in Figure 5d-7 and Rectum in Figure 5d-1, 

respectively; (d) and (h) urography CT in Figure 5b-2 and uterus CT in Figure 5b-5, respectively. 

In our research study, all the experiments were performed by using a desktop computer with 

the following specifications: 3.50 GHz Intel® (Santa Clara, CA, USA) Core™ i7-3770K CPU [60] with 

12 GB RAM, and NVIDIA (Santa Clara, CA, USA) GeForce GTX 1070 graphics card [61]. This graphics 

card provides parallel processing capability for both training and testing phase. All the training and 

testing CNN algorithms are implemented by MATLAB R2018b (MathWorks, Inc., Natick, MA, USA) 

[62] on the Windows 10 operating system. 

5.2. Training of CNN Model 

Before starting the training process, all the images in the dataset were resized to 224 ×  224 ×  3. 

In case of images having a single channel such as CT, MRI, X-ray and ultrasound, we made the 3-

channel image by copying the image of the 1st channel into those in the 2nd and 3rd channels. The 

same procedure of copying was performed in case of testing, also. 

Our deep residual CNN was then trained by using the stochastic gradient descent (SGD) 

algorithm [63]. The SGD is the most commonly used algorithm for optimal training of CNNs, and it 

is very efficient in learning of discriminative linear classifiers with a convex loss function. Its main 

purpose is to optimize model learnable parameters such as filter weights and biases by taking the 

derivative of the loss function. In the training process, the correctly labeled data samples are used for 

the extraction of optimal features. These labeled training data samples passed through the feed-

forward stage in the CNN, and then the loss between each actual and desired label is calculated. If 

the loss value was still greater than a certain threshold, the SGD further optimized the loss function 

by updating the parameters. The SGD method split the training dataset into mini-batches, performed 

an iteration for each mini-batch, and then proceeded to learn by defining the time taken for all 

iterations to complete as one epoch. 

The hyperparameters selected for the SGD method in this study were as follows: mini-batch size 

= 10, learning rate = 0.001, learning rate drop factor = 0.1, learning rate drop period = 10, L2 

regularization = 0.0001, and momentum = 0.9. The detailed explanation of each parameter can be 

found in [64]. During the training process, training data samples were shuffled, and the learning rate 

was multiplied by the learning rate drop factor for each 10-epoch period. The initial weights used in 

the FC layer were randomly initialized by using a Gaussian distribution with zero mean and 0.001 

standard deviation, and the biases were initialized to zero. 

Figure 9 shows the training loss and accuracy for each epoch from both folds of cross-validations. 

In all configurations, the loss approaches approximately zero while the training accuracy approaches 

100% after a certain number of training epochs, which shows that our deep residual CNN is 

sufficiently trained with training data. In addition, after performing a number of training experiments 

for different CNN models, the conclusion is that the fine-tuning of our model results in faster 

convergence than with conventional training from scratch. 
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(a) (b) 

Figure 9. Plot for training loss and accuracy: (a) 1-fold cross-validation; (b) 2-fold cross-validation. 

There existed only training and testing data in our experiments, and there was no validation 

dataset. The best CNN model was selected as follows. As shown in Figure 9, during the total epochs, 

all the weights of CNN model (whose training loss and accuracy were respectively lower and higher 

than those of previous model) were updated and stored at each iteration of training. Then, the 

weights of model which showed the minimum training loss and maximum training accuracy was 

finally selected as our CNN model. 

Figures 10a,b visualize the significant differences in the learned filters from the first 

convolutional layer Conv1 of Table 2 after training from scratch and fine-tuning, respectively. The 

learned filters in Figure 10b after fine-tuning were more distinctive as compared to those extracted 

after training from scratch, as shown in Figure 10a, which shows that more useful features for 

classification can be extracted by fine-tuning. 

  
(a) (b) 

Figure 10. Visualization of learned filters from the first convolutional layer in the case of (a) training 

from scratch with random initialization, and (b) fine-tuning with transfer learning. 

5.3. Testing and Performance Analysis 

The performance of the proposed method was evaluated in term of the average accuracy, 

average F1.score, mean average prevision (mAP), and mean average recall (mAR) [65], which were 

calculated as: 

Accuracy =
1

K
�

TP� + TN�

TP� + TN� + FP� + FN�

�

���
 (1) 

F1. score = 2 × 
mAP ×  mAR

mAP + mAR
 (2) 

mAP =
1

K
�

TP�

TP� + FP�

�

���
  (3) 
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mAR =
1

K
�

TP�

TP� + TN�

�

���
 , (4) 

where TP� is the true positive, which denotes the correctly classified number of images from 

class k. FP� is the false positive, which shows the number of images misclassified as class k. TN� is 

the true negative, which indicates the number of images correctly classified as not belonging to class 

k. FN� is the false negative, which denotes the number of misclassified images that actually belong 

to class k. K represents the total number of classes, which equals 50 in our research. 

5.3.1. Comparisons of Classification Accuracies by Proposed Modified Residual CNN with Various 

CNN Models 

To evaluate the performance of the proposed deep CNN-based framework for medical image 

classification, a comparison was made with the most recent deep-learning-based medical image 

classification and retrieval framework [28,66]. In order to make a fair comparison, the performance 

of this existing framework was evaluated for our selected dataset. Our proposed method showed a 

significant performance gain in comparison with [28,66] as shown in Table 5. We also compared the 

performance of our model with the state-of-the-art methods of CNN models [42,66–70]. The main 

target of these comparisons was to evaluate the impact of the existing state-of-the-art CNN models 

in the medical domain. Finally, the impact of transfer learning was explored by training the selected 

CNN models in two different ways. In the first method, all the models were trained from scratch for 

our selected dataset. The experimental results for different baseline models are shown in Table 5 

without using transfer learning. These results confirm that our modified deep residual model showed 

the highest average accuracy, and all other selected models also showed performance that was 

comparable with the existing framework [28]. 

Table 5. Classification performance of proposed and different baseline CNN models after the training 

from scratch (unit: %). 

CNN Model 
Accuracy F1.score mAP mAR 

Fold1 Fold2 Avg. Fold1 Fold2 Avg. Fold1 Fold2 Avg. Fold1 Fold2 Avg. 

AlexNet [28] 71.01 68.41 69.71 71.43 67.84 69.63 72.42 68.21 70.31 70.47 67.47 68.97 

SqueezeNet [66] 73.21 71.43 72.32 74.45 73.79 74.12 76.64 75.50 76.07 72.37 72.16 72.27 

VGG16 [67] 77.38 77.33 77.36 78.01 78.44 78.22 78.83 79.29 79.06 77.21 77.60 77.41 

VGG19 [67] 77.10 77.82 77.46 77.98 78.53 78.25 79.01 79.14 79.08 76.97 77.92 77.45 

GoogLeNet [68,66] 79.94 77.37 78.66 80.90 78.11 79.51 82.39 78.08 80.23 79.47 78.15 78.81 

ResNet101 [42] 81.08 79.16 80.12 81.81 80.54 81.17 82.85 80.87 81.86 80.79 80.20 80.50 

ResNet50 [42] 81.29 79.54 80.42 82.18 80.65 81.41 83.29 80.74 82.01 81.09 80.56 80.83 

InceptionV3 [69] 81.17 79.69 80.43 82.24 81.02 81.63 82.98 81.28 82.13 81.53 80.76 81.14 

InceptionResNetV2 [70] 81.11 80.05 80.58 82.28 81.25 81.77 83.46 81.42 82.44 81.13 81.09 81.11 

Proposed 81.84 79.39 80.62 82.84 80.16 81.50 84.41 80.07 82.24 81.33 80.25 80.79 

In the second method, the impact of transfer learning was explored by fine-tuning the top three 

CNN models on the basis of the results of Table 5 and our modified deep residual model. These 

selected models were already pre-trained by the ImageNet dataset [71]. For transfer learning, the last 

few convolutions and all the FC layers (30% of the layers of the complete network) were fine-tuned 

by our selected dataset, and the filter weights for the initial convolutional layers (70% of the layers of 

the complete network) were optimized by the ImageNet dataset. The results of transfer learning are 

reported in Table 6. It can be observed that our modified deep residual model outperformed the other 

models after applying transfer learning in term of average accuracy, F1.score, mAP, and mAR. 

Table 6. Classification performance of proposed and different baseline CNN models in the case of 

transfer learning (unit: %). 

CNN Model 
Accuracy F1.score mAP mAR 

Fold1 Fold2 Avg. Fold1 Fold2 Avg. Fold1 Fold2 Avg. Fold1 Fold2 Avg. 

InceptionV3 [69] 79.99 79.46 79.72 80.82 80.38 80.60 82.03 80.26 81.14 79.66 80.49 80.07 

InceptionResNetV2 [70] 80.45 78.73 79.59 82.06 79.77 80.92 82.88 79.67 81.28 81.25 79.88 80.56 
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ResNet50 [42] 82.48 79.33 80.90 83.18 80.62 81.90 84.14 80.90 82.52 82.24 80.33 81.28 

Proposed 82.60 80.42 81.51 83.60 81.24 82.42 85.10 81.20 83.15 82.15 81.27 81.71 

Furthermore, a Monte Carlo simulation setup [72] was created to evaluate the robustness of the 

various trained CNN models. A detailed analysis is performed in this simulation setup. The 

performance of each model is iteratively evaluated for a random selection of the testing dataset. In 

each iteration, 20% of the testing images are selected randomly from the testing dataset, and a total 

of 20 iterations are performed for both folds. Finally, we calculate the standard deviation and average 

performance (i.e., accuracy and F1.score) for each model. Figure 11 shows the overall sensitivity 

performance in term of the average accuracy and F1.score. From the plots, we can see that our 

modified deep residual model has the best robustness among all the selected models. The second-

best model is ResNet50, which also shows comparable performance. 

  

(a) (b) 

Figure 11. Sensitivity analysis plot of our proposed and various baseline models in terms of (a) 

average accuracy and (b) average F1.score (unit: %). 

The significance of our modified model was further explored in comparison with the second-

best model, ResNet50 [42], by performing a t-test analysis [73]. Figure 12 shows the t-test performance 

for our modified and the second-best model. The t-test analysis was based on a null hypothesis, in 

which it was supposed that there was no performance difference between our modified model and 

the second-best model. After performing a t-test, the experimental results in Figure 12 show that the 

p-values of accuracy and F1.score for this test were 0.0488 (less than 0.05) and 0.0287 (less than 0.05), 

respectively. These results show that the null hypothesis for the overall average accuracy was rejected 

at a 95% confidence level, which indicates that there was a significant difference between the accuracy 

of our model and that of the second-best model. In addition, the null hypothesis for F1.score was also 

rejected at a 95% confidence level, which demonstrates the effective performance gain of our 

modified model in comparison with the second-best model. 
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(a) (b) 

Figure 12. T-test plot of our proposed and the second-best model (ResNet50 [42]) in terms of (a) average accuracy 

and (b) average F1-Score (unit: %). 

The more detailed classification performance of our modified deep residual model in terms of 

the confusion matrix is shown in Figure 13. It can be observed from these results that there were only 

a few classes that showed a low classification performance, due to the significant structural similarity 

of the different neighboring body sections. For example, class 10 (i.e., bladder CT in Figure 5a-10) 

showed low performance because classes 10, 21 (i.e., kidney, renal CT in Figure 5c-1), and 26 (i.e., 

stomach CT in Figure 5c-6) belonged to neighboring body sections with a significant visual 

correlation. Similarly, the performance of class 4 (i.e., cervix MRI in Figure 5a-4) was also low due to 

structure overlapping with class 9 (i.e., bladder MRI in Figure 5a-9) and class 24 (i.e., pancreas MRI 

in Figure 5c-4). However, the overall performance of our proposed model was good for a 

heterogeneous dataset with a large number of classes. 
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Figure 13. Confusion matrix of the proposed method. The entry in the �-th row and �-th column corresponds to the percentage of samples from class � that were 

classified as class �.
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5.3.2. Comparisons of Classification Accuracies according to the Features from Different Layers 

To investigate whether our modified model can discover the required discriminative features at 

some intermediate layers, we performed additional experiments. The performance of our proposed 

and the second-best model (i.e., ResNet50) was analyzed in these experiments. There were two main 

reasons for comparing our model only with ResNet50 model. The first reason was that both models 

were similar in layer-wise structure with a small difference (i.e., the difference between the 

convolutional layer and average pooling layer as explained at the beginning of Section 4.2). The 

second reason was that all the other models have shown lower performance, which can be seen in 

the previous performance comparisons in Section 5.3.1. 

A total of seven different layers (i.e., Conv2-1, Conv3-1, Conv4-1, Conv5-1, Conv6/AvgPool, FC 

layer, and Classification layer) were considered for extracting the hidden activation features with the 

sizes of 802816; 401408; 200704; 100352; 2048; 50; and 50, respectively. These selected features are 

classified by considering the VNC framework, which we have explained in Figure 4. To make a fair 

comparison, the same hidden activation features are also extracted from ResNet50. Finally, the 

average performance is computed for both models (i.e., the proposed model and ResNet50 [42]), 

which is shown in Table 7. On the basis of the overall performance, we conclude that (1) deeper 

features are better for the classification task, and (2) the extracted features from the last four layers 

(i.e., Conv5-1, Conv6, FC layer, and Classification layer) for our modified model are more 

representative and discriminative in comparison with those from ResNet50. 

Table 7. Performance comparison of our proposed and the second-best model (Resnet50 [42]) on the 

basis of feature extraction from different layers (unit: %) (* in our modified layer, average pooling 

(AvgPool) is replaced by Conv6). 

Layer Name 
Feature 

Dim. 

ResNet50 [42] Proposed 

Accuracy F1.score mAP mAR Accuracy F1.score mAP mAR 

Conv2-1 802816 57.92 58.94 59.39 58.52 57.92 58.95 59.40 58.52 

Conv3-1 401408 61.06 62.54 63.25 61.89 61.07 62.55 63.26 61.90 

Conv4-1 200704 68.70 69.98 70.61 69.36 68.69 69.97 70.60 69.36 

Conv5-1 100352 73.37 75.16 76.06 74.28 74.28 76.27 77.52 75.07 

AvgPool/ 

*Conv6 
2048 79.25 80.26 80.76 79.77 79.89 81.30 82.31 80.34 

FC layer 50 80.17 81.21 81.80 80.63 81.26 82.43 83.33 81.55 

Classification 

layer 
50 80.90 81.90 82.52 81.28 81.51 82.42 83.15 81.71 

5.3.3. Comparisons of Classification Accuracies with or without Principal Component Analysis 

The discriminative nature of our modified method and the second-best method was further 

explored by applying principal component analysis (PCA) [74] as a post-processing step. The features 

of 1 ×  2048  extracted from the last convolutional layer (Conv6 of Table 2) and AvgPool of 

ResNet50 [42] were projected to the eigenspace separately by applying PCA. A total of 2048 

eigenvectors and eigenvalues were obtained. The features obtained after PCA for the testing dataset 

were classified by using our VNC framework. Various PCA features were selected by considering 

the different number of eigenvectors for performance analysis. 

Figure 14 shows the performance of both models according to the number of eigenvectors. On 

the basis of PCA performance as shown in Table 8, we conclude that the classification performance 

of PCA was not as good as when using original high-dimension features (extracted from the last 

convolutional layer Conv6) directly. This shows that the features extracted by our modified model 

are already diverse. In addition, we can find that the overall PCA performance of our modified 

method was also high in comparison with ResNet50, as shown in Table 8. 
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(a) (b) 

Figure 14. Principal component analysis (PCA)-based performance analysis. (a) ResNet50 [42]: 

features selected from the last average pooling layer; (b) proposed model: features selected from the 

last convolutional layer. 

Table 8. Principal component analysis (PCA) performance comparisons of our proposed and the 

second-best CNN model (ResNet50 [42]) (unit: %). 

Option 
ResNet50 (No. of eigenvectors = 170) [42] Proposed (No. of eigenvectors = 160) 

Accuracy F1.score mAP mAR Accuracy F1.score mAP mAR 

With PCA 79.14 79.92 80.14 79.71 80.01 81.32 82.24 80.45 

Without PCA 80.90 81.90 82.52 81.28 81.51 82.42 83.15 81.71 

5.3.4. Performance Comparison with Handcrafted Feature-Based Methods 

The performance of our modified deep residual method was also compared with that of 

conventional handcrafted feature-based methods. For a fair comparison, the same dataset was used 

for all these selected methods. Two known handcrafted feature extraction methods, called LBP [75] 

and the histogram of oriented gradients (HoG) [76], were considered for feature extraction. Finally, 

these extracted features were classified by using four different classifiers (i.e., adaptive boosting 

(AdaBoostM2), multiclass support vector machine (multi-SVM), random forest (RF), and k-nearest 

neighbor (KNN)) for both feature extraction methods. The classification performance of these 

selected feature extractions and classification methods is given in Table 9. 

Table 9. Comparison of classification performance of the proposed method with different handcrafted 

feature-based methods (unit: %). 

Method Classifier Accuracy F1.score mAP mAR 

LBP [75] 

AdaBoostM2 35.94 35.97 36.02 35.91 

Multi-SVM 45.62 45.48 45.38 45.58 

RF 61.36 61.28 61.52 61.05 

KNN 59.71 59.31 59.39 59.24 

HOG [76] 

AdaBoostM2 41.37 41.25 41.94 40.58 

Multi-SVM 65.66 67.47 69.51 65.55 

RF 69.54 70.06 71.32 68.86 

KNN 70.84 70.98 71.69 70.28 

Proposed 81.51 82.42 83.15 81.71 

It is evident that the proposed deep-CNN-based classification method also outperformed the 

various handcrafted feature-based methods. There was a significant performance difference between 

our proposed model (i.e., 81.51%; 82.42%; 83.15%; 81.71%) and the best handcrafted feature-based 

method (i.e., HoG-KNN shows 70.84%; 70.98%; 71.69%; 70.28%) in terms of classification accuracy, 

F1.score, mAP, and mAR, respectively. 
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5.3.5. Closed-World vs. Open-World vs. Mixed-World Configurations 

The performance of different classification models (i.e., CNN-based, or handcrafted feature-

based) can show a significant performance disparity in different configuration modes. Therefore, it 

is important to analyze the performance of a model in all possible working scenarios. In this way, the 

true discriminative nature of a model can be evaluated. Any classification model can be expected to 

work in the following three configuration modes: closed-world, open-world, and mixed-world. Most 

of the previous studies [10,28–36] have been conducted in a closed-world configuration, which 

always shows the best performance in comparison to the other modes. The reason for this is that the 

closed-world configuration is subject to the constraint that all the image categories to be classified in 

the deployment phase are already known and used in the training phase (the classes in training are 

same as those used in testing). On the other hand, the open-world configuration is more challenging 

and is often used in the real environment. In this configuration, the image categories are enrolled 

during the deployment phase rather than during the training phase, after which classification is 

performed (the classes in training are different from those in testing). This configuration mode shows 

the scalable nature of a classification model because the number of image categories can be increased 

in the deployment phase. Finally, the mixed-world mode includes both open-world and closed-world 

configurations. In this configuration mode, the categories to be classified in the deployment process 

may be used during the training phase, and the unseen categories in the training phase can also be 

enrolled in the deployment phase. In this performance analysis part, the scalable nature of our 

modified model was explored for all possible configuration modes. Two-fold cross-validation was 

also performed for both open-world and mixed-world configurations. For each configuration mode, 

the training and testing dataset was divided in a different way. In the closed-world configuration, 

the half dataset of �1, �2, �3, … , �50 was used in training and the remaining half in testing. On the 

other hand, in the open-world configuration, the testing dataset was unseen in the training phase, 

and thus the dataset was divided in 50% training as �1, �2, �3, … , �25  and in 50% testing as 

�26, �27, �28, … , �50. Finally, in the mixed-world configuration, the 50% dataset of �1, �2, �3, … , �40 

was used in training, and the remaining dataset such as half of �1, �2, �3, … , �40 (i.e., similar to 

closed-world splitting) and full �41, �42, �43, … , �50 (i.e., similar to open-world splitting) was used 

in testing. 

Table 10 presents the experimental results of our modified model and the second-best method 

(i.e., ResNet50 [42]) for all these configuration modes. The closed-world and mixed-world 

configuration results in Table 10 reveal that our modified model outperforms ResNet50. It should 

also be noted that our model showed the best performance in the open-world configuration, which 

was more challenging than the mixed-world and closed-world configuration modes. On the other 

hand, the performance of ResNet50 in the open-world configuration is lower than that in the other 

configuration modes, which shows the low performance of ResNet50 in real-world situations. 

Table 10. Closed-world, open-world, and mixed-world performance comparisons of our modified 

model and ResNet50 [42] (unit: %). 

Configuration 

Mode 

ResNet50 [42] Proposed 

Accuracy  F1.score mAP mAR Accuracy F1.score mAP mAR 

Closed-World 80.90 81.90 82.52 81.28 81.51 82.42 83.15 81.71 

Open-World 78.56 78.95 79.33 78.56 82.98 83.31 83.63 82.98 

Mixed-World 79.55 79.49 79.91 79.08 81.33 81.35 81.87 80.84 

6. Discussion 

In general, the efficient image classification is the key part of any CBIR system. In recent few 

years, the deep learning-based algorithms have shown significant performance gain in image 

classification tasks. In this proposed work, our main goal is to utilize the strength of deep learning in 

medical image classification for the CBMIR system. For this purpose, we analyze the performance of 

different state-of-the-art deep learning models in medical image classification task. In this way, we 

proposed an enhanced version of existing deep learning model (i.e., ResNet50) which shows the best 
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classification performance in comparison with other models. Finally, based on our enhanced deep 

learning model, a class-prediction-based CBMIR system is proposed for medical image retrieval as 

shown in Figure 15. 

 

Figure 15. The class-prediction-based content-based medical image retrieval (CBMIR) system by 

using our proposed deep CNN model. 

In this proposed class-prediction-based CBMIR, image retrieval is performed based on class 

prediction rather than exploring the whole dataset without class prediction. In our proposed class 

prediction-based retrieval, the key step is to predict the actual class label for the given query image 

by measuring the similarity score of query image feature vector with the class mean features. In this 

way, a class label is predicted for the given query image by using the similarity score. Finally, the 

image retrieval is done by exploring the desired image in predicted class as shown in Figure 15. On 

the other hand, in without class-prediction-based retrieval, the whole dataset is being explored for a 

given input query image which is more time taking. A performance comparison is made for both 

retrieval methods (i.e., with class prediction and without class prediction) by using our modified 

model and the second-best model (i.e., ResNet50 [42]). It can be observed from Table 11 that class-

prediction-based retrieval for our method shows better performance. 

Table 11. Retrieval performance of our proposed model and the second-best model (i.e., ResNet50 

[42]) for both methods (i.e., with class and without class prediction) (unit: %). 

CNN Model 
Without class prediction With class prediction 

Accuracy  F1.score mAP mAR Accuracy F1.score mAP mAR 

ResNet50 [42] 80.46 81.58 82.31 80.86 80.90 81.90 82.52 81.28 

Proposed 80.90 81.87 82.60 81.17 81.51 82.42 83.15 81.71 

It should be noted that our class-prediction-based retrieval method significantly reduces the 

retrieval time also. The total retrieval time for both methods can be calculated as: 

τ���� ����� ���� = τ�.� + τ�.�(K + n) (5) 

τ������� ����� ���� = τ�.� + τ�.�(Kn), (6) 

where ����� ����� ����  and �������� ����� ����  present the retrieval time for class prediction and 

without class prediction, respectively. ��.� is the feature extraction time for the input query image, 

and ��.� presents the feature comparison time for two feature vectors (i.e., those extracted from the 

query image and the database image). The entire features database comprises � classes including a 

total of � feature vectors in each class. From Equations (5) and (6), it can be concluded that the total 

feature comparison time in the case of class prediction is approximately � times lower than without 

class-prediction-based retrieval, as � << �. On the other hand, the total feature extraction time (i.e., 

��.�) remains the same in both cases. To check the validity of Equations (5) and (6) for our proposed 

class-prediction-based retrieval framework, the total feature extraction and comparison time is 
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measured in both cases. The average feature extraction time ��.� for a single query image is obtained 

as 955 ms  in both cases. The total feature comparison times in the case of class prediction and 

without class prediction are 15.4 ms and 824 ms, respectively. The total feature comparison time in 

the case of class prediction is approximately 53.5 times lower than that without class-prediction-based 

retrieval. Finally, we obtain ����� ����� ���� = 971 ms and �������� ����� ���� = 1779 ms, which shows 

that the overall performance of our proposed class-prediction-based retrieval system is much better. 

Figure 16 presents a few examples of correctly retrieved images obtained with our proposed 

method for different input query images. It can be observed in Figure 16 that the retrieved images 

have varying illumination, contrast, and high intra-class variance. Despite this challenging nature of 

the dataset, our method still outperforms with 100% retrieval performance for the selected query 

images. This shows that our method can be robust to the high intra-class variance of a dataset with 

the significant performance gain. 

 
(a) 

 
(b) 

 
(c) 
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Figure 16. Examples of good retrieval performance of our proposed system for input query image. (a) 

colonography CT; (b) liver CT; (c) upper endoscopy; (d) facial acne. 

A few classes in our collected dataset exhibit low retrieval performance, as shown in Figure 17. 

The main reason for this performance degradation is the high inter-class similarity among these 

classes. In Figure 17a, the given query image belongs to the bladder CT scan class, but in the retrieval 

results, some samples have been misclassified as kidney, renal, and stomach CT scans. This 

misclassification occurred due to the significant structural overlapping of these three classes, which 

can also be observed visually in Figure 17. Figure 17b also visualizes the similar structural 

overlapping of the cervix, bladder, and pancreas MRI scans. However, such misclassification cases 

can be resolved by adding a feedback mechanism in the proposed retrieval framework. This feedback 

mechanism will allow the user to explore the given query image in other relevant classes in case of 

misclassification. 

 
(a) 

 
(b) 

Figure 17. Class-prediction-based false retrieval performance of our proposed system. (a) Bladder CT 

scan as a query image; (b) cervix MRI scan as the query image. 
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7. Conclusion 

In this paper, a medical image classification framework is proposed for retrieving heterogeneous 

medical images by utilizing recent deep learning techniques. The proposed deep-learning-based 

framework bridges the semantic gap by exploring the discriminative features (i.e., all low-level and 

high-level features) directly from the images. These extracted features are used to perform class-

prediction-based image retrieval tasks. The performance of the proposed system is evaluated on 

various multimodal databases for all possible real-world configuration modes (i.e., closed-world, 

open-world, and mixed-world). Our proposed system significantly outperforms the existing retrieval 

systems used in the medical domain. Moreover, our enhanced ResNet solved the problem of high 

intra-class variance and inter-class similarity in a medical database, and it improved the classification 

accuracies. The retrieval performance of the proposed system demonstrates its applicability to 

various clinical situations, education, and research. Our trained model and image indices of 

experimental images have been made publicly available to permit other researchers to make 

performance comparisons. In previous researches on our research topic [28,66], they did not use a 

validation set for determining the optimal CNN model, but used only training and testing sets like 

our experiments. In order to maintain fair experimental conditions and comparisons with [28,66] of 

Table 5, we used only training and testing sets. 

In future work, we would compare the accuracies based on the optimal model selection using 

the additional validation set with our accuracies. We would also study the method which can deal 

with the case of more classes than 50 classes. In addition, we intended to implement a video-based 

MIRS for exploring moving sequences. Also, we would further optimize the network by reducing the 

number of layers and other parameters to make it more efficient. 
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