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Abstract: Lower copy number variations (CNVs) in the salivary amylase gene (AMY1) have
been associated with obesity and insulin resistance; however, the relationship between AMY1
and cardiometabolic risk has not been fully elucidated. Using gold-standard measures, we
aimed to examine whether AMY1 CNVs are associated with cardiometabolic risk factors in an
overweight or obese, otherwise healthy population. Fifty-seven adults (58% male) aged 31.17
+ 8.44 years with a body mass index (BMI) >25 kg/m? were included in the study. We
measured AMY1 CNVs (qPCR); anthropometry (BMI; body composition by dual-energy X-ray
absorptiometry); cardiovascular parameters (blood pressure, serum lipids by ELISA); insulin
sensitivity (hyperinsulinaemic-euglycaemic clamp), insulin secretion (intravenous glucose tolerance
test), and serum inflammation markers (multiplex assays). Based on previous studies and median
values, participants were divided into low (<4) and high (>4) AMY1 CNV groups. Low AMY1 carriers
(n = 29) had a higher fat mass (40.76 &+ 12.11 versus 33.33 & 8.50 kg, p = 0.009) and LDL-cholesterol
(3.27 £ 0.80 versus 2.87 = 0.69 mmol /L, p = 0.038), and higher serum levels of interleukin [IL]-6, IL-1§3,
tumour necrosis factor-alpha and monocyte chemoattractant protein-1 (MCP-1) (all p < 0.05) compared
with high AMY1 carriers (n = 28), but there were no differences in glycaemic measures, including
insulin sensitivity or secretion (all p > 0.1). Except for MCP-1, the results remained significant in
multivariable models adjusted for age, sex, and fat mass (all p < 0.05). Our findings suggest that low
AMY1 CNVs are associated with increased cardiovascular disease risk and inflammation, but not
glucose metabolism, in overweight or obese adults.

Keywords: amylase; AMY1 copy numbers; salivary amylase gene; obesity; cardiometabolic risk;
insulin sensitivity; insulin secretion; inflammation

1. Introduction

Obesity is a multifactorial disorder that leads to an increased risk of cardiometabolic diseases
including type 2 diabetes mellitus (I2DM) and cardiovascular diseases. The prevalence of obesity has
tripled since 1975, and is expected to continue increasing [1]. Therefore, gaining a better understanding
of the underlying risk factors of obesity is crucial for developing effective prevention and management
strategies. It is well recognised, based on family and twin studies, that body mass index (BMI) is a
highly heritable trait, with between 40-70% of its variance being attributable to genetic factors [2].

J. Clin. Med. 2019, 8, 382; doi:10.3390/jcm8030382 www.mdpi.com/journal/jcm


http://www.mdpi.com/journal/jcm
http://www.mdpi.com
https://orcid.org/0000-0003-2582-0374
https://orcid.org/0000-0002-7356-4523
https://orcid.org/0000-0003-4445-5376
https://orcid.org/0000-0001-8760-2511
http://www.mdpi.com/2077-0383/8/3/382?type=check_update&version=1
http://dx.doi.org/10.3390/jcm8030382
http://www.mdpi.com/journal/jcm

J. Clin. Med. 2019, 8, 382 20f11

However, the common genetic variants identified in genome-wide association studies account for
only a small proportion of population variability [2]. Recently, copy number variations (CNVs) in the
salivary a-amylase gene AMY1 have emerged as potential contributors to this heritability.

Alpha-amylases catalyse the hydrolysis of starch into disaccharides and trisaccharides by
catalysing the hydrolysis of «-1,4 glycosidic bonds [3]. In humans, there are two isoforms: salivary
x-amylase, the most abundant protein in the saliva, encoded by the genes AMY1A, AMY1B, and
AMY1C, and pancreatic x-amylase, encoded by AMY2A and AMY2B [4]. Serum x-amylase consists
of both isoforms in a 1:1 proportion. Besides the digestive tract, salivary x-amylase is also expressed
in several other tissues such as the central nervous system, the liver, uterus, mammary tissue, and
testes [5]. CNVs of the AMY1 gene have been reported to be associated with the levels and activity of
a-amylase in serum and saliva [6-8].

The first genetic link between obesity and AMY1 came from a longitudinal study by Falchi et al. [9],
which described an association between low CNVs of the AMY1 gene and a higher risk of obesity
measured by BMI. However, subsequent observational studies have produced inconsistent results.
Some studies found no association between AMY1 CNVs and obesity [10-12], while others reported that
lower AMY1 CNVs are associated with a higher BMI in prepubertal boys [13], in young male and female
adults [14], and in a cohort of 597 Mexican children [15], as well as with early-onset obesity in a female
Finnish population [16]. Conflicting results have also been reported regarding AMY1 and glycaemic
outcomes. A study of 1257 Korean men found that low AMY1 CNVs were associated with increased
insulin resistance measured by homeostatic model assessment of insulin resistance (HOMA-IR), but
there was no relationship with BMI [17]. In a recent clinical trial of 692 overweight or obese adults
receiving different dietary interventions, those with genetic AMY1 variants that were associated with
higher o-amylase levels and activity had greater weight loss [18]. However, another study of an
Asian cohort (1 = 75) found no association between salivary c-amylase activity or AMY1 CNVs and
postprandial glycaemic responses following the ingestion of a starch-rich meal (white rice) [19].

Despite a number of studies examining AMY1 in relation to obesity and glucose metabolism,
most studies have relied on indirect proxy measures such as BMI or HOMA-IR, and have not focused
specifically on high-risk, overweight, or obese populations. To our knowledge, no studies have
examined the relationship between AMY1 and gold-standard measures of insulin sensitivity or insulin
secretion, and few have used gold-standard adiposity measurements. Moreover, the relationship
between AMY1 and other markers of cardiometabolic risk, such as chronic low-grade inflammation,
have not previously been explored.

We aimed to address these knowledge gaps by examining the relationship between AMY1
CNVs and cardiometabolic risk factors using gold-standard measures of adiposity, insulin sensitivity,
and insulin secretion, as well as with cardiovascular parameters and markers of chronic low-grade
inflammation in a high-risk cohort of overweight or obese, otherwise healthy adults.

2. Materials and Methods

2.1. Study Design and Participants

This cross-sectional study utilises baseline data collected from participants who took part in a
previous randomised trial investigating the role of vitamin D in the pathogenesis of T2DM [20]. For this
study, data were available for 57 non-diabetic adults with overweight (BMI 25-29.9 kg/m?) or obesity
(BMI > 30 kg/m?), aged between 18-60 years old. On screening, participants underwent a detailed
medical history and physical examination, routine blood analyses, anthropometric assessments, and
a 75-g oral glucose tolerance test (OGTT) to exclude diabetes based on World Health Organization
criteria [21]. All of the participants were characterised for body composition, glucose metabolism, and
cardiovascular parameters, serum concentrations of inflammation markers, and AMY1 copy numbers.
Dietary habits were recorded using a validated questionnaire (three-day food record analysed on
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Foodworks 8.0 Professional; Xyris Software), which estimates the average amount of daily nutrient
intake for starch, protein, saturated and total fat (all reported as g/day), and for total energy (kJ/day).

Participants were included in the study if they were overweight or obese, non-diabetic,
non-smokers, not using illicit drugs or taking any medications or supplements at the time of the
study, and had no clinical or laboratory signs of acute or chronic inflammation based on medical
history or physical or laboratory examinations. Exclusion criteria included: age <18 or >60 years; high
alcohol use (>4 and >2 standard drinks per week for males and females, respectively); current medical
conditions or psychiatric disorders; active cancer within the preceding five years; and women who
were pregnant and/or lactating or peri-menopausal or post-menopausal. This study received ethical
approval from the Monash University Human Research Ethics Committee (CF13/3874-2013001988)
and complied with the Declaration of Helsinki (2004) [22]. All of the participants provided written
informed consent prior to study entry.

2.2. Anthropometric and Clinical Measures

BMI was calculated as weight in kilograms divided by height in meters squared. Body
composition (total % body fat) was determined by dual-energy X-ray absorptiometry (DPX-L; Lunar
Radiation, Madison, WI, USA). Then, total body fat was used to calculate fat mass (weight (kg) x total
% body fat (decimal) = fat mass (kg)) as well as fat-free mass (weight (kg) — fat mass (kg) = fat-free
mass (kg)).

Resting systolic and diastolic blood pressure (SBP/DBP) were assessed with an automated
oscillometric measurement system (M6 Automatic BP monitor, Omron, Japan) following a 20-minute
rest. Mean BP was calculated from the average BP from three different measurements.

A two-hour 75-g OGTT was performed following a 12-h overnight fast, and glucose tolerance
status was determined by World Health Organisation (WHO) criteria [21]. Hyperinsulinaemic—
euglycaemic clamps were performed to determine insulin sensitivity as described in detail
elsewhere [20]. Briefly, an intravenous bolus injection of insulin (9 mU/kg) was administered, after
which insulin was constantly infused (40 mU.m-2.min) for at least 120 min, and glucose was variably
infused, monitored every 5 min, and adjusted until a steady state of euglycaemia was achieved
(~5 mmol/L for the last 30 min). Insulin sensitivity (M-value) represents the weight-adjusted glucose
infusion rate at which this steady state was achieved. As previously described [20], insulin secretion
was measured using intravenous glucose tolerance tests whereby 50 mL of 50% glucose was delivered
intravenously over a 3-min period, and the serum insulin area under the concentration-time curve
(AUC) was determined using the trapezoidal rule [23]. Serum insulin AUC calculated 3 to 5 min after
the glucose bolus was used to determine first-phase insulin secretion.

2.3. Biochemical Measures

All of the blood samples were analysed using standard quality control systems (all results within
£ 2 SD) by accredited laboratories (Monash Health and Monash University Pathology). Plasma
glucose concentrations were determined by the glucose oxidase method (YSI 2300 STAT Glucose &
Lactate Analyser, YSI Inc., Yellow Springs, OH, USA). Serum insulin was measured by simultaneous
immunoenzymatic sandwich assays (Access/DXI ultrasensitive insulin assay, Beckman Coulter,
Australia), with inter-assay and intra-assay coefficients of variation (CVs) of <5% and <7%, respectively.
Triglycerides, total cholesterol, low-density lipoprotein (LDL), and high-density lipoprotein (HDL)
cholesterol in serum were determined using standard commercial enzymatic assays (LX20PRO
Analyser and SYNCHRON Systems Lipid and Multi Calibrators, Beckman Coulter, Australia).

Plasma high-sensitivity C-reactive protein (hsCRP) was measured using highly sensitive
near-infrared particle immunoassay rate methodology on a Synchron LX system analyser (Beckman
Coulter, Australia). Intra-assay and inter-assay CVs for hsCRP were <5%. Serum cytokines and
adipokines, including tumour necrosis factor alpha (TNF-«), interleukin (IL)-6, IL-1f3, monocyte
chemoattractant protein-1 (MCP-1), leptin, and adiponectin were quantified simultaneously using
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bead-based multiplex assays (LEGENDplex™, Human inflammation and metabolic panels, BioLegend,
San Diego, CA, USA) following the manufacturer’s instructions. Data acquisition was performed
using a BD™ LSR II flow cytometer and FACS DIVA software (Becton Dickinson, San Diego, CA, USA)
and analysed using the LEGENDplex™ data analysis software (BioLegend, San Diego, CA, USA) with
standard curves generated from 0 to 50,000 pg/mL for inflammatory markers and 0-200 ng/mL for
adipokines, and samples were adjusted for dilution factors. Intra-assay and inter-assay CVs for all
analytes were <9%.

2.4. Genotyping

AMY1 copy numbers were measured in biobanked samples of peripheral blood mononuclear
cells (PBMCs). PBMCs were isolated by centrifuging fasting whole blood samples collected in BD
Vacutainer® CPT™ cell preparation tubes with sodium citrate. The harvested PBMC pellet was
resuspended in fetal bovine serum (FBS) with 10% dimethylsulphoxide (DMSO) and stored at —80 °C
until analysis. Genomic DNA from PBMCs was isolated using the Maxwell 16 Cell LEV DNA
purification kit (Promega, Fitchburg, WI, USA), and its purity and concentration was assessed using a
NanoDrop One spectrophotometer (Thermofisher, Waltham, MA, USA). AMY1 gene copy numbers
were estimated by duplex quantitative real-time PCR (2qPCR) on a Life Technologies QuantStudio™
12K Real-Time PCR system, with QuantStudio™ software version 1.2.2, with a protocol adapted
from Falchi et al. [9], and analysed with CopyCallerR software version 2.1 (Thermo Fisher Scientific,
Waltham, MA, USA). Each sample reaction consisted of two TagMan CNYV assays (Life Technologies,
Carlsbad, CA, USA); one specific for the target, AMY1 (Hs07226362_cn), and one specific for the
reference gene (RNase P). Each sample was run in quadruplicate, and each run included an externally
validated 14-copy control (NA18972, Coriell Cell Repositories, Camden, NJ, USA) along with a
negative control.

2.5. Statistical Analyses

This is a secondary analysis of baseline data from participants who took part in a previous
randomised trial, and the power calculation was based on the primary outcome of insulin sensitivity
in the main trial [20]. Sample characteristics are presented as mean + SD or frequencies (%) for
continuous and categorical variables, respectively. The normality of variables was inspected visually
using histograms and scatterplots, and continuous variables were logarithmically transformed to the
base 10 if normality was violated. Differences between groups were examined using independent
Student’s t-tests for continuous variables and chi-square tests for categorical variables. Predetermined
variables known to influence cardiometabolic risk, such as age, sex, and fat mass, were included as
covariates in multivariable linear regression models. In exploratory analyses, the influence of dietary
factors such as starch consumption and carbohydrate content were included as continuous variables in
additional multivariable models. Statistical analyses were performed using JMP V.14.1 (SAS Institute
Inc., Cary, NC, USA) and Stata V.15.0 (StatCorp LP, College Station, TX, USA) statistical software. All
of the tests were two-sided and p-values < 0.05 were considered statistically significant.

3. Results

3.1. Sample Characteristics

Fifty-seven participants (34 male and 23 female) aged 31.17 £ 8.44 years (mean + SD) were
included in the study. The sample comprised 28% Caucasian, 39% South and Central Asian, and 23%
Northeast/Southeast Asian ethnic groups, while 6% belonged to other ethnicities (African, Middle
Eastern, Polynesian, and South American). Participants had a mean BMI of 31.5 + 4.6 kg/m? and a
mean total percentage body fat of 41.1 &= 8.4%. The number of AMY1 copies in the sample ranged from
one to 13, with a median of four, which was used to define the low AMY1 CNV group (<4 copies) and
the high AMY1 CNV group (>4 copies) in accordance with previous studies [9]. The demographic,
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clinical, and biochemical characteristics of the participants within each group are presented in Table 1.
There were no differences between the low and high AMY1 CNV groups regarding demographic
characteristics (Table 1) or dietary intakes of key macronutrients, including starch consumption and
carbohydrate content as well as protein, fat, and total energy intakes (Table S1, Supplementary File).

Table 1. Demographic, clinical, and biochemical characteristics of participants within low and high
AMY1 CNV groups.

Characteristics/Outcome Measures Low AMY1 (n = 29) High AMY1 (n = 28) P
Age (y) 30.8+8.6 31.5+85 0.8
BMI (kg/m?) 327+£54 30.3+35 0.05
Total body fat (%) 42.8 +8.0 394+£87 0.1
Fat mass (kg) 40.8 £12.1 33.3+£85 0.009
Fat-free mass (kg) 543 +14.4 51.3 +11.0 0.5
Insulin sensitivity (M; mg/kg/min) 63+29 6.5£29 0.7
First phase insulin AUC (mU/L) 354.5 + 250.9 419.4 + 320.6 0.5
Total cholesterol (mmol/L) 514+1.0 4.8+ 0.8 0.2
HDL cholesterol (mmol/L) 1.2+03 1.1+£02 0.3
LDL cholesterol (mmol/L) 33+08 29+07 0.038
Triglycerides (mmol /L) 1.5£0.8 1.7£1.0 0.3
hsCRP (mg/L) 39+47 24421 0.5
IL-6 (pg/mL) 529 £55.7 243 +£229 0.02
IL-1B (pg/mL) 344 +25.1 179 £ 134 0.01
TNF-« (pg/mL) 68.4 +12.8 32.61+5.3 0.02
MCP-1 (pg/mL) 1169.2 £+ 1058.2 613.9 +319.5 0.03
Adiponectin (ng/mL) 11906.3 + 14777.5 7431.9 £+ 10233.0 0.04
Leptin (ng/mL) 19.2 +32.7 11.1 +£23.8 0.04

Data are expressed as mean & SD. Low AMY1 group is defined as <4 copies and high AMY1 group as >4 copies.
Differences between groups were analysed using independent Student’s t-tests and bold values indicate statistical
significance at p < 0.05. Variables which did not fit a normal distribution were log-transformed to the base 10
to approximate normality prior to analysis. BMI, body mass index; AUC, area under the curve; HDL/LDL,
high-density /low-density lipoprotein; hsCRP, high sensitivity C-reactive protein, IL, interleukin, TNF-«, tumour
necrosis factor-alpha; MCP-1, monocyte chemoattractant protein-1.

3.2. Differences in Anthropometric Parameters between AMY1 CNV Groups

Compared with participants in the high AMY1 CNV group, the low AMY1 CNV group had
significantly higher fat mass, as well as a trend towards higher BMI (Table 1). There were no differences
in total body fat or fat-free mass between groups (both p > 0.1). In multivariable models adjusted for
age and sex, differences in fat mass remained significant (p = 0.016, Table 2), while results for other
anthropometric variables were not altered (all p > 0.05; Table 2). In exploratory analyses, additional
adjustment for dietary factors including starch, protein, total and saturated fat, total energy, and
carbohydrate consumption did not alter any of these results (data not shown).

3.3. Differences in Glycaemic Parameters between AMY1 CNV Groups

There were no significant differences in insulin sensitivity between low and high AMY1 CNV
groups (M-value= 6.3 + 2.9 and 6.5 & 2.9 mg/kg/min, respectively, p = 0.7; Table 1). First-phase
insulin AUC also did not differ significantly between groups (354.5 £ 250.9 mU/L for the low AMY1
group and 419.4 & 320.6 mU/L for the high AMY1 CNV group, p = 0.7; Table 1). Results remained
non-significant after adjusting for age and sex, as well as with additional adjustment for fat mass
(Table 2). Additional adjustment for dietary factors did not alter results. There were no significant
differences between low and high AMY1 CNV groups for fasting and 2-h blood glucose, fasting insulin,
or HOMA-IR in both univariable and multivariable analyses (all p > 0.05).
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Table 2. Multivariable linear regression models examining associations between cardiometabolic

parameters and AMY1 CNV groups after adjustment for covariates.

d Model 1 Model 2
Depe'n ent (Adjusted for Age and Sex) (Adjusted for Age, Sex, and Fat Mass)
Variable
B (95% CI) R2 t r B (95% CI) R? t p
BMI (kg/m?) —2.3(—47,0.2) 0.1 -19 0.07
Body fat (%) —-2.1(-5.1,0.8) 0.6 —-14 0.2
Fat mass (kg) —6.8(—12.3, —-1.3) 0.2 -25 0.016
Fat—free mass (kg) —0.03 (—0.1, 0.003) 0.6 -1.9 0.07
Insulin sensitivity
(M; mg/kg/min) 0.2 (—14,1.7) 0.03 0.2 0.8 —-0.8(—2.2,0.7) 0.3 —-1.1 0.3
First-phase insulin
AUC (mU/L) 0.08 (—0.2,0.3) 0.02 0.7 0.5 0.2 (—0.1,04) 0.1 1.2 0.2
Total cholesterol
(mmol/L) —0.4 (0.9, 0.04) 0.2 —1.8 0.07 —0.5(—0.9, 0.03) 0.2 -19 007
HDL-C (mmol/L) —0.02 (—0.1, 0.02) 0.1 -1.0 0.3 —0.02 (—0.1, 0.03) 0.1 -0.7 0.5
LDL-C (mmol/L) —0.5(—0.8, —0.1) 0.2 —25 0.01 —0.5(-0.9, —0.1) 0.2 —2.6 0.01
Triglycerides
(mmol /L) 0.03 (—0.08, 0.1) 0.2 0.6 0.5 0.04 (—0.1,0.2) 0.2 0.6 0.5
hsCRP (mg/L) —0.1(-04,0.2) 0.02 -0.7 0.5 —0.1(-0.3,0.2) 0.03 —-04 0.7
IL-6 (pg/mL) —0.3 (0.5, —0.02) 0.1 —2.2 0.03 —0.3(-0.6, —0.1) 0.2 —2.6  0.01
IL-1B (pg/mL) —0.6 (—1.1, -1.0) 0.2 —2.5 0.02 —0.7 (-1.2, -0.22) 0.2 —29 0.005
TNF-« (pg/mL) —0.3 (-0.5, —0.02) 0.1 —2.16 0.04 —0.3 (—0.6, —0.07) 0.2 —-2.6  0.01
MCP-1 (pg/mL) —0.2 (—0.3, —0.006) 0.1 -21 0.04 —0.2(—0.4,0.01) 0.1 -19  0.06
Adiponectin
—0.3(—0.6, —0.02 0.1 21 0.04 —0.3(—0.6,0.07 0.1 —1.6 0.1
(ng/mL) ( : ( )
Leptin (ng/mL) —0.3 (—0.5, 0.005) 0.3 -2.0 0.05 —0.1(—-04,0.1) 0.4 -1.0 0.3

Reference group: Low AMY1 group. Data are presented as unstandardised beta coefficients with 95% confidence
intervals and the corresponding t-statistic, R-squared value, and p-value for each model. Variables that did not fit
a normal distribution were log-transformed to the base 10 to approximate normality prior to analysis. Model 1:
adjusted for age and sex; Model 2: adjusted for age, sex, and fat mass. BMI, body mass index; AUC, area under the
curve; HDL-C/LDL-C, high-/low-density cholesterol; hsCRP, high-sensitivity C-reactive protein, IL, interleukin,
TNEF-o, tumour necrosis factor-alpha; MCP-1, monocyte chemoattractant protein-1.

3.4. Differences in Cardiovascular Parameters between AMY1 CNV Groups

The low AMY1 CNV group had a significantly higher concentration of serum LDL cholesterol
compared with the high AMY1 CNV group (p = 0.038; Table 1). Differences in LDL cholesterol remained
significant after adjustment for age and sex and after additional adjustment for fat mass (p = 0.01 for
both models, Table 2) and dietary factors (data not shown). There were no significant differences in
other serum lipids, including total or HDL cholesterol or triglycerides before or after adjustment for
covariates (all p > 0.05; Tables 1 and 2). Other cardiovascular parameters including SBP and DBP did
not differ between groups before or after adjustment.

3.5. Differences in Serum Inflammation Markers and Adipokines between AMY1 CNV Groups

Low AMY1 copy number carriers had significantly higher concentrations of serum inflammation
markers including IL-6 (p = 0.02), IL-13 (p = 0.01), TNF-o (p = 0.02), and MCP-1 (p = 0.03) compared with
high AMY1 copy number carriers (Table 1), but there were no differences in hsCRP (p = 0.5, Table 1).
Differences in these markers between low and high AMY1 groups remained significant after adjusting
for age and sex (all p < 0.04, Table 2), as well as after adjustment for fat mass (all p < 0.01, Table 2),
except for MCP-1, which was attenuated upon the inclusion of fat mass in the model (p = 0.06; Table 2).

Serum adiponectin and leptin concentrations were significantly higher in low AMY1 CNV carriers
compared to the high AMY1 CNV group (p = 0.04 for both, Table 1). After adjustment for age and sex,
differences in adiponectin remained significant (p = 0.04), and a trend persisted for differences in leptin
(p = 0.05). After adjustment for fat mass, neither adiponectin nor leptin concentrations were different
between groups (both p > 0.1; Table 2). Additional adjustment for dietary factors in exploratory
analyses did not alter results for any of the inflammation markers or adipokines.
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4. Discussion

To our knowledge, this is the first study to examine the relationship between AMY1 CNVs
and gold-standard measures of insulin sensitivity and secretion, as well as serum inflammation
markers in humans. We found that individuals with four or less copies of the AMY1 locus had worse
cardiometabolic profiles, including higher adiposity and LDL cholesterol concentrations, and more
pronounced inflammation, compared with individuals with a higher number of AMY1 copies. These
differences persisted after adjustment for predetermined clinically relevant covariates. However,
there were no differences in any of the glycaemic parameters between AMY1 CNV groups. Our
findings suggest that AMY1 CNVs may be associated not only with obesity, but also with increased
cardiovascular risk and chronic low-grade inflammation in overweight or obese individuals.

Our data showed that overweight or obese, but otherwise healthy adults with low AMY1 copy
numbers had significantly higher fat mass than individuals within the high copy number group.
A trend was also observed for a higher BMI in low compared with high AMY1 carriers. Our results
are consistent with several cross-sectional studies that reported an inverse relationship between
AMY1 copy numbers and obesity [9,13-15]. A recent Mendelian randomisation analysis showed a
bidirectional relationship between BMI and AMY1 [8]. The authors described a significant, albeit
limited, effect of higher AMY1 CNVs on BMI and strong associations between AMY1 or AMY2
enzymatic activity and lower BMI [8]. However, other reports, including a large cross-sectional
analysis of more than 3400 European individuals, did not find any associations between the number
of copies of the AMY1 gene and BMI [10]. Regarding other measures of adiposity, most parameters
have not been extensively studied in relation to AMY1 CNVs. A recent study that used bioelectric
impedance, which is an indirect measurement of adiposity, found no significant association between
obesity and AMY1 CNVs [12]. Only two previous studies reported that increased fat mass, as measured
by gold-standard dual energy X-ray absorptiometry (DEXA), was associated with low AMY1 CNVs
in Scandinavian populations [9,16], which is consistent with our findings. We add to the currently
limited evidence by showing that, in a well-characterised multiethnic cohort, low AMY1 carriers had
higher fat mass measured by DEXA, compared with high AMY1 carriers.

Putative mechanisms by which AMY1 may be linked to obesity include its role in taste perception
and the digestion of starch. Increased AMY1 copy numbers may be an evolutionary adaptation to
high starch diets [6], and higher AMY1 CNVs are proposed to improve the digestion of starchy foods
as well as texture and taste perception, and therefore carbohydrate dietary habits [7]. Interestingly,
differences in fat mass in our study remained significant after adjusting for starch and carbohydrate
consumption, suggesting that AMY1 CNVs may have other functions extending beyond its role in
digestion. This is supported by a recent metabolomic study that analysed sera from low (AMY1 copy
number <4) and high AMY1 carriers (AMY1 copy number >8), and suggested that low AMY1 carriers
may have an increased (3-oxidation of fatty acids and reduced cellular glucose uptake [24]. Based on
current evidence, the functions of salivary o-amylase as well as the expression pattern of AMY1 are not
well understood, and further studies are needed to fully elucidate their role in the pathophysiological
processes underlying obesity.

We also report a significantly higher LDL cholesterol concentration in low AMY1 carriers
compared with high AMY1 carriers, which persisted after adjusting for age, sex, and fat mass, as well
as in exploratory analyses adjusted for dietary factors. This finding contrasts with earlier reports [8,17]
that found no associations between AMY1 and LDL cholesterol in a population of more than 1000
healthy Korean males and in a large European cohort (1 > 3400) of normal and overweight individuals.
In fact, this is the first study to report a significant difference in LDL cholesterol between individuals
with high and low AMY1 CNVs. The higher BMI of our population may have enhanced the differences
in serum lipid levels between low and high AMY1 CNVs, hence allowing us to detect these differences.
Overall, our finding of higher LDL cholesterol in low versus high AMY1 carriers was robust and
independent of multiple covariates, suggesting a potential link between AMY1 CNVs and lipid
metabolism. LDL cholesterol is an important risk factor for cardiovascular diseases; thus, further
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studies are needed to determine the effect of AMY1 CNVs on the development of cardiovascular
diseases and clarify the underlying mechanisms.

Using gold-standard methodology to measure insulin sensitivity and secretion, we found no
differences in these parameters between the low and high AMY1 groups. Previous reports of the
association between AMY1 and glycaemic outcomes have been inconsistent. AMY1 CNVs did not affect
glycaemic responses to a starch meal in 75 healthy Asian males [19]. Yet, another study comparing
dietary interventions with different macronutrient composition reported a significant difference in
HOMA-IR based on AMY1 CNVs [18]. Similarly, in a cross-sectional study of 1257 healthy Korean
men, Choi et al. [17] reported that low AMY1 CNVs were associated with higher insulin resistance
measured by HOMA-IR. However, in a small interventional trial (n = 14) [25], individuals with higher
salivary a-amylase activity had lower postprandial glycaemic responses following starch ingestion.
Importantly, salivary «-amylase levels in serum or saliva may not be fully explained by AMY1
CNVs [9], and can be influenced by stress, metabolic status, or starch consumption. Discrepancies in
the evidence may also be due to the different populations and methods used across studies. Our study
is the first to employ gold-standard hyperinsulinaemic euglycaemic clamps and intravenous glucose
tolerance tests, whereas previous studies have relied on surrogate measures of insulin sensitivity and
secretion, such as HOMA-IR, HOMA-f3, and the Matsuda index. Moreover, insulin sensitivity has been
reported to be associated with ethnicity in adult populations [26]. The multiethnic character of our
population, coupled with the relatively small sample size of our study, may have affected our ability
to detect differences in these outcomes. Larger studies using similar gold-standard methodologies and
exploring ethnic variation are needed to confirm our results.

Finally, another novel finding of our study is that, compared with high AMY1 CNV carriers,
individuals with low AMY1 CNVs had greater low-grade chronic inflammation indicated by higher
concentrations of serum cytokines, including IL-6, IL-13, MCP-1, and TNF-«. Adipokines including
leptin and adiponectin were also higher in low AMY1 carriers. However, this was attenuated after
adjusting for fat mass, suggesting that differences in adipokines were driven by differences in adiposity
rather than AMY1 CNVs per se. The association with serum cytokines, on the other hand, remained
significant in all the models, suggesting a potentially important relationship between subclinical
inflammation and AMY1 CNVs that is independent of obesity and starch intake. Cytokines and
adipokines are released not only by fat cells, but also by immune cells that infiltrate the tissue [27].
AMY1 mRNA is expressed in adipose tissue [9], and it may affect their expression or release by
adipocytes or immune cells. Moreover, IL-6 and MCP-1 have been suggested to regulate systemic
glucose and/or lipid metabolism [27]; hence, AMY1 CNVs could influence the levels of these markers
by altering lipid metabolism, and their levels could be influenced by altering metabolism in a feedback
loop. At this stage, explanations for this finding remain speculative, since no other study has explored
the relationship between AMY1 CNVs and subclinical inflammation.

Our study has some limitations. The cross-sectional design precludes causality, and potential
confounding remains a possibility. This is a secondary analysis, and there was no formal power
calculation; hence, the sample size may have been too small to detect differences in some parameters,
including glycaemic measures. Per protocol, we recruited only overweight or obese individuals who
were otherwise healthy; hence, our results may not be generalisable to other populations, including
lean individuals or those with pre-existing conditions. Despite adjusting for age in multivariable
analysis, participants in this study had a wide age range (18-57 years), and this may have influenced
their cardiometabolic outcomes. AMY1 CNVs are likely to be influenced by ethnicity; however, due to
the small numbers of participants, we were unable to explore the influence of ethnic variation, and
the multiethnic nature of the cohort may have reduced our ability to detect some differences between
groups. AMY1 copy number genotyping was performed using qPCR, which is reported to have lower
sensitivity compared to other techniques such as digital droplet PCR [17], and these variations in
methods may explain some of the inconsistencies between studies. Nevertheless, several studies using
droplet digital PCR (ddPCR) have reported similar results to our study, whereby AMY1 was associated
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with BMI [16] and fat mass [16]. Moreover, the results of both ddPCR and qPCR methods were shown
to be equivalent when performed on blood samples [8,28]. Hence, we expect that any variations in
sensitivity in the present study would be minimal, since qPCR was performed on PBMC samples.
Despite these limitations, this is the first study to examine the relationship between AMY1 CNVs and
insulin sensitivity and secretion using gold-standard methods, and the first to explore relationships
with inflammation markers and adipokines. We included a metabolically well-characterised cohort
of high-risk overweight or obese individuals, where there was no confounding by medication use or
disease status, and we were able to incorporate other confounders including adiposity and diet in our
analyses. These factors have seldom been considered in previous studies.

5. Conclusions

In summary, our data suggests that overweight or obese individuals with low AMY1 CNVs
have greater adiposity, less favourable lipid profiles, and increased chronic low-grade inflammation
compared with high AMY1 carriers, but no differences in glucose metabolism as measured by
gold-standard methods. These results suggest that low AMY1 CNVs may predispose individuals
to adiposity and cardiovascular disease risk. Further studies are required to establish causality and
elucidate the potential use of AMY1 genotyping for risk prediction and the targeted prevention of
disorders underpinned by obesity and inflammation.
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