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Abstract: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and fatal interstitial lung
disease. Therapeutic options for IPF remain limited. Nintedanib, a tyrosine kinase inhibitor
approved for IPF treatment, is known to inhibit fibroblasts proliferation, migration and transformation
to myofibroblasts. However, how nintedanib changes gene regulations in IPF has never been
systematically investigated. We conducted a next-generation sequencing and bioinformatics study
to evaluate the changes of mRNA and miRNA profiles in IPF fibroblasts treated with 2 µM and
4 µM nintedanib, compared to those without treatment. We identified 157 upregulated and 151
downregulated genes and used STRING and DAVID databases for analysis of protein–protein
interactions, biological pathways, and molecular functions. We found strong protein–protein
interactions within these dysregulated genes, mostly involved in the pathways of cell cycle and
mitotic cell cycle. We also discovered 13 potential miRNA–mRNA interactions associated with
nintedanib treatment. After validation using miRDB, TargetScan, and RT-qPCR, we identified
4 downregulated genes (DDX11, E2F1, NPTX1, and PLXNA4) which might be repressed by the
upregulated hsa-miR-486-3p. According to the proposed functions of DDX11, E2F1, and PLXNA4
reported in previous studies, these gene expression changes together might contribute to decreased
proliferation of fibroblasts and decreased angiogenesis in the microenvironment of IPF. Our findings
need further studies to confirm.

Keywords: bioinformatics; fibroblasts; DDX11; E2F1; idiopathic pulmonary fibrosis; microRNA;
mRNA; next-generation sequencing; nintedanib; PLXNA4

1. Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic and fatal interstitial lung disease, characterized
by rapid progression of lung fibrosis with usual interstitial pneumonia (UIP) as the typical histologic
pattern [1,2]. The prognosis of IPF is dismal. The median survival of IPF is around 2–3 years from
diagnosis [3,4]. The cause of IPF remains unclear. It is believed that gene-environmental interactions
involve in the pathogenesis of IPF. Repetitive environmental stimuli in susceptible individuals lead to

J. Clin. Med. 2019, 8, 308; doi:10.3390/jcm8030308 www.mdpi.com/journal/jcm

http://www.mdpi.com/journal/jcm
http://www.mdpi.com
https://orcid.org/0000-0002-7979-3749
https://orcid.org/0000-0003-3621-3334
https://orcid.org/0000-0003-2487-2818
http://www.mdpi.com/2077-0383/8/3/308?type=check_update&version=1
http://dx.doi.org/10.3390/jcm8030308
http://www.mdpi.com/journal/jcm


J. Clin. Med. 2019, 8, 308 2 of 17

aberrant injury-repairing process. Lung epithelial cells are activated and produce pro-fibrotic growth
factors and other mediators, which promote epithelial-mesenchymal transition, and activation and
differentiation of fibroblasts and myofibroblasts. The activated fibroblasts and myofibroblasts secrete
excessive extracellular matrix proteins, resulting in destruction and scaring of lung architecture [5–8].

To date, therapeutic options for IPF remain limited. Nintedanib and pirfenidone are the only two
drugs demonstrated to be effective for IPF [9]. Nintedanib, approved in 2014 in the United States and in
2015 in Europe for IPF treatment, is a multi-target tyrosine kinase inhibitor. The main molecular targets
of nintedanib are the fibroblast growth factor receptor (FGFR), the vascular endothelial growth factor
receptor (VEGFR), and the platelet-derived growth factor receptor (PDGFR) [10,11]. By competitively
and reversibly blocking the receptor tyrosine kinases FGFR, VEGFR, and PDGFR, nintedanib inhibits
fibroblasts proliferation, migration and transformation to myofibroblasts [12,13].

IPF is considered as a complex genetic disorder [14]. Several genetic studies has demonstrated the
possible dysregulated genes associated with the development of IFP [15–17]. Plantier and colleagues
used individual data from four microarray studies to compare the transcriptome of IPF versus normal
lung fibroblasts. They found downregulated genes in IPF were highly related to inflammation
and immunity, and upregulated CTGF and SRF may play key roles in lung fibrogenesis [18]. How
anti-fibrotic agents change gene regulations in IPF, however, has never been systematically investigated.
Recently, Kwapiszewska and colleagues compared transcriptomic profiles in IPF lungs obtained from
patients treated with or without pirfenidone [19]. They found CEMIP (cell migration-inducing and
hyaluronan-binding protein), which has been previously associated with ECM production, was
strongly downregulated by pirfenidone treatment.

The rapid evolution of next-generation sequencing (NGS) technology provides a powerful tool
for systematic analysis of transcriptomic profiles [20,21]. After creating initial testing strategy and
generating sequencing data, investigator could survey for the differential gene expression in the target
cells with or without treatment. In order to understand the changes of gene regulation associated
with nintedanib treatment in IPF, we conducted a study using the NGS technology and various
bioinformatic tools to systematically evaluate the changes of mRNA and miRNA (microRNA) profiles
in IPF fibroblasts treated with 2 µM and 4 µM nintedanib, and without treatment. This study not
only enhanced current understanding of nintedanib molecular mechanisms, but also provided useful
information for future research on pharmacogenomics.

2. Experimental Section

2.1. Study Design

The flowchart of study design is illustrated in Figure 1. IPF fibroblasts (the second passage)
were cultured with 0.1% DMSO (control), 2 µM and 4 µM nintedanib for 24 h, and harvested for
RNA sequencing and expression profiling using the NGS platform. The significantly upregulated
and downregulated mRNAs were analyzed with bioinformatic tools including Search Tool for the
Retrieval of Interacting Genes (STRING) database and the Database for Annotation, Visualization
and Integrated Discovery (DAVID) database to investigate functions and pathways associated with
nintedanib treatment. In addition, the upregulated and downregulated miRNAs were analyzed with
miRmap for target prediction, and went through Venn diagram to determine genes with potential
miRNA–mRNA interactions. These potential miRNA–mRNA interactions were further validated
by another prediction database TargetScan and miRDB. Finally, the dysregulations of miRNAs and
mRNAs were validated using reverse transcription quantitative polymerase chain reaction (RT-qPCR).



J. Clin. Med. 2019, 8, 308 3 of 17
J. Clin. Med. 2019, 8, x FOR PEER REVIEW 3 of 18 

 
Figure 1. Flowchart of study design. Idiopathic pulmonary fibrosis fibroblasts (the second passage) 
were cultured with 0.1% dimethyl sulfoxide (DMSO) (control), 2 µM and 4 µM nintedanib for 24 h, 
and harvested for RNA sequencing and expression profiling using the next-generation sequencing 
(NGS) platform. Significantly dysregulated mRNAs (>2-fold change, FDR P < 0.05, and in a dose-
dependent manner) were analyzed with bioinformatic tools including Search Tool for the Retrieval 
of Interacting Genes (STRING) database and the Database for Annotation, Visualization and 
Integrated Discovery (DAVID) database to investigate functions and pathways associated with 
nintedanib treatment. Dysregulated miRNA (microRNA) (>2-fold change and in a dose-dependent 
manner) were analyzed with miRmap for target prediction, and went through Venn diagram to 
determine genes with potential miRNA–mRNA interactions. These potential miRNA–mRNA 
interactions were validated by another prediction database TargetScan and miRDB. Finally, the 
dysregulations of miRNAs and mRNAs were validated using reverse transcription quantitative 
polymerase chain reaction (RT-qPCR). 

2.2. Cultures of IPF Lung Fibroblasts 

Human IPF lung fibroblasts (Disease Human Lung Fibroblasts, Idiopathic Pulmonary Fibrosis. 
Catalog No. CC-7231), purchased from Lonza Inc. (Walkersville, MD, USA), were incubated at 37 °C 
in a 5% CO2-containing incubator in FGM™-2 Fibroblast Growth Medium-2 Bulletkit™ (Lonza, 
Catalog No. CC-3132) containing 0.5 mL human fibroblast growth factor-basic (hFGF-B), 0.5 mL 
insulin, 10 mL fetal bovine serum, and 0.5 mL GA-1000. The medium was changed every 2–3 days 
and the cells were passaged at 80–90% confluence for the following experiments. 

2.3. Nintedanib Treatment 

Nintedanib (BIBF1120, Catalog No. S1010), purchased from Selleckchem (Houston, TX, USA), 
was dissolved in dimethyl sulfoxide (DMSO) (Sigma Chemical Co., St. Louis, MO, USA) to obtain 
various concentrations. The reagents were stored at −20 °C until use in the experiments. In 
nintedanib-treated cultures, cells were treated with 1 µM, 2 µM, and 4 µM nintedanib for 24 h, 48 h, 

Figure 1. Flowchart of study design. Idiopathic pulmonary fibrosis fibroblasts (the second passage)
were cultured with 0.1% dimethyl sulfoxide (DMSO) (control), 2 µM and 4 µM nintedanib for 24 h, and
harvested for RNA sequencing and expression profiling using the next-generation sequencing (NGS)
platform. Significantly dysregulated mRNAs (>2-fold change, FDR p < 0.05, and in a dose-dependent
manner) were analyzed with bioinformatic tools including Search Tool for the Retrieval of Interacting
Genes (STRING) database and the Database for Annotation, Visualization and Integrated Discovery
(DAVID) database to investigate functions and pathways associated with nintedanib treatment.
Dysregulated miRNA (microRNA) (>2-fold change and in a dose-dependent manner) were analyzed
with miRmap for target prediction, and went through Venn diagram to determine genes with potential
miRNA–mRNA interactions. These potential miRNA–mRNA interactions were validated by another
prediction database TargetScan and miRDB. Finally, the dysregulations of miRNAs and mRNAs were
validated using reverse transcription quantitative polymerase chain reaction (RT-qPCR).

2.2. Cultures of IPF Lung Fibroblasts

Human IPF lung fibroblasts (Disease Human Lung Fibroblasts, Idiopathic Pulmonary Fibrosis.
Catalog No. CC-7231), purchased from Lonza Inc. (Walkersville, MD, USA), were incubated at 37 ◦C in
a 5% CO2-containing incubator in FGM™-2 Fibroblast Growth Medium-2 Bulletkit™ (Lonza, Catalog
No. CC-3132) containing 0.5 mL human fibroblast growth factor-basic (hFGF-B), 0.5 mL insulin, 10 mL
fetal bovine serum, and 0.5 mL GA-1000. The medium was changed every 2–3 days and the cells were
passaged at 80–90% confluence for the following experiments.

2.3. Nintedanib Treatment

Nintedanib (BIBF1120, Catalog No. S1010), purchased from Selleckchem (Houston, TX, USA), was
dissolved in dimethyl sulfoxide (DMSO) (Sigma Chemical Co., St. Louis, MO, USA) to obtain various
concentrations. The reagents were stored at −20 ◦C until use in the experiments. In nintedanib-treated
cultures, cells were treated with 1 µM, 2 µM, and 4 µM nintedanib for 24 h, 48 h, and 72 h. In control
cultures, cells were treated with the carrier solvent (0.1% DMSO). All experiments were performed in
triplicate. The selection of nintedanib concentrations of 1–4 µM in this study was mainly based on
previous study evaluating the effects of nintedanib on IPF fibroblasts [22].
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2.4. Cell Morphological Observation

Human IPF lung fibroblasts were incubated in 6 cm plates (1 × 105 cells/plate). When the
confluence reached 80%, carrier solvent (0.1% DMSO), 1 µM, 2 µM, or 4 µM nintedanib were added
into plates. Cell morphological changes were observed and photographed with an inverted-phase
contrast microscope at 24 h, 48 h, and 72 h after nintedanib treatment.

2.5. Cell Proliferation Assay

Cell proliferation and viability were assessed using the Premix WST-1 Cell Proliferation Assay
System (Takara Bio Inc., Shiga, Japan. Catalog No. MK400), according to the manufacturer’s
instructions. In brief, the Premix WST-1 assay measures cell proliferation and cell viability with
a colorimetric assay, based on cleavage of tetrazolium salts by mitochondrial dehydrogenase in viable
cells. Human IPF lung fibroblasts seeded in the 96-well plates (5 × 103 cells/well) were incubated to
confluence of 80% and treated with carrier solvent (0.1% DMSO), 1 µM, 2 µM, or 4 µM nintedanib for
24–72 h. Then 10 µL Premixed WST-1 reagent was added into each well, followed by incubation at
37 ◦C for 30 to 150 min. Quantification of cell proliferation and viability was measured by detecting
the absorbance at 450 nm using a multi-well plate reader (FLX80, BioTek, Winooski, VT, USA). Cell
proliferation was expressed as percentage, compared with controls (proliferation % = absorbance in
the experimental group/absorbance in the control group × 100%).

2.6. Cell Apoptosis Assay

Cell apoptosis was assessed using the Annexin V-FITC Early Apoptosis Detection Kit (Cell
signaling Technology, Beverly, MA, USA. Catalog No. 6592S), according to the manufacturer’s
instructions. In brief, human IPF lung fibroblasts seeded in the 6 cm plates (1 × 105 cells/well)
were incubated to confluence of 80% and treated with carrier solvent (0.1% DMSO), 1 µM, 2 µM, or
4 µM nintedanib for 24–72 h. Harvested cells were double stained with Annexin V and propidium
iodide (PI), then analyzed by the BD Accuri™ C6 Plus personal flow cytometer (Becton Dickinson,
San Josè, CA, USA). Cell apoptosis was expressed as the percentage of cells with Annexin-V and PI
double staining in total cells.

2.7. Next-Generation Sequencing (NGS) for miRNA and mRNA Expression Profiling

The expression profiles of miRNAs and mRNAs were examined by using an NGS platform. Total
RNA was extracted by TRIzol® Reagent (Thermo Fisher Scientific, Waltham, MA, USA. Catalog No.
15596018) according to the instruction manual. Purified RNA was quantified at OD260 nm by using a
ND-1000 spectrophotometer (Nanodrop Technologies, Wilmington, DE, USA) and qualitated by using
a Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA, USA) with RNA 6000 LabChip® kit (Agilent
Technologies, Santa Clara, CA, USA). The small RNA library construction and deep sequencing were
carried out at the biotechnology company Welgene (Taipei, Taiwan). Samples were prepared using
Illumina sample preparation kit according to the TruSeq Small RNA Sample Preparation Guide. The 3′

and 5′ adaptors were ligated to total RNA and reverse transcription followed by PCR amplification.
The enriched cDNA constructs were size-fractionated and purified on a 6% polyacrylamide gel
electrophoresis and the bands containing the 18–40 nucleotide RNA fragments (140–155 nucleotide
in length with both adapters). Libraries were sequenced on an Illumina instrument (75 single-end
cycles). Sequencing data was processed with the Illumina software. Small RNA sequencing data was
also obtained and analyzed. Initially, the sequences generated went through a filtering process to
obtain qualified reads. Trimmomatic (version 0.36) [23] was implemented to trim or remove the reads
according to the quality score. Qualified reads after filtering low-quality data were analyzed using
miRDeep2 [24] to clip the 3′ adapter sequence and discarding reads shorter than 18 nucleotides, before
aligning reads to the human genome (version: GRCh38.p10) from UCSC (University of California,
Santa Cruz, CA, USA). Only reads that mapped perfectly to the genome five or less times were used for
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miRNA detection, since miRNAs usually map to a limited number of genomic locations. MiRDeep2
estimates expression levels of known miRNAs, and also identifies novel miRNAs. The miRNAs with
low levels (<1 normalized read per million (rpm)) were excluded, and those with >2-fold changes (rpm
in 2 µM nintedanib-treated IPF fibroblasts/rpm in controls) in a dose-dependent manner (fold change
in 4 µM nintedanib-treated IPF fibroblasts > fold change in 2 µM nintedanib-treated IPF fibroblasts)
were considered dysregulated.

For transcriptome sequencing, the Agilent’s SureSelect Strand Specific RNA Library Preparation
Kit was used for preparing libraries. Then the libraries were sequenced on a Solexa platform
(150 paired-end cycles), using the TruSeq SBS Kit (Illumina, Inc. San Diego, CA, USA). Similar
with small RNA sequencing data, reads with low quality score were trimmed and removed using the
Trimmomatic (version 0.36). Qualified reads were analyzed using HISAT2 (version 2.1.0) [25], and
genes with low expression levels (<0.3 fragment per kilobase of transcript per million mapped reads
(FPKM)) in any groups were excluded. p values were calculated by cuffdiff (Cufflinks version 2.2.1)
with non-grouped samples using the “blind mode”, in which all samples were treated as replicates of a
single global “condition” and used to build one model for statistical test [26,27]. To correct for multiple
testing, False Discovery Rate (FDR) p values were calculated. Genes with FDR p values <0.05 (i.e.,
−log10 (FDR p) > 1.3) in 4 µM nintedanib-treated IPF fibroblasts and >2-fold changes (FPKM in 4 µM
nintedanib-treated IPF fibroblasts / FPKM in controls) in a dose-dependent manner (fold change in
4 µM nintedanib-treated IPF fibroblasts > fold change in 2 µM nintedanib-treated IPF fibroblasts) were
considered as significantly dysregulated genes. For analysis of functions and pathways associated
with nintedanib treatment, we uploaded all significantly dysregulated genes into the STRING and
DAVID database.

2.8. miRmap Database Analysis

miRNA have the ability to repress the expression of protein-coding genes. miRmap is an
open-source software library which can provide the prediction of comprehensive miRNA targets
(http://mirmap.ezlab.org/) [28]. By calculating the complementary ability of miRNA–mRNA
interactions, the putative target genes could be identified. miRmap uses high-throughput experimental
data from immunopurification, transcriptomics, proteomics, and polysome fractionation experiments
to examine feature correlations and also compare the predictive power. The prediction results provide
a list of putative target genes with miRmap score, which is a predictive reference value. In this study,
the criteria for selection of putative miRNA targets were miRmap score ≥99.0.

2.9. TargetScan Database Analysis

TargetScan predicts the target of miRNA by searching for the presence of conserved 8mer, 7mer,
and 6mer sites matching the seed region of each miRNA (http://www.targetscan.org). This is an
online database. The results of predictions are ranked by the predicted efficacy of targeting or by their
probability of conserved targeting [29]. TargetScan could provide a valuable resource for investigating
the role of miRNAs in gene-regulatory networks.

2.10. miRDB Database Analysis

miRDB provides web-based microRNA-target prediction and functional annotations
(http://mirdb.org) [30,31]. In miRDB, all the targets were predicted by MirTarget. MirTarget was
developed by analyzing microRNA-target interactions from high-throughput sequencing experiments.
miRDB can predict microRNA targets in five species, including human, mouse, rat, dog, and chicken.

2.11. STRING Database Analysis

The functional interactions between expressed proteins in cells are very important and
complicated. The Search Tool for the Retrieval of Interacting Genes (STRING) database
(https://string-db.org/) has collected and integrated this information, by consolidating known
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and predicted protein–protein association data for many different organisms. STRING offers
the information of the associations include direct (physical) interactions and indirect (functional)
interactions. Interactions in STRING are derived from five main sources: Conserved Co-Expressions,
High-throughput Lab Experiment, Genomic Context Predictions, Automated Text-mining, and
Previous Knowledge in Database [32].

2.12. DAVID Database Analysis

The Database for Annotation, Visualization and Integrated Discovery (DAVID) is a powerful
tool for gene functional classification (https://david.ncifcrf.gov/) [33]. It integrates Gene Ontology
(GO), biological process and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. In DAVID
database, a list of interesting genes can be classified into clusters of related biological functions,
signaling pathways, or diseases by calculating the similarity of global annotation profiles with
agglomeration algorithm method. The criteria of Expression Analysis Systematic Explorer (EASE)
score in DAVID database is a modified Fisher’s Exact p value. The reference score represents how
specifically the user genes are involved in the category (for example: signaling pathways). In this
study, we selected EASE score = 0.1 as default and define pathways with a Bonferroni p value < 0.05
as significant.

2.13. RT-qPCR

The expression levels of mRNAs and miRNAs in IPF fibroblasts treated with 0.1% DMSO (control)
and 4 µM nintedanib for 24 h were assessed with RT-qPCR. In brief, total RNA was extracted using
TRIzol® Reagent (Thermo Fisher Scientific). The mRNAs and miRNAs were reverse transcribed
using the PrimeScript RT reagent Kit (Perfect Real Time) (Takara Bio USA, Mountain View, CA,
USA) and the Mir-X miRNA First-Strand Synthesis Kit (Takara Bio, USA. Catalog No. 638315),
respectively. The mRNA and miRNA expressions were assessed using real-time analysis with Fast
SYBR Green Master Mix (Thermo Fisher Scientific. Catalog No. 4385612) catalog number: 4385612))
on the QuantStudio 3 Real-Time PCR System (Thermo Fisher Scientific). The primers used are
listed in Supplementary Table S1. The relative expression levels of the mRNAs and miRNAs were
normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and U6 small nuclear RNA
(snRNA), respectively. The relative standard curve method (2−∆∆Ct) was used to determine relative
mRNA and miRNA expression levels.

3. Results

3.1. Effects of Nintedanib on Cell Morphology, Proliferation, and Apoptosis in IPF Fibroblasts

This study aimed to evaluate the gene expression changes associated with nintedanib treatment in
IPF fibroblasts. To determine the optimal concentrations and treatment duration of nintedanib, we first
performed cell studies to test the effects of 1 µM, 2 µM, or 4 µM nintedanib with treatment duration
of 24 h, 48 h, 72 h, on cell morphology, proliferation, and apoptosis in IPF fibroblasts. Figure 2A
demonstrates the morphological changes of IPF fibroblasts after nintedanib treatment. As compared to
controls, fibroblasts treated with 2 µM and 4 µM nintedanib showed marked inhibition of cell growth
and an apparent increase in the formation of vacuoles suggesting autophagy. Figure 2B demonstrates
the inhibition effects of nintedanib on cell proliferation of IPF fibroblasts. Inhibition of cell proliferation
was observed in IPF fibroblasts treated with 2 µM and 4 µM nintedanib for 24 h, 48 h, and 72 h.
Figure 2C demonstrates the effects of nintedanib on apoptosis of IPF fibroblasts. Increased apoptosis
and necrosis were observed in IPF fibroblasts treated with 2 µM and 4 µM nintedanib. Based on
the results of above experiments, we confirmed the cytostatic and cytotoxic effects of nintedanib on
IPF fibroblasts, and decided to evaluate gene expression changes associated with 2 µM and 4 µM of
nintedanib treatment. To avoid excessive cell death resulted from over-treatment of nintedanib, the
IPF fibroblasts were harvested for deep sequencing after incubation with nintedanib for 24 h.

https://david.ncifcrf.gov/
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Figure 2. (A) Morphological changes of idiopathic pulmonary fibrosis (IPF) fibroblasts after nintedanib
treatment. The human IPF lung fibroblasts were treated with 0.1% DMSO (control), 1 µM, 2 µM, and
4 µM nintedanib. The cell morphological changes were observed with an inverted-phase contrast
microscope at 24 h, 48 h, and 72 h after nintedanib treatment. (B) Inhibition effects of nintedanib on cell
proliferation of IPF fibroblasts. The human IPF lung fibroblasts were treated with 0.1% DMSO (control),
1 µM, 2 µM, and 4 µM nintedanib. Cell proliferation was measured with the WST-1 cell proliferation
assay at 24 h, 48 h, and 72 h after nintedanib treatment. * p < 0.05; ** p < 0.01; *** p < 0.001. (C) Effects
of nintedanib on apoptosis of IPF fibroblasts. The human IPF lung fibroblasts were treated with 0.1%
DMSO (control), 1 µM, 2 µM, and 4 µM nintedanib. Cell apoptosis was measured with the Annexin
V/Propidium Iodide flow cytometry at 24 h, 48 h, and 72 h after nintedanib treatment.
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3.2. Overview of Differential Gene Expressions in Nintedanib-Treated IPF Fibroblasts

The raw sequencing data in this study were uploaded to the GEO repository with the GEO
accession number of GSE124786, GSE124787, and GSE124788. The volcano plots of gene expression
data in IPF fibroblasts associated with nintedanib treatment were shown in Figure 3A (2 µM nintedanib
versus control) and Figure 3B (4 µM nintedanib versus control), with significantly dysregulated genes
(fold change >2 and FDR p < 0.05) shown in red (upregulation) and green (downregulation). In
summary, 84 upregulated genes and 32 downregulated genes were identified in IPF fibroblasts treated
with 2 µM nintedanib; while 161 upregulated genes and 206 downregulated genes was identified in
IPF fibroblasts treated with 4 µM nintedanib. As expected, more dysregulated genes were identified
in IPF fibroblasts treated with 4 µM nintedanib than in fibroblasts treated with 2 µM nintedanib.
The density plots of deep sequencing results among 3 groups were showed in Figure 3C. In general,
the gene expressions of 4 µM nintedanib-treated IPF fibroblasts were distributed in lower FPKM
values and with higher density than 2 µM nintedanib-treated IPF fibroblasts and controls. Among the
dysregulated genes identified in 4 µM nintedanib-treated IPF fibroblasts, we excluded dysregulated
genes without a dose-dependent manner (defined as fold change in 4 µM nintedanib-treated IPF
fibroblasts > fold change in 2 µM nintedanib-treated IPF fibroblasts), leaving a total of 157 upregulated
genes and 151 downregulated genes for further analysis (Table S2).
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Figure 3. Display of gene expression data in nintedanib-treated IPF fibroblasts. (A) Volcano plots of
differential gene expression patterns of IPF fibroblasts treated with 2 µM nintedanib versus control.
(B) Volcano plots of differential gene expression patterns of IPF fibroblasts treated with 4 µM nintedanib
versus control. Significantly dysregulated genes, i.e., −log10 (FDR p) > 1.3 and fold change >2, were
shown in red (upregulation) and green (downregulation). (C) The density plots illustrate smoothed
frequency distribution of the fragments per kilobase of transcript per million mapped reads (FPKM)
among controls and IPF fibroblasts treated with 2 µM and 4 µM nintedanib.

3.3. Protein–Protein Interaction, Biological Pathway, and Molecular Function Analysis

The 157 significantly upregulated and 151 significantly downregulated genes were used for
protein–protein interactions, biological pathway, and molecular function analysis. Firstly, we uploaded
these 308 dysregulated genes into the STRING database for protein–protein interaction (PPI) network
analysis. We set the minimum required interaction score as 0.900 (highest confidence) and removed
protein nodes without interactions. This analysis obtained a highly interactive PPI network of 307 nodes
(nodes represent proteins) and 1227 edges (edges represent protein–protein associations; the expected
number of edges was 196), with PPI enrichment p value of <1.0 × 10−16 (Figure 4). According to gene
ontology biological process, most genes in the PPI network were related to the following biological
pathways: cell cycle (110 genes, FDR p = 1.54 × 10−46, shown in red), cell cycle process (94 genes,
FDR p = 2.12 × 10−45), mitotic cell cycle process (76 genes, FDR p = 1.82 × 10−42), mitotic cell cycle
(78 genes, FDR p = 1.65 × 10−41, shown in blue).
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Figure 4. Protein–protein interaction network analysis of dysregulated genes in nintedanib-treated IPF
fibroblasts using STRING. The 308 top dysregulated genes (157 upregulated and 151 downregulated)
were entered into the Search Tool for the Retrieval of Interacting Genes (STRING) database for
protein–protein interaction (PPI) network analysis. The minimum required interaction score was
set to the highest confidence (score = 0.900). Nodes without edges are not displayed. This analysis
obtained a highly interactive PPI network of 307 nodes and 1227 edges, with PPI enrichment p value
of <1.0 × 10−16. Most genes in the PPI network were related to the following biological pathways:
cell cycle (110 genes, shown in red), cell cycle process (94 genes), mitotic cell cycle process (76 genes),
and mitotic cell cycle (78 genes, shown in blue). Nodes represent proteins and edges represent
protein–protein associations.

Secondly, we used DAVID to analyze possible mechanisms of the top dysregulated genes in IPF
fibroblasts related to nintedanib treatment. In biological process (Figure 5A), cell division (45 genes
were involved), mitotic nuclear division (30 genes), sister chromatid cohesion (21 genes), and DNA
replication (22 genes) had the most significant status. In cellular components (Figure 5B), nucleoplasm
(98 genes), spindle pole (18 genes), and condensed chromosome kinetochore (16 genes) had the most
significant status. In molecular functions (Figure 5C), microtubule binding (17 genes) and protein
binding (188 genes) had the most significant status.
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by DAVID. (A) Biological process. (B) Cellular components. (C) Molecular functions. The counts
of involved genes were showed as the number in. Pathways with a Bonferroni p value < 0.05 were
considered significant. The area of each pathway reflected the significant level, based on their −log10
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3.4. Dysregulated Genes with Potential miRNA–mRNA Interactions in Nintedanib-Treated IPF Fibroblasts

Using the miRmap database with a criteria of miRmap score ≥99.0, we predicted 568 target
mRNAs from 46 significantly downregulated miRNAs and 640 target mRNAs from 36 significantly
upregulated miRNAs. Venn diagram analysis of the 568 predicted targets (of 46 downregulated
miRNAs) and 157 upregulated mRNAs identified 7 upregulated genes with potential miRNA–mRNA
interactions in nintedanib-treated IPF fibroblasts; while analysis of the 640 predicted targets (of
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36 upregulated miRNAs) and 151 downregulated mRNAs identified 5 downregulated genes with
potential miRNA–mRNA interactions (Figure 6). Table 1 shows the 13 potential miRNA–mRNA
interactions, involving 5 miRNAs and 12 genes, associated with nintedanib treatment. Only
interactions of hsa-miR-486-3p with DDX11, E2F1, NPTX1, and PLXNA4, and interaction of
hsa-miR-92a-1-5p with SLC25A23 were validated in both TargetScan and miRDB database. The
details of possible binding sites in these 5 validated miRNA–mRNA interactions were provided in the
Table S3.
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Figure 6. Identification of dysregulated genes with potential miRNA–mRNA interactions in
nintedanib-treated IPF fibroblasts. The Venn diagram analysis of predicted targets of dysregulated
miRNAs and dysregulated mRNAs identified 7 upregulated genes and 5 downregulated genes with
potential miRNA–mRNA interactions.

Table 1. Potential miRNA–mRNA interactions associated with nintedanib treatment validated with
miRmap, TargetScan and miRDB.

miRNA Fold
Change

Gene
Symbol

Fold
Change

miRmap
Score

TargetScan Total
Context++ Score miRDB

hsa-miR-486-3p 2.31 DDX11 −4.05 99.389 −0.50 59

hsa-miR-486-3p 2.31 E2F1 −5.78 99.597 −0.85 65

hsa-miR-486-3p 2.31 NPTX1 −2.89 99.908 −0.62 95

hsa-miR-486-3p 2.31 PLXNA4 −6.94 99.700 −0.18 70

hsa-miR-92a-1-5p −2.71 SLC25A23 2.68 99.527 −1.27 65

hsa-miR-1275 −4.74 PRELP 3.87 99.724 65

hsa-miR-1275 −4.74 HRK 5.36 99.881 87

hsa-miR-100-3p −2.52 GJA3 3.04 99.326 −0.39

hsa-miR-1275 −4.74 ZBED3 3.46 99.669 −0.94

hsa-miR-1275 −4.74 ANTXR1 2.69 99.535 −0.66

hsa-miR-486-3p 2.31 SUV39H1 −4.35 99.421 −0.47

hsa-miR-1275 −4.74 MBP 8.97 99.886

hsa-miR-326 4.64 PLXNA4 −6.94 99.932

Potential miRNA–mRNA interactions validated in both TargetScan and miRDB were shown in bold. Fold change
indicates the expression change in 4 µM nintedanib-treated IPF fibroblasts, compared to controls. The context++
score for a specific site is the sum of the contribution of 14 features. The total context++ score is calculated by
summing the context++ scores for the sites to the representative miRNA.

To further validate the results from NGS analysis, the expression levels the mRNA and miRNA
involved in the 5 potential miRNA–mRNA interactions were assessed with RT-qPCR in another sets
of IPF fibroblasts treated with 0.1% DMSO (control) and 4 µM nintedanib for 24 h. For mRNAs, the
expression levels of DDX11, E2F1, NPTX1, and PLXNA4 were significantly lower in nintedanib-treated
IPF fibroblasts than in controls, and the expression levels of SLC25A23 were significantly higher in
nintedanib-treated IPF fibroblasts than in controls (Figure 7A). For miRNAs, the expression levels
of both hsa-miR-486-3p and hsa-miR-92a-1-5p were significantly higher in nintedanib-treated IPF
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fibroblasts than in controls (Figure 7B). The dysregulations of these mRNA and miRNA identified
from NGS analysis were all validated in RT-qPCR, except for hsa-miR-92a-1-5p.
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Figure 7. The expression levels of (A) mRNAs and (B) miRNAs in IPF fibroblasts treated with
0.1% DMSO (control) and 4 µM nintedanib assessed with RT-qPCR. The expression levels in
nintedanib-treated IPF fibroblasts were compared to the expression levels in controls, expressed
as mean ± standard error of the mean, and analyzed with Student’s t-test. ** p < 0.01; *** p < 0.001.

4. Discussion

IPF is the most common among idiopathic interstitial pneumonias. The incidence of IPF
ranges between 0.22 and 17.4 per 100,000 population and the patients with IPF are usually in the
sixth or seventh decade of life [12]. Because of the increasing incidence and the lethal nature of
this disease, more attention has been drawn to develop effective treatment for IPF. Nintedanib, a
multi-target tyrosine kinase inhibitor, has been demonstrated to retardate the disease progression in
IPF patients [34]. Nintedanib is able to inhibit TGF-β signaling, downregulate extracellular matrix
(ECM) gene/protein expression and promote noncanonical autophagy [22]. To further investigate the
molecular mechanisms associated with nintedanib treatment in IPF, we used NGS to scan mRNA and
miRNA changes in primary human IPF fibroblasts treated with 2 µM and 4 µM nintedanib, compared
to those without treatment. We identified 151 significantly upregulated genes and 157 significantly
downregulated genes associated with nintedanib treatment in a dose-dependent manner. These
308 dysregulated genes were then analyzed in different bioinformatic tools for their protein–protein
interactions, biological pathways, and molecular functions.

The STRING analysis showed strong protein–protein interactions within the top dysregulated
genes. Interestingly, most genes in the PPI network were related to biological pathways of cell cycle,
cell cycle process, mitotic cell cycle process, and mitotic cell cycle. The DAVID analysis revealed that the
role of nintedanib in treating IPF fibroblast might most possibly relate to the biological process of cell
division, mitotic nuclear division, sister chromatid cohesion, and DNA replication. We also identified
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7 upregulated genes and 5 downregulated genes with potential miRNA–mRNA interactions. After
validation in TargetScan and miRDB, upregulated SLC25A23 (might be de-repressed by downregulated
hsa-miR-92a-1-5p) and downregulated DDX11, E2F1, NPTX1, and PLXNA4 (might be repressed by the
upregulated hsa-miR-486-3p) were validated as the dysregulated genes with potential miRNA–mRNA
interactions associated with nintedanib treatment. The dysregulations of these mRNAs and miRNAs
were further validated with RT-qPCR, except for hsa-miR-92a-1-5p.

Our data showed that DDX11 was downregulated after nintedanib treatment. DDX11 is the
predicted target of hsa-miR-486-3p, which is upregulated in nintedanib-treated IPF fibroblasts. DDX11,
also known as CHL-1, is able to promote cell proliferation, metastasis, and migration in human glioma
cells [35]. Although no previous study investigating the role of DDX11 in IPF fibroblasts, our data
suggest that nintedanib may suppress DDX11 in IPF fibroblasts and therefore suppress the proliferation
of IPF fibroblasts. According to our NGS data, the expression change of DDX1 in nintedanib-treated
IPF fibroblasts was in a dose-dependent manner. Therefore, we hypothesized that nintedanib might
decreased proliferation of IPF fibroblasts through regulation of hsa-miR-486-3p-DDX11.

We found that nintedanib treatment was associated with downregulation of PLXNA4. PLXNA4
is also the predicted target of the upregulated hsa-miR-486-3p in nintedanib-treated IPF fibroblasts.
PLXNA4 may promote progression and angiogenesis of tumor, possibly by enhancement of VEGF
and bFGF signaling pathways [36]. Downregulation of PLXNA4 may be associated with decreased
angiogenesis. Therefore, our data suggest the changed expressions of hsa-miR-486-3p-PLXNA4
associated with nintedanib treatment may contribute to decreased angiogenesis in IPF.

Our data also showed that E2F1 was downregulated after nintedanib treatment. Similar to DDX11
and PLXNA4, E2F1 is the predicted target of hsa-miR-486-3p. E2F1 protein is a member of the E2F
family of transcription factors. The E2F1 transcription factor play critical roles in the regulation
of cell cycle and apoptosis [37]. It is considered as one of the most important protein required for
entering into the S phase during cell cycle progression [38]. Several growth factors including epidermal
growth factor (EGF), keratinocyte growth factor (KGF), and VEGF exert their proliferating biological
activity by increasing expression of E2F1 [37,39–41]. It is not surprising to know that treatment with
nintedanib, which targets many growth factor receptors, was associated with downregulation of E2F1.
Our interaction analysis suggests that upregulation of hsa-miR-486-3p might have an interaction with
downregulation of E2F1 in nintedanib-treated IPF fibroblasts. However, this hsa-miR-486-3p-E2F1
interaction was predicted from the bioinformatic database. How hsa-miR-486-3p, E2F1 transcription
factors, and growth factors interact with each other in nintedanib treatment need further studies to
confirm and elucidate.

Another downregulated gene NPTX1 was also the predicted target of hsa-miR-486-3p. The protein
encoded by NPTX1 is a member of the neuronal pentraxin family. The expression of this gene is mainly
localized to the nervous system [42]. The only upregulated gene with miRNA–mRNA interaction
found in this study was SLC25A23, which might have an interaction with the downregulated miRNA
hsa-miR-92a-1-5p based on our bioinformatic prediction. SLC25A23 is a member of the mitochondrial
transporter family SLC25 embedded in the inner mitochondrial membrane [43]. SLC25A23 has been
shown to augment mitochondrial matrix Ca2+ influx, and may induce oxidative stress-mediated cell
death [44]. Although the function of this gene remains largely unknown, it is possible that nintedanib
treatment downregulated hsa-miR-92a-1-5p which in turn de-repressed SLC25A23 and enhance cell
death of fibroblasts. However, the downregulation of hsa-miR-92a-1-5p in nintedanib-treated IPF
fibroblasts was not confirmed by the RT-qPCR method.

To the best of our knowledge, this is the first study using NGS and bioinformatics to scan mRNA
and miRNA changes following nintedanib treatment. We identified 308 significantly dysregulated
genes associated with nintedanib treatment in IPF fibroblasts. We found strong protein–protein
interactions within these dysregulated genes, mostly involved in the pathways of cell cycle and mitotic
cell cycle. We also identified 1 upregulated and 4 downregulated genes with potential miRNA–mRNA
interactions. According to our data from nintedanib-treated IPF fibroblasts and the literatures, we
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proposed that upregulation of hsa-miR-486-3p following nintedanib treatment might be associated with
decreased expression of DDX11, E2F1, and PLXNA4. These gene expression changes together might
contribute to decreased proliferation of fibroblasts and decreased angiogenesis in the microenvironment
of IPF (Figure 8). Our findings improve current understandings of molecular mechanisms of nintedanib
treatment in IPF. Our approach and results may also provide useful information for future research on
nintedanib pharmacogenomics. Nevertheless, there remain several limitations in this study. Firstly, as
nintedanib is known to interfere with VEGFR, FGFR, and PDGFR, and potentially also with TGF-β
signaling, its therapeutic effects will likely be observed when cells are stimulated with VEGF, FGF,
PDGF, and/or TGF-β. The culture medium used in this study contains only FGF, but VEGF and PDGF
might also be present in the fetal bovine serum in unknown quantities. The FGF-containing culture
condition might somewhat explain our findings that nintedanib-induced gene expression changes
were mostly related to pathways of cell cycle, instead of pathways of TGF-β signaling, ECM, and
autophagy. Considering that results would be different when fibroblasts were stimulated with different
growth factors in the medium, plus there is no perfect culture condition mimicking the true in vivo
microenvironment of IPF lung, we decided to cultivate the IPF lung fibroblasts using the standard
condition as suggested by Lonza. Secondly, the dysregulated miRNAs, mRNAs and their interactions
found in this study were based on primary IPF lung fibroblasts, RNA deep sequencing, bioinformatics,
and RT-qPCR. The dysregulations of these genes need to be confirmed by other methods and in more
clinical samples. The relationships between miRNAs and gene expressions found in this study also
need be confirmed in future cell-based assays.J. Clin. Med. 2019, 8, x FOR PEER REVIEW 15 of 18 
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Figure 8. The schematic summary of gene expression changes and possible molecular mechanisms
associated with nintedanib treatment in IPF fibroblasts. Strong protein–protein interactions was
found within the dysregulated genes in nintedanib-treated IPF fibroblasts, with most genes involved
in pathways of cell cycle and mitotic cell cycle. The upregulation of hsa-miR-486-3p might be
associated with decreased expression of DDX11, E2F1, and PLXNA4. These gene expression changes
together might contribute to decreased proliferation of fibroblasts and decreased angiogenesis in the
microenvironment of IPF.

5. Conclusions

We identified 308 significantly dysregulated genes associated with nintedanib treatment in IPF
fibroblasts. We found strong protein–protein interactions within these dysregulated genes, with most
genes involved in the pathways of cell cycle and mitotic cell cycle. In IPF fibroblasts, we found
nintedanib treatment was associated with upregulation of hsa-miR-486-3p, which might repress
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DDX11, E2F1, and PLXNA4 expressions. These together might contribute to decreased proliferation of
fibroblasts and decreased angiogenesis in the microenvironment of IPF. However, this is a screening
study using primary IPF lung fibroblasts and bioinformatics approaches. Our findings need further
studies to confirm.
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