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Abstract: Type 1 diabetes mellitus (T1DM) is caused by the autoimmune targeting of pancreatic
β-cells, and, in the advanced stage, severe hypoinsulinemia due to islet destruction. In patients with
T1DM, continuous exogenous insulin therapy cannot be avoided. However, an insufficient dose of
insulin easily induces extreme hyperglycemia or diabetic ketoacidosis, and intensive insulin therapy
may cause hypoglycemic symptoms including hypoglycemic shock. While these insulin therapies
are efficacious in most patients, some additional therapies are warranted to support the control of
blood glucose levels and reduce the risk of hypoglycemia in patients who respond poorly despite
receiving appropriate treatment. There has been a recent gain in the popularity of cellular therapies
using mesenchymal stromal cells (MSCs) in various clinical fields, owing to their multipotentiality,
capacity for self-renewal, and regenerative and immunomodulatory potential. In particular, adipose
tissue-derived MSCs (ADMSCs) have become a focus in the clinical setting due to the abundance and
easy isolation of these cells. In this review, we outline the possible therapeutic benefits of ADMSC for
the treatment of T1DM.

Keywords: type 1 diabetes mellitus; adipose tissue-derived mesenchymal stromal cell;
insulin-producing cell; islet transplantation; differentiation; immunomodulation; revascularization

1. Introduction: The Current Status of Type 1 Diabetes Mellitus

Diabetes mellitus (DM) is a common disease that has rapidly increased worldwide [1]. In 2015,
it was estimated that 415 million people were living with DM, with this prevalence predicted to rise
to 642 million by 2040 [1]. Long-term DM is associated with various comorbid conditions including
neuropathy, retinopathy, nephropathy, and ischemic heart disease, which often impair patient quality
of life (QOL) [2,3]. Type 1 diabetes mellitus (T1DM), which counts for approximately 5% to 10% of DM
cases, is caused by an autoimmune response against pancreatic β-cells [4,5]. Most of the pancreatic
islets are destroyed and, in advanced stages, patients present with severe hypoinsulinemia [4,6]. These
patients require continuous exogenous insulin therapy, with insufficient doses leading to extreme
hyperglycemia or diabetic ketoacidosis. In some cases, intensive insulin therapy may further result in
hypoglycemic symptoms including hypoglycemic shock [7]. The recent remarkable development of
insulin therapies including various types of insulin agents and insulin pumps, have allowed patients
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to properly and easily control their blood glucose levels [8,9]. In particular, recent randomized trials
showed that patients who used insulin pump therapy had better improvements in hemoglobin A1c
(HbA1c) levels and QOL as compared with patients treated with multiple daily insulin injections.
Despite this, the risk of severe hypoglycemia is similar between both groups [10]. Yet, although
most patients with T1DM can control their blood glucose levels through insulin therapies, there is a
need for some additional therapies to support the control of blood glucose levels, minimize the risk
of hypoglycemia, and help patients recover their blood glucose control in patients who struggle to
maintain healthy levels despite receiving a consistent insulin therapy.

One of the effective surgical therapy for T1DM is pancreas transplantation. Pancreas
transplantation can rescue T1DM patients with renal disease in end stage and unaware hypoglycemia.
However, this therapy presents post-operational risk for complications such as thrombosis, pancreatitis,
infection bleeding and rejection [11]. Another possible therapy is islet transplantation, a type of
cellular replacement therapy that can rescue the production of an appropriate amount of insulin in a
glucose-dependent manner and thereby diminish the risk of hypoglycemia [12,13]. This therapy would
also enable patients to be free from the need to administer insulin [14,15]. However, compared with
pancreas whole organ transplantation, islet transplantation has poor efficacy. Furthermore, despite the
development of a method for systematic islet isolation [16] and the recent use of an immunosuppression
protocol [12], it remains difficult to engraft transplanted islets with good long-term survival [17,18].
Thus, alternative therapies to protect resident cells that also possess physiological, insulin-releasing
potential over the long term are desired. We review herein the possibility of an alternative therapy that
is stem cell therapy.

Cellular therapy using mesenchymal stromal cells (MSCs) has gained popularity in recent years
across various clinical fields [19,20]. Owing to its multipotentiality, its capacity for self-renewal, and
its regenerative and immunomodulatory potential, MSCs may prove a useful cellular resource for
treating T1DM. In particular, adipose tissue-derived MSCs (ADMSCs) have been targeted as potential
therapy cells due to their abundance and easy isolation. In this review, we show the possibilities of
ADMSC therapies for T1DM.

2. What are Adipose Tissue-Derived Mesenchymal Stromal Cells?

2.1. Properties of Mesenchymal Stromal Cells

The stem cell is the root of all mature cellular lineages and possesses self-renewal potential
as well as the capacity to differentiate into multiple functional cells [21]. MSCs are multipotent
stromal cells that can differentiate into endothelial cells [22], cardiomyocytes [23], hepatocytes [24]
or neural cells [25]. MSCs also release various growth and inflammatory factors, such as vascular
endothelial growth factor (VEGF), hepatocyte growth factor (HGF), fibroblast growth factor (FGF) and
prostaglandin E2 (PGE2) [26] (Figure 1) to contribute to the repair of injured tissues [26,27]. Moreover,
MSCs are excellent immunomodulators, able to manage severe inflammation and the immune system
by suppressing T cell activation, proliferation and maturation [28,29]; inhibiting naïve and memory
T cell response [29]; and upregulating the production of regulatory T cells (Tregs) [30]. In the early
1970s, Friedenstein and his colleagues first identified fibroblastic precursor cells in the murine bone
marrow [31]. These cells were named as MSCs in the 1980s [32]. MSCs are adult stromal cells derived
from the mesoderm and part of the ectodermal neural crest [33,34]. In the clinical setting, MSCs are
well tolerated, and their use is less associated with ethical concerns as compared with embryonic stem
cells (ESCs) [35].
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Figure 1. Major properties of mesenchymal stromal cells (MSCs). MSCs are capable of self-renewal, 
regeneration multi-differentiation, and are endowed with immunomodulatory potential. These cells 
express various growth factors (e.g., VEGF, vascular endothelial growth factor; HGF, hepatocyte 
growth factor; IGF-1, insulin-like growth factor-1; FGF, fibroblast growth factor; KGF, keratinocyte 
growth factor; TGF-β, transforming growth factor-β) and anti-inflammatory cytokines (e.g., PGE2, 
prostaglandin E2). MSCs also suppress the activities of cytotoxic T cells and promote the production 
of regulatory T cells. 

According to the Mesenchymal and Tissue Stem Cell Committee of the International Society for 
Cellular Therapy [36], MSCs are defined by three parameters: the cells (1) are plastic-adherent and 
can be maintained in standard culture conditions; (2) express cluster of differentiation (CD)-105, 
CD73 and CD90 without hematopoietic markers (e.g., CD45, CD34, CD14, CD11b, CD79α, CD19 or 
HLA-DR); and (3) differentiate into osteoblasts, adipocytes, and chondroblasts in vitro. Previously, it 
was considered that MSCs could be isolated from mesodermal tissues only. However, more recent 
studies have identified MSCs in almost all tissues or postnatal organs including skeletal muscle, skin, 
placenta, umbilical cord, dental pulp, thymus, liver, adrenal grand, pancreas, spleen, and adipose 
tissue [20,37–46]. 

Adipose tissue plays important roles in energy storage, insulation, and as a producer of 
numerous endocrine mediators, such as adipokines or lipokines [47]. These roles are carried out by 
adipocytes, the major cellular component of adipose tissue. Although few in number, stromal cells 
within adipose tissue are responsible for replenishing mature adipocytes. These ADMSCs retain the 
capacity for self-renewal and differentiation throughout the organism’s lifetime [48], and possess the 
capacity for homing, immunomodulation, promotion of repair, and direct regeneration of damaged 
tissues [49–51]. Like stromal cells in other organs, ADMSCs can differentiate into various cells like 
other MSCs including osteogenic, adipogenic, myogenic, and chondrogenic lineages. 

2.2. Characteristics of Adipose Tissue-Derived Mesenchymal Stromal Cells 

Despite their similarity to bone marrow-derived (BM) MSCs, ADMSCs have some unique 
characteristics. First, is their unique phenotypic pattern of expression. Whereas both MSCs and 
ADMSCs are positive for CD29, CD44, CD71, CD90, CD105/SH2 and SH3, only ADMSCs express 
CD36 and CD49d, and CD106 is common only to BM-MSCs [46,52,53]. These phenotypic expression 
patterns might be associated with differences in the derivation of ADMSCs and BM-MSCs [46,54]. 

Figure 1. Major properties of mesenchymal stromal cells (MSCs). MSCs are capable of self-renewal,
regeneration multi-differentiation, and are endowed with immunomodulatory potential. These cells
express various growth factors (e.g., VEGF, vascular endothelial growth factor; HGF, hepatocyte
growth factor; IGF-1, insulin-like growth factor-1; FGF, fibroblast growth factor; KGF, keratinocyte
growth factor; TGF-β, transforming growth factor-β) and anti-inflammatory cytokines (e.g., PGE2,
prostaglandin E2). MSCs also suppress the activities of cytotoxic T cells and promote the production of
regulatory T cells.

According to the Mesenchymal and Tissue Stem Cell Committee of the International Society
for Cellular Therapy [36], MSCs are defined by three parameters: the cells (1) are plastic-adherent
and can be maintained in standard culture conditions; (2) express cluster of differentiation (CD)-105,
CD73 and CD90 without hematopoietic markers (e.g., CD45, CD34, CD14, CD11b, CD79α, CD19 or
HLA-DR); and (3) differentiate into osteoblasts, adipocytes, and chondroblasts in vitro. Previously, it
was considered that MSCs could be isolated from mesodermal tissues only. However, more recent
studies have identified MSCs in almost all tissues or postnatal organs including skeletal muscle, skin,
placenta, umbilical cord, dental pulp, thymus, liver, adrenal grand, pancreas, spleen, and adipose
tissue [20,37–46].

Adipose tissue plays important roles in energy storage, insulation, and as a producer of numerous
endocrine mediators, such as adipokines or lipokines [47]. These roles are carried out by adipocytes,
the major cellular component of adipose tissue. Although few in number, stromal cells within adipose
tissue are responsible for replenishing mature adipocytes. These ADMSCs retain the capacity for
self-renewal and differentiation throughout the organism’s lifetime [48], and possess the capacity for
homing, immunomodulation, promotion of repair, and direct regeneration of damaged tissues [49–51].
Like stromal cells in other organs, ADMSCs can differentiate into various cells like other MSCs
including osteogenic, adipogenic, myogenic, and chondrogenic lineages.

2.2. Characteristics of Adipose Tissue-Derived Mesenchymal Stromal Cells

Despite their similarity to bone marrow-derived (BM) MSCs, ADMSCs have some unique
characteristics. First, is their unique phenotypic pattern of expression. Whereas both MSCs and
ADMSCs are positive for CD29, CD44, CD71, CD90, CD105/SH2 and SH3, only ADMSCs express
CD36 and CD49d, and CD106 is common only to BM-MSCs [46,52,53]. These phenotypic expression
patterns might be associated with differences in the derivation of ADMSCs and BM-MSCs [46,54].
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The second unique feature is in its multipotency, with differences in the polarity, capacity, and
kinetics between the two types of MSCs [46]. ADMSCs have a significantly higher proliferative and
differentiative potential than BM-MSCs, whereas BM-MSCs show higher capacities for osteogenesis
and chondrogenesis [53,55].

The third unique feature is in its immunomodulatory abilities. Although more than 90% of the
immune-phenotypes are similar between ADMSCs and BM-MSCs [46,56,57], recent evidence indicates
that ADMSCs are stronger immunomodulators than other types of MSCs. For example, Blancher and
colleagues showed that ADMSCs had no capacity to strengthen the alloreactivity of lymphocytes, but
suppressed mixed lymphocyte reactions and lymphocyte proliferative responses [56]. Moreover,
Camara’s group found that ADMSCs promote the expression of programming death ligand-1
(PD-L1), which induces the expansion of CD4+Foxp3+ cells (Tregs) and inhibits the proliferation
of lymphocytes [58,59]. In addition, ADMSCs can functionally inhibit the expression of CD80, CD83
and CD86 that are important molecules on dendritic cells (DCs) more effectively than BM-MSCs [60].
Collectively, these functions imply the stronger immunomodulatory functions of ADMSCs and their
usefulness for clinical transplantation.

The fourth attribute of ADMSCs is their anti-inflammatory function and trophic effects. ADMSCs
produce various pro-inflammatory and anti-inflammatory cytokines [61–63]. Among these cytokines,
ADMSCs produce significantly higher amounts of interleukin (IL)-1Ra [61], IL-6 [61], interferon
(IFN)-γ [64] and transforming growth factor (TGF)-β [63,65]; and lower volumes of IL-12 [66]
as compared with BM-MSCs. ADMSCs also release higher amounts of growth factors including
granulocyte colony stimulating factor (G-CSF) [61], granulocyte macrophage colony stimulating factor
(GM-CSF) [61], VEGF [65,67,68], HGF [61,67,68], keratinocyte growth factor (KGF) [65], insulin-like
growth factor 1 (IGF-1) [64], and FGF [62,64,65].

In summary of this chapter, ADMSCs have some superior functions to other MSCs in terms of their
immunomodulatory, anti-inflammatory, and trophic effects. These advantages might contribute to the
beneficial effects of ADMSC transplantation in patients with T1DM. Their superior immunomodulatory
and anti-inflammatory functions may contribute to prevention of graft rejection, and the better trophic
effect support engraftment of transplanted islets.

3. Cellular Therapy Using Adipose Tissue-Derived Mesenchymal Stromal Cells for
Insulin-Dependent Type 1 Diabetes Mellitus

3.1. Outline of Cellular Therapy Using Adipose Tissue-Derived Mesenchymal Stromal Cells

The initial research on the use of MSCs for T1DM commenced in 2003, anticipating tolerance and
neogenesis of the resident pancreatic islets [69,70]. Numerous studies have also been promoted since
the discovery of insulin-producing cells (IPCs) derived from adipose tissue, also first published in
2003 [71]. The expected therapeutic effects of cellular therapy using ADMSCs can be roughly classified
into the following four categories: (1) the use of differentiated-IPCs for transplantation; (2) methods
to support and improve the function and proliferation of resident pancreatic islets; (3) methods that
support the engraftment of co-transplanted islet grafts; and (4) methods that support the function of
cultured islet grafts for transplantation.

3.2. Differentiated, Insulin-Producing Cells for Transplantation

Over the years, several types of stromal cells, including ADMSCs, have been exploited for the
potential to derive IPCs [72,73]. Table 1 outlines the efficacies of differentiated-IPCs derived from
ADMSCs [74–83]. The first trial for the differentiation of IPCs from human ADMSCs was performed
by Timper and colleagues [74]. ADMSCs were isolated from human adipose tissues harvested during
plastic surgery. The cells were then cultured in serum-free medium supplemented with exendin-4,
pentagastrin, activin-A, betacellulin, nicotinamide, and HGF (Figure 2). The cells expressed pancreatic
endocrine cellular phenotypes and islet genes, such as insulin, glucagon and somatostatin, which



J. Clin. Med. 2019, 8, 249 5 of 28

were evidence of their differentiation into IPCs. However, the potential for insulin secretion was
not shown. Several years later, Kang et al. succeeded in differentiating human ADMSCs into IPCs
using glucagon-like peptide-1 (GLP-1). They detected that the IPCs released insulin and C-peptide
in a glucose-dependent manner. Moreover, they transplanted 1.5 × 106 differentiated IPCs into the
renal subcapsular space of diabetic mice and found an increase in serum insulin levels and achieved
normoglycemia. This therapeutic effect was brought about by the transplanted IPCs rather than the
regeneration or the repopulation of endogenous β-cells [76]. This is the first study to develop IPCs
that can work as endocrine hormone-producing cells. Amer’s group also showed similar findings in a
rat model [83].

Mature, differentiated IPCs from ADMSCs phenotypically express Pdx1 [77,78,84], MafA [85],
Nkx2.2 [85], Nkx6.1 [85], Ngn3 [74,78,84,85], NeuroD [78], Pax-4 [78], Isl1 [74,85], Ipf-1 [74] and
insulin [85]. Various factors contribute to IPC differentiation. The Wnt signaling pathway is one
of the best characterized pathways, strongly correlated with many biological processes, including
proliferation, apoptosis, and differentiation [86]. It also plays an important role in pancreas
development, islet function, and insulin production and secretion [87,88]. Wang and colleagues
showed that activation of Wnt signaling induced IPC differentiation from rat ADMSCs, identified
through the detection of specific markers for IPCs, such as insulin, PDX1, and glucagon genes, and
the protein expression of PDX1, CK19, nestin, insulin, and C-peptide [89]. The phosphoinositide-3
kinase (PI3K)/Akt signaling pathway is another important pathway involved in IPC differentiation.
Tarique’s and Anjum’s groups have revealed that the PI3K/Akt signaling pathway is active during
the development of IPCs from ADMSCs mediated by stromal cell-derived factor 1α (SDF-1α; also
referred to as the CXCL12 chemokine) and basic fibroblast growth factor (bFGF) [90]. A recent study
showed that overexpression of microRNA-375 is also important in the development of IPCs from
ADMSCs [91]. mRNA-375 is correlated with insulin secretion [92] and β-cell proliferation [93]. Finally,
the sonic hedgehog (Shh) signaling pathway is also necessary for the development of IPCs. Dayer et al.
revealed that inhibition of the Shh pathway must be removed for IPC development [85].

As a donor source of IPCs, ADMSCs are not inferior to BM-MSCs. At least, there is no prominent
difference between IPCs derived from BM-MSCs and ADMSCs in terms of the potential for insulin
release or C-peptide production in response to glucose administration [94,95]. Furthermore, the
insulin-releasing capacity of both derivatives of MSCs are reinforced when co-cultured with islet
grafts [95].

Most of the studies involving ADMSC transplantation have used IPCs differentiated from
ADMSCs. Some groups have attempted to clarify the therapeutic effects of undifferentiated
ADMSC transplantation, but the benefits appear to be limited. Although Chandra et al.
showed similar transplant outcomes between undifferentiated-ADMSCs and differentiated-IPCs
in streptozotocin (STZ) treated-mice [78], many other studies have failed to achieve normoglycemia
in their transplantations with undifferentiated-ADMSCs alone [76,77,80,82]. In addition, the
immunomodulatory properties of ADMSCs can be maintained during the differentiation
process [96]. This means that differentiated-IPCs may be tolerant of severe graft rejection. Taken
together, differentiated-IPCs offer a reasonable cellular resource for transplantation as compared
with undifferentiated-ADMSCs.
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Table 1. Representative studies pertaining to insulin-producing cells (IPCs) differentiated from adipose tissue-derived mesenchymal stromal cells (ADMSCs).

Author Year Ref. Donor of
ADMSCs Species Source Procedure of Differentiation or Transplantation Outcomes

Timper (2007) [74] Human Uncertain

• ADMSCs were cultured in serum-free medium with exendin-4,
pentagastrin, activin-A, betacellulin, nicotinamide, and HGF.

• (No transplantation)

• Expressed INSULIN, GLUCAGON
and SOMATOSTATIN.

• Potential of insulin secretion was
not shown.

Okura (2009) [75] Human Omentum

• ADMSCs were cultured following a five-step method for the
differentiation of ESCs into IPCs.

• (No transplantation)
• Detected insulin and C-peptide.

Kang (2009) [76] Human Eyelid

• ADMSCs were cultured in medium containing serum, nicotinamide,
activin and/or GLP-1, then differentiated into IPCs.

• 1.5 × 106 cells were transplanted beneath the kidney capsules of STZ
treated-immunodeficient mice.

• (Xenotransplantation)

• Secreted insulin and C-peptide under
glucose stimulation.

• 50% of transplanted mice
achieved normoglycemia.

Kajiyama (2010) [77] Mice Inguinal fat
• 5.0 × 105 ADMSCs transferred pdx-1 were infused into the tail vain

of STZ treated-mice.
• (Syngeneic transplantation)

• Potential of insulin secretion was
not shown.

• Decreased blood glucose levels and
increased survival.

Chandra (2011) [78] Human Abdomen

• ADMSCs were cultured in the medium with serum, insulin,
transferrin, selenium, activin A, sodium butyrate, FGF, GLP-1,
nicotinamide and non-essential amino acids, then differentiated
into IPCs.

• The 1000–1200 cells packed in immuno-isolatory capsules were
infused into the peritoneal cavities of STZ treated-mice.

• (Xenotransplantation)

• Produced human C-peptide under
glucose stimulation.

• Reduced blood glucose levels.
• No achievement of normoglycemia.

Kim (2012) [79] Human Uncertain

• Compared growth potential of ADMSCs, BM-MSCs, umbilical
cord-derived and periosteum-derived MSCs into IPCs in vitro.

• (No transplantation)

• Only periosteum derived-MSC
showed a response in
glucose concentration.

Lee (2013) [80] Human Abdomen
• 2.0 × 106 ADMSCs expressing PDX-1 were transplanted into the

kidney capsule of STZ treated-immunodeficient mice.
• (Xenotransplantation)

• Exhibited insulin secretion in response
to glucose.

• Reduced blood glucose levels.
• No achievement of normoglycemia.
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Table 1. Cont.

Author Year Ref. Donor of
ADMSCs Species Source Procedure of Differentiation or Transplantation Outcomes

Nam (2014) [81] Human Eyelid

• ADMSCs were differentiated into IPCs using a commercial medium.
• 1.5 × 106 cells were transplanted into the kidney capsules of low

STZ and insulin treated-immunodeficient mice.
• (Xenotransplantation)

• Secreted insulin and C-peptide under
glucose stimulation.

• Reduced blood glucose levels.
• No achievement of normoglycemia.

Sun (2017) [82] Human Uncertain
• 1.0 × 106 ADMSCs overexpressing BETATROPHIN were infused

into the tail vein of STZ treated-mice.
• (Xenotransplantation)

• Promoted proliferation and insulin
release in co-culture islets.

• Decreased blood glucose levels
significantly better than in the
control group.

Amer (2018) [83] Rat Abdomen

• ADMSCs were cultured in the medium with serum, activin A,
exendin 4, pentagastrin, HGF, and nicotinamide, then differentiated
into IPCs.

• 1.5 × 106 cells were infused into the splenic artery of
STZ-treated rats.

• (Syngeneic transplantation)

• Expressed β-cell markers and
secreted insulin.

• Showed apparent regeneration, diffuse
proliferation of resident islets and
increased serum insulin levels.

• Achieved normoglycemia.

Abbreviations: ADMSCs, adipose tissue-derived MSCs; ESCs, embryonic stem cells; FGF, fibroblast growth factor; GLP-1, glucagon-like peptide-1; HGF, hepatocyte growth factor; MSCs,
mesenchymal stromal cells; STZ, streptozotocin.
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differentiation. The differentiated-IPCs express some homeobox proteins (HPs), including Nkx2.2 
and Nkx6.1; and transcription factors (TFs), including Pdx-1, MafA, Pax-4, Ngn3, NeuroD and Isl-1. 

Mature, differentiated IPCs from ADMSCs phenotypically express Pdx1 [77,78,84], MafA [85], 
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insulin [85]. Various factors contribute to IPC differentiation. The Wnt signaling pathway is one of 
the best characterized pathways, strongly correlated with many biological processes, including 
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referred to as the CXCL12 chemokine) and basic fibroblast growth factor (bFGF) [90]. A recent study 
showed that overexpression of microRNA-375 is also important in the development of IPCs from 
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release or C-peptide production in response to glucose administration [94,95]. Furthermore, the 
insulin-releasing capacity of both derivatives of MSCs are reinforced when co-cultured with islet 
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Figure 2. Differentiated insulin-producing cells (IPCs) for transplantation. Adipose tissue-derived
mesenchymal stromal cells (ADMSCs) are differentiated into IPCs in the culture medium supplemented
with exendin-4, pentagastrin, activin-A, betacellulin, nicotinamide, hepatocyte growth factor (HGF),
and glucagon-like peptide-1 (GLP-1). Wnt and the phosphoinositide 3-kinase (PI3K) signaling pathway
play a role in the activation of differentiation, whereas the sonic hedgehog (Shh) signaling pathway
works in suppression and re-activation. MicroRNA-375 (miR-375) also promotes differentiation.
The differentiated-IPCs express some homeobox proteins (HPs), including Nkx2.2 and Nkx6.1; and
transcription factors (TFs), including Pdx-1, MafA, Pax-4, Ngn3, NeuroD and Isl-1.

3.3. Functional Role of Adipose Tissue-Derived Mesenchymal Stromal Cells in the Resident Pancreatic Islets

ADMSCs are not only the donor source of IPCs, but also likely support resident pancreatic islets
as well as local BM-MSCs [69]. Kono et al. infused STZ-treated, diabetic, immunodeficient mice with
human ADMSCs and found an increase in serum insulin levels and improved glucose tolerance. The
authors also found that these transplanted ADMSCs released cytokines, including interferon-inducible
protein 10 (IP-10), eotaxin, VEGF, and tissue inhibitor of metalloproteinase 1 (TIMP-1), which all
contribute to β-cell proliferation and the prevention of β-cell death [97] (Figure 3). Bassi’s group also
showed that allogeneic ADMSC transplantation improved hyperglycemia in early-onset autoimmune
diabetes by attenuating the Th1-related immune response and inducing the expansion of Tregs in
nonobese diabetic (NOD) mice [59].

While the usefulness of ADMSC transplantation in diabetic animal models is recognized, there
are some studies that have failed to ameliorate hyperglycemia by this treatment [76,77,80,82,98]. One
possibility for this unexpected outcome is the difference in the numbers of transplanted ADMSCs.
Dang and colleagues indicated that a measurable number of ADMSCs were required to support
resident islets and enable the proper control of blood glucose levels [99]. Another possibility is
the time of transplantation with respect to disease progress. Indeed, approximately 70% to 90% of
pancreatic β-cells are destroyed in patients with T1DM by the time these patients receive their initial
diagnosis [4,6]. Thus, it may be difficult to recover a sufficient number of resident islets after a certain
disease threshold in T1DM. We consider that the application of ADMSC therapy for preserving resident
islets should be limited to children with an early stage of onset and who show a measurable number of
ADMSCs for therapy. However, an adequate supplementation of differentiated-IPCs may be required
to treat adult patients with T1DM.
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Figure 3. Functional role of adipose tissue-derived mesenchymal stromal cells in the resident pancreatic
islets. Transplanted adipose tissue-derived mesenchymal stromal cells (ADMSCs) release functional
molecules, including interferon gamma-induced protein-10 (IP-10), eotaxin, vascular endothelial
growth factor (VEGF), and tissue inhibitor of metalloproteinase-1 (TIMP-1) to promote the viability
and proliferative capacity of endogenous β-cells. ADMSCs also upregulate regulatory T cells and
downregulate cytotoxic T cells, which inhibit inflammatory cell infiltration (immunomodulation).

3.4. Supporting the Function and Engraftment of Co-Transplanted Islet Grafts

As mentioned previously, islet transplantation is available as a cellular replacement therapy
for the recovery of endocrine function. However, in patients with T1DM, the number of vascular
endothelial cells are reduced, which affects the potential for neovascularization [100]. This is one
of the major factors contributing to the limited success of islet engraftment. As such, combinatorial
approaches have been examined to boost the regenerative potential of MSCs, such as combining islet
transplantation with MSCs transplantation (i.e., hybrid islet transplantation) [20]. Though positive
outcomes have been shown for several studies involving hybrid islet transplantation using BM-MSCs,
the effectiveness of such an approach is limited [101–104].

Over the past 10 years, many groups have attempted to clarify the utility of hybrid islet
transplantation using ADMSCs in terms of its efficacy and versatility [95,98,105–107]. The first study
was published in 2010. Ohmura et al. transplanted murine islet grafts with syngeneic ADMSCs into
STZ-induced diabetic mice, and found that the treatment could reverse diabetes, with prolonged
graft survival. Significant angiogenesis and a marked inhibition of inflammatory cell infiltration were
also noted [105]. Several other studies also showed the usefulness of ADMSC co-transplantation, as
outlined in Table 2.

ADMSCs presumably contribute to the available outcomes of hybrid islet transplantation in
three ways. The first is through neovascularization. ADMSCs promote the establishment of a
neovascular network by secreting various pro-angiogenic factors, including VEGF [108,109], HGF [108],
kinase insert domain receptor (KDR) [108], TGF-β [110], and IL-8 [111] (Figure 4). The second
way is through the prevention of inflammation. In animal models [98,112,113], ADMSC have
been shown to significantly reduce the expression levels of proinflammatory cytokines such as
TNF-α [98,113], IFN-γ [110], IL-6β [98], and IL-17 [110]. In vitro, ADMSCs suppressed the production
of IFN-γ, IL-2, and IL-17 from diabetes mice-derived lymphocytes [112]. The third way is through
controlling immunity. Whereas ADMSCs inhibit the infiltration of CD4+ and CD8+ T cells [105] and
macrophages [113], they promote the production and infiltration of Tregs into the transplant site [107].
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Table 2. Representative studies using adipose tissue-derived mesenchymal stromal cells (ADMSCs) in hybrid islet transplantation for diabetes.

Authors Year Ref.
Donor of
ADMSCs
Species

Source Number
Donor of

Islets
Species

Number Procedure of Transplantation Outcomes

Ohmura (2010) [105] Mice Inguinal
fat 2 × 105 cells Mice 200 islets

• Renal subcapsular transplantation into
STZ-treated mice.

• (Syngeneic transplantation)

• Reversed diabetes status and prolonged islet
graft survival.

• Suppressed CD4+/CD8+ T cells.

Cavallari (2012) [108] Human Subcutaneous
fat 2.5 × 104 cells Rat 500 islets

• Intrahepatic transplantation into
STZ-treated rats.

• (Xenotransplantation)

• Achieved better glycemic control as compared
with islet transplantation alone.

Karaoz (2013) [95] Rat Peritoneal
fat 1.0 × 106 cells Rat 500 islets

• Compared transplant efficacy among islet
alone or islet with ADMSCs or islet with
BM-MSCs into the kidney capsule of
STZ-treated rats.

• (Syngeneic transplantation)

• Co-transplanted with ADMSCs rats showed
the greatest efficacy.

Bhang (2013) [109] Human Uncertain 8 × 105 cells Rat 800 islets

• Transplanted with FGF-2 into the dorsal
subcutaneous area of STZ-treated mice.

• (Xenotransplantation)

• Achieved normoglycemia.
• The therapeutic effect was enhanced by

addition of FGF2.

Mohammadi (2017) [107] Mice
(C57BL/6) Abdomen 2 × 105 cells

Mice
(BALB/c) 200 islets

• Transplanted with hydrogel into the
intraperitoneal spaces of STZ-treated mice.

• (Allogeneic transplantation)

• Decreased pro-inflammatory cytokines and
increased Treg.

• Increased transcript levels in Iod, Inos and
Pdx1 in the presence of ADMSCs.

Song (2017) [113] Human Abdomen 1 × 104 cells Mice 125–150
islets

• Renal subcapsular transplantation into
STZ-treated mice.

• After chronic pancreatitis surgery.
• (Xenotransplantation)

• Improved islet survival and function.
• Showed IGF-1 secretion, suppression of

inflammation, and promotion of angiogenesis.

Navaei (2018) [98] Human Epididymal 6 × 106 cells Rat 1000 IEQs

• Intra-omental transplantation to
STZ treated-mice.

• (Xenotransplantation)

• Significantly promoted survival, engraftment
and insulin production.

Tanaka (2018) [106] Mice Inguinal
fat

1.0 × 105,
5.0 × 105 or

1.0 × 106 cells
Mice 50 islets

• Renal subcapsular transplantation to
STZ treated-mice.

• (Syngeneic transplantation)

• Expanded islet graft resulted in
ameliorating hyperglycemia.

Abbreviations: ADMSCs, adipose tissue-derived MSCs; BM-MSCs, bone marrow-derived MSCs; FGF, fibroblast growth factor; IGF-1, insulin-like growth factor-1; MSCs, mesenchymal
stromal cells; STZ, streptozotocin; Treg, T regulatory cells.
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Figure 4. Supporting the function and engraftment of co-transplanted islet grafts. When adipose
tissue-derived mesenchymal stromal cells (ADMSCs) are transplanted with islets, the cells can
contribute to improving type 1 diabetes mellitus (T1DM) via several mechanisms. ADMSCs release
functional molecules, including vascular endothelial growth factor (VEGF), hepatocyte growth factor
(HGF), kinase insert domain receptor (KDR), transforming growth factor-β (TGF-β), interleukin-8
(IL-8), and insulin-like growth factor-1 (IGF-1) to promote angiogenesis and support the survival of
co-transplanted islet grafts. ADMSCs upregulate regulatory T cells and downregulate cytotoxic T
cells and macrophages. Inflammatory cytokines, including tissue necrosis factor-α (TNF-α), interferon
gamma (IFN-γ), interleukin-6β (IL-6β), and IL-17, are suppressed in the presence of ADMSCs. In
addition, ADMSCs can differentiate into insulin-producing cells (IPCs) and expand co-transplanted
islet grafts.

These transplant efficacies are reinforced through the addition of FGF-2 [109]. Likewise, factors
that help to promote the expansion of the transplanted islets and enhance the expression of endocrine
function may also sustain the efficacy of hybrid islet transplantation. For example, Tanaka and
colleagues revealed that islet grafts were expanded in hybrid islet transplantation [106]. Karaoz’s
group showed that co-transplanted ADMSCs also differentiate into IPCs [95], whereas Song and
colleagues suggested that IGF-1 released by ADMSCs enhanced the survival of co-transplanted islet
grafts [113].

Although there are only a few reports about the efficacy of hybrid islet transplantation directly
using ADMSCs, the approaches using ADMSCs are likely to be superior to using BM-MSCs in terms
of co-transplanted islet engraftment and function [95]. Given the numerous advantages associated
with the use of ADMSCs, it may be reasonable to shift away from using BM-MSCs for hybrid islet
transplantation and focus on optimizing the use of ADMSCs.

3.5. In Vitro Co-Culture of Syngeneic Islets Graft with Adipose Tissue-Derived Mesenchymal Stromal Cells
Ameliorates Transplantation Efficiency

During the process of isolation and culture for islet transplantation, some of the pancreatic islet
grafts are lost due to the hypoxic stress, poor blood supply, and the expression of inflammatory
cytokines [110,114]. Thus, the loss of islet grafts during the harvesting process remains a
major challenge.
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MSCs have the potential to repair damaged tissue at the cellular level [14,115], and therefore,
the cultivation of islet grafts with MSCs before transplantation could help to minimize graft loss.
To this end, various co-culture experiments combining mouse or human islets with ADMSCs have
been conducted in vitro [95,97,98,109,110,116]. Rackham’s group examined the therapeutic effect of
co-culturing ADMSCs with syngeneic isolated islets in vitro, and verified that the insulin-releasing
function of these islets was significantly better than that measured for islets cultured alone. They
further showed that transplantation of these co-cultured islet grafts resulted in successful engraftment
and a significant improvement in hyperglycemia in diabetic mice as compared with islets grafts
not precultured with ADMSCs [116]. These improved therapeutic effects appear to be associated
with paracrine crosstalk between the co-cultured islets and ADMSCs, leading to an upregulation
of eotaxin [97], VEGF [97,109], TIMP-1 [97], extracellular matrix (ECM) components, annexin A1
(ANXA1) [110], and FGF-2 [109], all of which are enhanced when ADMSCs are cultured under hypoxic
conditions [109,117,118]. Overexpression of betatrophin gene similarly improves islet viability when
co-cultured with ADMSCs (Figure 5) [82].J. Clin. Med. 2019, 8, x FOR PEER REVIEW 13 of 28 
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Figure 5. Supporting the function of cultured islet grafts for transplantation. Preculturing islet
grafts with adipose tissue-derived mesenchymal stromal cells (ADMSCs) before transplantation
enhances the insulin-releasing potential of the islet graft. ADMSCs support the islet in culture via the
expression of and cross talk from vascular endothelial growth factor (VEGF), eotaxin, tissue inhibitor
of metalloproteinase-1 (TIMP-1), extracellular matrix (ECM) components, annexin A1 (ANXA1), and
fibroblast growth factor-2 (FGF-2). In addition, overexpression of betatrophin gene together with
hypoxic culture conditions of islets graft with ADMSCs may enhance graft transplantation efficiency.

Compared with BM-MSCs, ADMSCs are more likely to better support precultured islet grafts in
terms of viability, recovery rate [119], and recovery of insulin-producing function [95]. Thus, ADMSCs
serve as a reasonable support for the reinforcement of impaired islet grafts even during a hypoxic
procedure like islet graft isolation. In summary, preculturing islet grafts with ADMSCs can contribute
to the success of hybrid islet transplantation [95,98,110].

4. Towards a Suitable Adipose Tissue-Derived Mesenchymal Stromal Cells

4.1. Sources of Adipose Tissue-Derived Mesenchymal Stromal Cells

Adipose tissue is classified into main two categories: brown and white adipose tissues [120].
Brown adipose tissue is localized in cervical, paravertebral, supraclavicular, axially and suprarenal
tissues, whereas white adipose tissue is found in craniofacial, pericardial, perirenal, omental,
abdominal, and intestinal regions, as well as in the buttocks, thighs, and bone marrow [62]. White
adipose tissue is thought to have the highest proportion of MSCs, with both of the number and
differentiation potential of MSCs lower in brown adipose tissue sources [120].

ADMSCs are stored in various repositories. Subcutaneous depots have gained particular interest
in terms of availability, abundance, and renewability [121–123]. The lower abdomen and the inner thigh
are likely to contain high processed lipoaspirate cell concentrations [121–124]. In addition, ADMSCs
in the subcutaneous abdominal wall tend to show higher differentiative potential in adipogenic and
osteogenic cultures, as compared with cells from intra-abdominal adipose tissue sources (including the
omentum and intestines) [123,125]. In terms of stem cell recovery, a higher number of viable cells are
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recovered from the subcutaneous adipose tissue from the arm as compared with tissues of the thigh,
abdomen, and breast [48].

4.2. Method for the Preparation of Adipose Tissue-Derived Mesenchymal Stromal Cell

Compared with other stromal cells, ADMSCs tend to be in abundant supply and are easily
harvested. In addition, large numbers of ADMSCs can be acquired from adipose tissue without any
severe complications [126,127].

In the clinical setting, ADMSCs are usually isolated according to the following procedure: (1) The
subcutaneous adipose tissues are collected by lipoaspiration; (2) The tissues are washed, digested using
collagenase, and collected as a pellet through centrifugation; (3) The pellet—referred to as the stromal
vascular fraction, and including blood cells, fibroblasts, pericytes and endothelial cells—is cultured.
ADMSCs are collected through selection [48,128]. Approximately 5000 ADMSCs are collected per 1
gram of adipose tissue without risks of severe complication. This is approximately 500-times the yield
of stromal cells attained from the bone marrow [129].

4.3. Various Factors Influencing the Quality of Adipose Tissue-Derived Mesenchymal Stromal Cells

An autologous cell source is an ideal choice for cellular therapy. However, it is difficult to
use autologous ADMSCs in patients with severe illness who may have impaired ADMSC function
(so-called pathologic ADMSCs) or an urgent necessity for ADMSCs. Thus, the establishment of an
ADMSC bank system as a source of quality-controlled ADMSCs is desirable. For the quality control
of ADMSCs stock, it is important to disclose donor characteristics, such as information about age,
gender, and past and current illnesses (including DM and obesity), as well as the donor source location
(subcutaneous tissue, omentum, for example) and type of adipose tissue (white or brown). These
factors may affect cellular differentiation, multipotency, immunomodulation, and in some cases,
malignant potential.

The influence of donor age on the quality of ADMSCs remains unclear. Some groups have asserted
that there is no correlation between donor age and the quality of ADMSCs [121,124,130–132], while
others suggest that ADMSCs harvested from older persons have lower proliferative capacity and
multipotentiality [133–136]. Regarding gender, there is no evidence to support a functional difference
between male and female donors. Lipoaspiration therapies tend to be performed in female patients
undergoing plastic surgery [137].

Concerning body mass index (BMI), some groups report no or a negative correlation between
ADMSC yield (per a milliliter of liposuction) and patient BMI [124,130,131]. Thus, there is no positive
correlation between the total numbers of acquired ADMSCs and BMI. However, van Harmelen and
colleagues revealed that the total number of adipocytes and stromal cells increased with higher BMI,
and that cellular size was also enlarged with a higher BMI [131]. However, other studies show impaired
self-renewal and differentiation abilities of ADMSCs from donors with higher BMI values, surmised
to be due to the changes in telomerase activity [138] or mitogen-activated protein 4 kinase (MAP4K)
expression [139].

Regarding metabolic syndrome, one study revealed that ADMSCs from donors without metabolic
syndrome were more effective promoters of revascularization than those from donors with metabolic
syndrome in terms of the normal angiogenetic and anti-inflammatory potential of the cells [140].
Hyperglycemia in DM impairs the angiogenetic potential of ADMSCs [135,141]. Koci and others
claimed that adipose tissues from donors with DM were not satisfactory as an autologous source of
ADMSCs as compared with tissues from donors without DM, with the cells performing inferiorly, both
phenotypically and functionally [142]. However, Yaochite’s group suggested that BM-MSCs isolated
from early-diagnosed patients with T1DM were not phenotypically or functionally impaired, indicating
that the ADMSCs derived from newly diagnosed patients might have preserved multi-potency [143].

Taken together the above-described observations indicate that subcutaneous white adipose
tissue from the abdominal wall of healthy, non-obese, young donors are an ideal source of ADMSCs.
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However, given that ADMSCs and BM-MSCs can significantly vary between donors, the similarities
and differences in the properties of MSCs should be taken into consideration in these stem cell-based
therapies [53].

4.4. The Origin and Malignant Potential of Adipose Tissue-Derived Mesenchymal Stromal Cells

MSCs exist in various tissues, including adipose tissue, and the origin of ADMSCs remains unclear.
Some studies have proposed that MSCs originated from perivascular cells, such as pericytes [144–147],
whereas others have suggested that they are scattered in fat stroma [148]. It is important to identify the
origin of ADMSCs, because stem cells possess the potential for malignant transformation; albeit, at a
very low frequency in humans [149]. At present, cancer therapeutic strategies depend on the genesis
and stage [150]. Therefore, we should identify the origin, and prepare for the indeterminate occurrence
of stromal cell-derived neoplasms.

Yet, to the best of our knowledge, there have been no reports of malignancy after MSC
transplantation in human clinical situations [20]. However, in experimental cultures, malignant
mutations arise from an accumulation of genomic alterations that occur following long-term
self-renewal or repeated passaging [151,152]. Therefore, the optimal numbers of cellular passages for
ADMSC induction should be investigated to maintain the multipotentiality of the cells, and prevent
malignant activation. Among human ADMSCs, cells up to passage 10 appear to retain almost all the
characteristics and properties of cells of earlier passage numbers [153,154]. And, although no DNA
fragmentation has been found in vitro after expansion past 10 passages, the safety (i.e., chromosome
stability) of ADMSCs cannot be ensured [155]. Prolonged ADMSCs passaging, such as repeating
passaging for more than 4 months, has been linked with malignant transformation [156]. Physiological
stress and in vitro culture conditions may also cause cellular or chromosomal abnormalities [157].

One study suggested that ADMSCs lacked telomeric activation, which might suppress the
malignant potential of transplanted MSCs [158]. However, several studies have reported the
direct contribution of ADMSCs to malignant transformation and tumor growth in some types of
neoplasms [159–162]. Further studies are required to determine the potential impact of stem cell
therapies on malignancy.

4.5. Optimal Transplant Site for Adipose Tissue-Derived Mesenchymal Stromal Cells in T1DM
Cellular Therapy

The optimal transplantation site for ADMSCs needs to be addressed to avoid complications (e.g.,
pulmonary embolism) and provide the best response from the transplant. There is still no consensus
as to the most suitable transplant site for cell therapy using MSCs for T1DM. The liver tended to be
selected in past clinical trials [163,164] but the validity whether this organ was optimal for the delivery
of ADMSCs has been raised. Intrahepatic transplantation can reduce immunological rejection [20],
but has some potential disadvantages, such as severe inflammatory reaction against allogeneic islet
grafts [165] and portal venous embolism of the MSCs themselves [14].

Yaochite et al. proposed an intrasplenic or intrapancreatic route for ADMSC transplantation [166].
They explained the advantages of the spleen as having fewer risks of severe complications, a
potential for β-cell regeneration, and a reduced likelihood of graft rejection due to the promotion
of immunotolerance [14,38,165]. In contrast, Bhang and colleagues achieved normoglycemia using
a rodent model of subcutaneous hybrid islet and ADMSCs transplantation [109]. Subcutaneous
tissue offers an ease of transplantation but also has the disadvantage of poor transplant efficacy due
to the hypovascularity of the tissue. Transplantation of ADMSCs in subcutaneous tissue promotes
angiogenesis and engraftment of the transplanted islets, which have intrinsically poor microvasculature.
Further studies are required to identify an optimal transplantation site for ADMSCs.
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5. Clinical Trials on Adipose Tissue-Derived Mesenchymal Stromal Cell Therapy for T1DM

In recent years, numerous clinical trials have tested the utility of ADMSCs in the treatment
of various diseases (e.g., chronic ischemic cardiomyopathy, idiopathic pulmonary fibrosis, complex
perianal fistula in Crohn’s disease, osteoarthritis) [167–173]. Comparatively, however, very few clinical
trials have been conducted for the treatment of T1DM using ADMSCs. The clinical trials that have
tested this treatment strategy showed positive outcomes (Table 3).

The first clinical trial was published in 2008 as a preliminary study [174]. The group performed
transplantation of differentiated-IPCs derived from human ADMSCs using nicotinamide, activin A,
exendin 4, pentagastrin, and HGF along with BM hematopoietic stem cells (HSCs) into five patients
with T1DM. They found an increase in serum C-peptide levels, a decrease in the requirement for
insulin, and no diabetic ketoacidosis or host immune response in these recipients [174]. In 2010, the
group published the long-term outcomes of the treatment, after a mean follow-up of 7.3 months [163].
Similar to the results reported in the preliminary trial, the patients with T1DM (n = 11) showed
increased serum C-peptide levels (0.02–0.1 ng/mL to 0.1–1.8 ng/mL), decreased insulin dependence
(0.42–2.1 units/kg BW/day to 0.09–1.0 units/kg BW/day), and lower HbA1c levels (6.2–10.3% to
5.7–9.0%) [163].

In 2015, another two-armed prospective clinical trial was performed by the same group, expecting
long-term engraftment, with the hope to be free from the need to use an immunosuppression reagent
in the future [164]. In this study, approximately 2.7 × 104 differentiatedIPCs per body weight (kg)
from autologous or allogeneic ADMSCs with HSCs were transplanted into 20 patients with T1DM.
Two years after the transplantation, the patients in the autologous group showed increased serum
C-peptide levels (0.22 ± 0.21 ng/mL to 0.93 ± 0.24 ng/mL), decreased exogenous insulin requirements
(63.90 ± 20.95 units/day to 39.66 ± 9.37 units/day) and lower HbA1c levels (10.99% ± 2.10% to 7.75%
± 1.05%). However, the allogeneic group also had increased serum C-peptide levels (0.028 ± 0.010
ng/mL to 0.460 ± 0.290 ng/mL), decreased exogenous insulin requirements (57.55 ± 21.82 units/day
to 38.50 ± 13.34 units/day) and lower HbA1c levels (11.93% ± 1.90% to 8.01% ± 1.04%). The serum
C-peptide levels were significantly better in the autologous group compared with the allogeneic group,
and the authors claimed the superiority of autologous ADMSCs in terms of this long-term control of
hyperglycemia [164].

Beside these clinical trials, the same group showed several reports using ADMSCs for T1DM
treatment in patients with polyglandular autoimmune syndrome [175], terminal renal disease
co-implanted with kidney [176], and chronic pancreatitis due to parathyroid adenoma [177]. Thus,
the availability and safety of human ADMSCs for T1DM have been gradually clarified in the clinical
setting. However, all of these clinical trials were undertaken by a single group and the transplant
method was limited to the use of the hybrid transplantation of differentiated-IPCs with HSCs. Thus,
these outcomes may contain bias.
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Table 3. Diabetes clinical trials using adipose tissue-derived stromal cells (ADMSCs).

Authors/(Year) Number of
Patients Age year Disease

Duration/(year)
Number of
ADMSCs

Pre/Post
Infusion C-peptide/(ng/mL) HbA1c/(%) Insulin

Requirement/(Units/day) Follow-Up/(Months)

Vanikar [163]/(2010) 11 21.1 (13–43) 8.2/(1–24) 3.0 × 106 Pre 0.10/(0.02–0.30) 8.47/(6.22–10.30) 1.14/kg BW/(0.42–2.10)
7.3/(2.2–12.0)Post 0.37/(0.1–1.8) 7.39/(5.72–8.98) 0.63/kg BW/(0.09–1.00)

Thakkar
[164]/(2015)

Auto- 10 20.20 ± 6.90 8.1 ± 3.4 2.7 ± 0.8 × 102 (/µL)
× 103.1 ± 28.3 (mL)

Pre 0.220 ± 0.210 10.99 ± 2.10 63.90 ± 20.95
33.10 ± 18.38Post (2y) 0.930 ± 0.240 7.75 ± 1.05 39.66 ± 9.37

Allo- 10 19.70 ± 9.96 9.9 ± 7.1 2.1 ± 0.7 × 102 (/µL)
× 95.3 ± 14.2 (mL)

Pre 0.028 ± 0.010 11.93 ± 1.90 57.55 ± 21.82
54.24 ± 15.75Post (2y) 0.460 ± 0.290 8.01 ± 1.04 38.50 ± 13.34
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Recently, novel clinical studies for the treatment of T1DM using human ADMSCs are ongoing by
two other groups. Paspaliaris’s group in the Philippines has transplanted autologous activated-stromal
vascular fractions to patients with T1DM without the use of immunosuppressants from 2007 to
2009 (NCT00703599; Phase I/II Study of Intravenous Administration of Activated Autologous
Adipose-Derived Stromal Vascular Fraction in Patients with Type 1 Diabetes). An interim report
showed that the treatment led to reduced insulin dependence, lower anti-hyperglycemic medication
dosages, lower HbA1c levels, and increased serum C-peptide levels, without any evidence of
organopathy [178]. This result indicates the clinical efficacy of ADMSCs rather than IPCs. In
addition, a phase I clinical study in Jordan has been ongoing since 2017 (NCT02940418; The Use
of Mesenchymal Stromal Cells (MSC) in Type 1 Diabetes Mellitus in Adult Humans: Phase I Clinical
Trial). In this two-armed study, allogeneic ADMSCs and autologous HSCs are intravenously injected
into 20 candidates in two discrete cellular dosages. No immunosuppressants have been used. The
outcomes have yet to be published but may indicate the proper numbers of ADMSCs required for
treatment success.

6. Future Perspectives

At the moment, islet transplantation is the only reliable cellular replacement therapy that can
reverse T1DM [12]. However, its utility in the clinic is plagued by poor transplant efficacy and a
shortage of suitable donors [12,14,165]. In this regard, ADMSCs are representative candidates for
biological materials which are being tested as a way to overcome these disadvantages. Over the
years, several types of hybrid transplantation systems combining two different cellular lineages
(e.g., islets and MSCs, MSCs and HSCs) have been used for T1DM treatment in humans and in
animals, with most studies showing the superiority of the combination compared with the use of
MSCs alone [95,98,105–107,109,179]. Thus, hybrid islet transplantation combined with ADMSCs is
expected as a future human therapy for T1DM, a practical cellular replacement therapy offering the
potential to normalize hyperglycemia, as noted by the reported successful outcomes in many animal
experiments [105,109,112].

Due to their abundancy, authors can afford to use ADMSCs in large quantities and any number
of times. With this in mind, we conceived a multi-cellular combinational transplantation strategy
for treating T1DM using ADMSCs pre-treated to have a specific function: (1) insulin-producing
ADMSCs; (2) immunomodulatory ADMSCs; and (3) regenerative ADMSCs. For this to work,
first, an insulin-producing cell needs to be created from ADMSCs in vitro. ADMSCs have
the potential to differentiate into IPCs, with proliferation and the insulin-producing capacity
promoted via culturing [78,180] or genomic editing, such as overexpressing PDX1 [77,80].
Next, immunomodulation-specific ADMSCs should be established, which will protect resident
β-cells and the newly transplanted differentiated-IPCs from autoimmunity or graft rejection.
ADMSCs overexpressing TGF-β and THRB1 may reinforce the cellular immunosuppressive
potential [181]. Moreover, the use of the alginate and hyaluronic acid hydrogel scaffolds during
transplantation may help to maintain the immunosuppressive capacity [96]. Finally, it is necessary
to prepare revascularization-specific regenerative ADMSCs, which can restore a suitable niche
for differentiated-IPCs. Given that ADMSCs secrete angiogenic molecules such as VEGF, IGF,
HGF [61,62,182], gene-engineering to overexpress these growth factors in the transplanted ADMSCs
may be an ideal strategy. Guadalupe and colleagues reported that enhanced neovascularization was
achieved in myocardial infarction models by transplanting porcine ADMSCs overexpressing Igf and
Hgf [183]. Furthermore, the homing potential of ADMSCs is also reinforced via bioengineering to
overexpress the C-X-C chemokine receptor type 4 [184]. To perform the treatment using ADMSCs
effectively, we consider the two methodological strategies. Regarding the timing of transplantation,
the strategy that regenerative ADMSCs supplement prior to the differentiated-IPCs could be effective
because it requires a span for angiogenesis [116]. Regarding the procedure of transplantation, the liver
or subcutaneous tissues may be reasonable transplant sites due to their accumulating capacity and easy
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procedures like percutaneous infusion under the local anesthesia. The patients can acquire gratifying
therapeutic outcomes due to the additional transplantation of ADMSCs using this procedure in case
that the therapeutic effect was unsatisfied by one transplantation.

To the best of our knowledge, multi-cellular transplantation combined with different
function-enhanced ADMSCs has not been reported. However, we consider that these combination
therapies are theoretically feasible and may offer a promising T1DM treatment strategy in the future.

7. Conclusions

This review explored the potential of ADMSCs for the treatment of T1DM. While there remains a
paucity of literature, including any evidence of the long-term outcomes and suitability of transplant
procedures, it is clear that ADMSCs are advantageous in their abundance, easiness of acquirement,
and prominent multipotentiality. ADMSCs offer an alternative to β-cells and can aid in the reversal
of T1DM.
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