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Abstract: The common IVSI-110 (G>A) β-thalassemia mutation is a paradigm for intronic
disease-causing mutations and their functional repair by non-homologous end joining-mediated
disruption. Such mutation-specific repair by disruption of aberrant regulatory elements (DARE) is
highly efficient, but to date, no systematic analysis has been performed to evaluate disease-causing
mutations as therapeutic targets. Here, DARE was performed in highly characterized erythroid
IVSI-110(G>A) transgenic cells and the disruption events were compared with published observations
in primary CD34+ cells. DARE achieved the functional correction of β-globin expression equally
through the removal of causative mutations and through the removal of context sequences, with
disruption events and the restriction of indel events close to the cut site closely resembling those seen in
primary cells. Correlation of DNA-, RNA-, and protein-level findings then allowed the extrapolation
of findings to other mutations by in silico analyses for potential repair based on the clustered regularly
interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9, Cas12a, and transcription
activator-like effector nuclease (TALEN) platforms. The high efficiency of DARE and unexpected
freedom of target design render the approach potentially suitable for 14 known thalassemia mutations
besides IVSI-110(G>A) and put it forward for several prominent mutations causing other inherited
diseases. The application of DARE, therefore, has a wide scope for sustainable personalized advanced
therapy medicinal product development for thalassemia and beyond.
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1. Introduction

Thalassemias are caused by the deficient production of globins. Beta-thalassemia has particular
clinical relevance and as a monogenic blood disorder affecting the expression of β-globin (HBB),
is an ideal target for therapy development based on gene addition or gene correction. It is also a
frequent testbed for more widely applicable advanced therapy medicinal product (ATMP) technology,
including the establishment of efficient mutation-specific therapies, which in most cases employ
precise sequence repair by homology-directed repair (HDR) or the nascent base or prime editing
technologies [1,2]. Despite the early application of zinc finger nucleases (ZFN) to the HBB locus [3,4]
and rapid method development for gene editing since, precise correction of mutations is, nevertheless,
usually still too inefficient for clinical use [5]. This is equally true for ZFN-based tools, the redesign
of which for new targets is notoriously difficult [6], as for the two more recent and more accessible
editing platforms, transcription activator-like effector nucleases (TALEN) and clustered regularly
interspaced short palindromic repeats (CRISPR)/CRISPR-associated nucleases (Cas). A particular
challenge for precise editing by any platform is modification of early stem cells, which are often of
greatest therapeutic relevance and in which imprecise repair by non-homologous end-joining (NHEJ)
greatly outperforms HDR. Several classes of mutations are potentially amenable to functional repair
by effective NHEJ-based strategies. Prominently, NHEJ-based disruption of regulatory elements is
able to activate γ-globin as a universal positive disease modifier of β-hemoglobinopathies [7–12].
This approach is currently in early clinical trials based on CRISPR (ClinicalTrials.gov Identifier:
NCT03655678) and ZFN (ClinicalTrials.gov Identifier: NCT03432364) technologies, and its performance
in comparison with other approaches is as yet unclear. Additionally, several mutation-specific strategies
based on single NHEJ-based disruption events have already shown promise for other diseases, such as
removal of the pathological trinucleotide repeat expansion of the DMPK gene for myotonic dystrophy
type 1 [13] and disruption of the normal splice acceptor site (SA) to achieve skipping of defective DMD
exons for Duchenne muscular dystrophy [14]. Importantly, two independent groups have recently
shown repair of defective splicing in β-thalassemia, our own for the HBBIVSI-110(G>A) mutation using
CRISPR/Cas9 and TALEN tools [15,16], and Xu et al. for the HBBIVSI-110(G>A) and HBBIVS2-654(C>T)

mutations using CRISPR/Cas9 and Cas12a (also known as CRISPR from Prevotella and Francisella 1,
Cpf1), respectively [17]. Conceptually, NHEJ-based mutation-specific repair by disruption of aberrant
regulatory elements (DARE) is suitable for several classes of targets, such as aberrant splice donor
(aSD) or acceptor (aSA) sites, cryptic splice sites and the mutations activating those cryptic splice
sites. Although DARE is limited by platform-specific sequence requirements [18] and by the need
to avoid disruption of coding or other conserved sequences, it is potentially applicable to a vast
number of genetic diseases. This is particularly true if disruption of context sequences is sufficient
for functional correction of aSD or aSA sites or for the deactivation of cryptic splice sites, all of which
would make DARE suitable even where the primary mutation or splice site itself cannot be targeted.
We, therefore, set out to perform clonal analyses for a direct correlation of disruption events and
functional correction, based on HBBIVSI-110(G>A)-specific CRISPR/Cas9 and TALEN nucleases validated
in primary cells [15,16], and to extrapolate our findings to shortlist other disease-causing mutations
potentially suitable for correction by DARE. Our study vindicated the DARE approach for application
to many other disease targets, by highlighting an unexpected degree of flexibility for the functional
correction of splicing.

2. Materials and Methods

2.1. Murine Erythroid Leukemia (MEL) HBBIVS Cells

Humanized transgenic murine erythroleukemia cell (MEL) lines holding the mutant,
HBBIVSI-110(G>A), and normal, HBB, human HBB gene at an average vector copy number (VCN)/haploid
genome ≈2 (VCN), were used for genome-disruption experiments in bulk populations and as normal
controls, respectively. In addition, a MEL-HBBIVS clonal cell line (VCN = 1) was used for the selection
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and comparison of edited clones. All humanized transgenic MEL cell lines were characterized in
a previous study [19]. HBBIVSI-110(G>A)- and CCR5-specific designer nucleases were designed and
validated as described elsewhere [16,20], and delivered as plasmids by electroporation using a Gene
Pulser II and 0.4 cm MicroPulser electroporation cuvettes (Bio-Rad Laboratories, Hercules, CA, USA)
in Roswell Park Memorial Institute (RPMI) 1640 medium (Life Technologies, Grand Island, NY, USA)
with optimized settings (500 µL Vf/400 mV/850 µF/Infinite Resistance; Supplementary Figure S1). Per
sample, 107 cells were treated with 20 µg pEGFP-N1 (Clontech, Palo Alto, CA, USA) reporter and
40 µg nuclease-specific plasmid mix (1:1 molar ratios for TALEN pairs, 1:3 molar ratio for Cas9- and
gRNA-encoding plasmids, with the addition of a pUC118 plasmid to normalize the total plasmid
amount). MEL cells were harvested in aliquots for flow-cytometry assessment of transfection efficiency
and for gDNA-based quantification of targeted disruption by the T7E1 assay [20,21] and TIDE (Tracking
of Indels by Decomposition; https://tide.nki.nl/) [22], before being induced to differentiate with 1.5%
dimethyl sulfoxide (DMSO) (Sigma-Aldrich, Irvine, UK) and harvested for RNA (day 3) and protein
(day 6) extraction. NHEJ-induced indels for TALEN R1/L1, R1/L2, and the RNA-guided nuclease
(RGN) were characterized by polymerase chain reaction (PCR) amplification encompassing the target
site, bacterial cloning, and sequencing for a total of 100 colonies per designer nuclease. Additionally,
NHEJ-induced indels and HBB expression were correlated by the limiting dilution and expansion of
96 putative MEL-HBBIVS cell clones (VCN 1) per nuclease, followed by analyses of expansion-phase
gDNA, and differentiation-phase RNA and protein lysate.

2.2. Indel Characterization in Transgenic Humanized MEL-HBBIVS Cell Lines

2.2.1. Analysis of Indels in Bulk Cells

For the characterization of indels produced by the NHEJ repair pathway after treatment of
MEL-HBBIVS cell pools with specific designer nucleases and the nuclease-free negative pUC118 control,
PCR products encompassing exon 1, intron 1, and part of exon 2 were cloned into pCR.4 Blunt-TOPO®

vectors using the Zero Blunt® TOPO® PCR Cloning Kit and TOP10 chemically competent bacteria
(Invitrogen, Thermo Fisher Scientific, Carlsbad, CA, USA), according to the manufacturer’s instructions.
A total of 100 colonies each were picked for sequencing across the cleavage site in order to characterize
indels produced by specific designer nucleases, TALEN R1/L1, R1/L2, and RGN, and ≈30 colonies from
nuclease-free negative controls, pUC118. The alignment of the sequencing traces was performed using
the SnapGene software (GSL Biotech, Chicago, IL, USA, available at www.snapgene.com).

2.2.2. Analysis of Indels in Disrupted MEL-HBBIVS Clones

MEL-HBBIVS cell clones (VCN 1) were selected from TALEN- and RGN-edited bulk populations
via limiting dilution in 96-well plates. Plates were incubated for 48 h before they were scored
microscopically for single colonies per well. Wells with single clones were expanded to 24-well
plates in order to allow gDNA extraction and functional analyses. All isolated clones were
cryopreserved until genome-disrupted clones were characterized by two rounds of Sanger sequencing
(pre- and post-cryopreservation). Clones were induced to differentiate in parallel with the non-edited
controls (two untransfected controls (UT) and two pUC118) in RPMI 1640 supplemented with 1×
penicillin/streptomycin, 10% FBS, 1.5% DMSO (all Invitrogen, Thermo Fisher Scientific, Carlsbad,
CA, USA) for six days. Induced cells (5 mL) were collected on day 3 and 6 for RNA extraction
(5 × 106 cells/1 mL TRIZOL™ (Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA)) and on day 6
for protein extraction (5 × 106 cells/50 µL radioimmunoprecipitation assay (RIPA) lysis buffer).

2.3. Sequencing

Purified plasmids and PCR products were sequenced using the BigDye Terminator v1.1 Cycler
sequencing kit (Applied Biosystems, Foster City, CA, USA), including 1 × GC-RICH solution (Roche,
Basel, Switzerland). DNA sequencing products were purified using Performa® DTR Gel Filtration
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Cartridges Performa® DTR Gel Filtration Cartridges (Edge Biosystems, Gaithersburg, MD, USA, USA)
and analyzed on a Hitachi 3031xl Genetic Analyzer with the Sequence Detection Software version 5.2
(Applied Biosystems, Foster City, MA, USA).

2.4. Assessment of RNA Expression

RNA was isolated from transgenic MEL cells using TRIZOL™ and treated with DNase I
(Invitrogen, Thermo Fisher Scientific). After reverse transcription using the TaqMan Reverse
transcription PCR kit and random hexamers (Applied Biosystems, Foster City, CA, USA) to
produce cDNA as template for qPCR measurements, variant-specific quantification of samples was
performed by probe-based duplex PCR with the Multiplex PCR Kit (Qiagen, Hilden, Germany),
in triplicate against a plasmid-based standard curve holding the aberrant and normal amplicons,
as published elsewhere [23]. By contrast, total human HBB expression was quantified by SYBR
Green-based measurement (Applied Biosystems, Foster City, CA, USA). Variant-specific and
total HBB measurements were normalized with Hba1/2 as a calibrator for variation in erythroid
differentiation using the 2−∆(∆Ct) analysis method. Non-edited samples were used as negative
controls. Resulting absolute quantities for each variant mRNA were used to assess the percentage of
each mRNA variant in the total population, as well as its percentage difference relative to controls.
The sequences of primers and probes (Metabion International AG, Martinsried, Germany) were
as follows, for SYBR Green-based assessment of total HBB expression (hHBB_EX1_FW_1:
GGTGCATCTGACTCCTGAG/hHBB_EX1_RV_2_A: CACCACCAACTTCATCCAC and
hHBB_FW_ EX2_B: GGCAAGAAAGTGCTCGG/hHBB_EX2.3_RV_B: GTGCAGCTCACTCAGTG)
with murine actin (mouse β-Actin FW: GCTTCTTTGCAGCTCCTTCGT/mouse β-Actin
RV: CCAGCGCAGCGATATCG) and Hba-1/a2 (mHba-a1/a2 FW: GTCACGGCAAG
AAGGTCGC/mHba-a1/a2 RV: GGGGTGAAATCGGCAGGGT) [24] as calibrators, and for
probe-based assessment of HBB mRNA variants (hHBB_EX1_FW_3: GGGCAAGGTGAACG
TG/hHBB_EX2_RV_1: GGACAGATCCCCAAAGGAC with probes wtHBB_Probe_ZNA:
6-FAM-TGGG(PDC)A GG(PDC)TG(PDC)TG-ZNA-3-BHQ-1 and IVSI-110_MGB_Probe: VIC-TAAG
GGTGGGAAAATAGA-MGB).

2.5. Globin Chain Analyses

Immunoblots were performed according to standard protocols, as described previously [19].
Protein lysates from 0.5–1 × 106 humanized MEL cells on day 6 of the DMSO-induced end-point
differentiation were separated by polyacrylamide gel electrophoresis and blotted onto nitrocellulose
Parablot NCP membranes (Macherey–Nagel GmbH, Düren, Germany) using wet electrophoretic
transfer. Membranes were temporarily stained with Ponceau S solution (Sigma-Aldrich, St. Louis, MO,
USA) to confirm the successful transfer of the proteins, before they were blocked in blocking buffer (1%
BSA (Sigma-Aldrich, St. Louis, MO, USA) in TBS-Tween) and incubated with the appropriate primary
antibody, specifically Mouse-αHuman HBB (@1:1000; clone 37-8; #sc-21757), Rabbit-αMouse Hba
(@1:1000; H80; #sc-21005) (all Santa Cruz Biotechnologies, Dallas, TX, USA), or Mouse-αMouse-Actb
(@1:10000; clone AC-15; #A1978; A1978, Sigma-Aldrich, Dorset, UK). Membranes were washed and
incubated with the appropriate horseradish-peroxidase-conjugated secondary antibody, specifically
Goat-αMouse-Immunoglobulin (Ig) G(H+L) (#115-035-003) or Goat-αRabbit-IgG(H+L) (#111-035-003)
(both @1:10000; Jackson ImmunoResearch Laboratories, Suffolk, UK). Protein bands were visualized
and quantified using ImageLab Software 5.1 (Bio-Rad Laboratories, Hercules, CA, USA). Murine
Actb was used as a protein loading control and murine Hba in order to normalize for erythroid
differentiation. Correction of the HBBIVSI-110(G>A) mutation is reported here as the fold-change of the
ratio of the HBB/Hba chain band intensities in the edited samples relative to the negative control and
as the percentage relative to the MEL-HBB positive control.
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2.6. Statistical and Bioinformatics Analyses

2.6.1. Statistical Analyses

Data transformations were performed in Office 2016 Excel (Microsoft, Inc., Santa Rosa, CA,
USA). Spearman correlation analyses and group-wise comparisons were conducted using Prism 8.0
(GraphPad Software Inc., San Diego, CA, USA). Samples were tested for normality by Shapiro–Wilk
test, and group-wise comparison was performed by parametric analyses (one-way ANOVA with
Dunnett’s post-hoc test, where all samples within the detection limit passed the normality test) and a
non-parametric test (Kruskal–Wallis with Dunn’s post-hoc test, where at least one sample failed the
normality test), as appropriate.

2.6.2. Retrieval of Target Sequences

HBB mutations were retrieved as a global list from the ITHANET Portal (www.ithanet.eu) [25]
and filtered in Excel for base substitutions or short (<5 nt) sequence additions affecting HBB outside the
coding sequence, with discernible β-thalassemia carrier or patient phenotype (Supplementary Table S1).
Mutations not characterized as pure loss-of-function mutations of critical positive regulatory elements
of transcription and falling outside the characterized regulatory sequences of the distal CACCC box
(−108 to −100 nt from the CAP site), the proximal CACCC box (−93 to −85 nt), the CCAAT box (−76 to
−72), the TATA box (−31 to −26) [26] and the conserved splice consensus sites GT . . . AG of introns 1
and 2, were included in the analyses for potential designer nucleases. Based on reference sequence
NG_059281.3 representing the human HBB gene and retrieved from ENSEMBL [27], mutation-specific
sequences containing individual single-nucleotide polymorphisms (SNPs) were created in Vector NTI
11.5 and used in platform-specific in silico design tools.

2.6.3. In Silico Design and Evaluation of Designer Nucleases

In silico design and evaluation of Cas9 and Cas12a guide RNAs (gRNAs) targeting aberrant or
cryptic splice sites was performed using the CRISPOR webtool (http://crispor.tefor.net/) [28] based on
mutant HBB sequences and the presence of the appropriate protospacer adjacent motif (PAM) for Cas9
(20-nt gRNA 3′ -NGG PAM) and Cas12a (5′ TTTV- PAM and 23-nt gRNA), respectively. Doench ‘16
Score for Cas9 and DeepCpf1 score for Cas12a were employed for efficiency predictions on a scale
0–100, with 100 being the highest efficiency for the specific position. Off-targeting analysis of Cas9
gRNAs (MIT specificity score) was based on a genome database preset Homo sapiens—Human—UCSC
Feb. 2009 (GRCh37/hg19) + SNPs: 1000 Genomes and ExaC on a scale 0–100, with 100 being the
highest specificity.

In silico design and evaluation of TALEN pairs was performed using TAL Effector Nucleotide
Targeter 2.0 (https://tale-nt.cac.cornell.edu/) [29]. Specific design conditions included spacer length
10–15, repeat array length 15–20, upstream base: T only, G substitute: NH, filter option: hide redundant
TALENs, pre-loaded sequence: human genome, Scoring matrix: Doyle et al. and deselection of
Streubel et al. guidelines, followed by shortlisting of TALEN pairs predicted to cleave outside exons
and closest to the target sites, based on the best possible RVD score calculated by the TALE-NT 2.0
Paired Target Finder.

3. Results

3.1. Analysis of DARE in Bulk Populations of Modified Polyclonal MEL-HBBIVS Cells

In order to allow the clonal analysis of the effect of indel events on HBBIVSI-110(G>A)-derived
expression from a single locus and without the interference of endogenous HBB-derived expression,
we drew on the humanized transgenic polyclonal MEL-HBBIVS cell line published elsewhere [19].
In brief, polyclonal MEL-HBBIVS cells contain stably integrated copies (VCN = 1.9) of the mutated
GLOBE HBBIVSI-110(G>A) LV transgene and are characterized by 45% correctly and 55% aberrantly
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spliced human HBB mRNA, similar to ratios observed in cultured patient-derived HSPCs. At the
protein level, MEL-HBBIVS cells express ≈5% of functional globin chain levels observed in their normal
counterpart MEL-HBB (VCN ≈ 2), similar to the ratio seen in peripheral blood of HBBIVSI-110(G>A)

homozygous patients compared to normal controls [19].
Owing to the reported difficulties in designing ZFN reliably, we restricted all analyses to TALEN

and RGN platforms. Designer nucleases of either platform were delivered to MEL-HBBIVS cell lines
by conventional plasmid electroporation at optimized conditions (400 mV, 1050 µF), which allowed
≈65% transfection efficiency at ≈20% cell death (Supplementary Figure S1). A triplicate repeat in
MEL-HBBIVS at (54.5 ± 11.2)% average transfection efficiency showed similar targeted disruption
efficiencies of the mutant HBBIVSI-110(G>A) transgene for both TALEN pairs, (28.0 ± 17.0)% for R1/L1 and
(26.8 ± 20.9)% for R1/L2, whereas efficiencies for the RGN remained low (5.3 ± 2.2)% (Supplementary
Figure S2). For the most efficient experiment with these three nucleases, in which 51.7%, 56.4%, and
8.35% targeting efficiencies, respectively, were obtained for the HBBIVSI-110(G>A) transgene according to
the T7E1 assay (Figure 1a), we additionally employed tracking of indels by decomposition (TIDE) [22]
for independent assessment of targeted disruption and in order to characterize the population of edited
alleles for the proportion of different indel sizes (Figure 1b). The TALENs under study predominantly
produced deletions rather than insertions, in line with previous reports for TALENs [30], and TALEN
R1/L1, with its 13-bp spacer, gave deletions of 4–8 bp, whereas TALEN R1/L2, with its shorter, 10-bp
spacer, gave predominantly shorter deletions of 1–9 bp. For the same experiment, allele populations
for each nuclease were additionally characterized by sequencing 100 individual bacterial clones of PCR
amplicons covering the HBBIVSI-110(G>A) region. This gave 41%, 38%, and 5% edited clones for TALEN
R1/L1, TALEN R1/L2, and RGN, respectively (Supplementary Figure S3), whereas the size of deletions
for TALEN R1/L1 (Range 2–54 bp, Median 8 bp, Mode 16 bp) and TALEN R1/L2 (Range 1–64 bp,
Median 7 bp, Mode 4 bp) confirmed the differential size distributions detected by TIDE. Modifications
by both TALENs had a similar distance from the normal SA site (Median 20 bp, Mode 22 bp for
both). Importantly, for both TALENs the majority of indels occurred upstream of the HBBIVSI-110(G>A)

mutation. For TALEN R1/L1, the AG motif of the aberrant SA site was disrupted in only 16 out of 41
edited bacterial clones, one of which had also lost its normal SA site. A similar pattern was observed
for TALEN R1/L2, where the aberrant SA site was disrupted in 13 out of 38 edited bacterial clones, one
of which extended into exon 2. Finally, in the case of RGN-mediated disruption, only five clones out of
100 showed modification events, four of which disrupted the aberrant SA site. Overall, for each of the
three designer nucleases, the number of edited clones was in line with expectations from T7E1 assays
(see Figure 1a).

The degree of functional correction after treatment was assessed at the RNA and protein level on
days 3 and 6 of induced differentiation, respectively, in genome-edited MEL-HBBIVS bulk populations
compared with all-negative (no-electroporation non-edited) control. At the RNA level, both TALEN
pairs, R1/L1 and R1/L2, showed a significantly increased ratio of correct/aberrant HBB transcripts,
2.39 and 2.2, respectively, compared with 0.81 for the control (Figure 1c). By contrast, the ratio of
correct/aberrant HBB transcript ratios in the RGN-edited bulk population (0.84) remained close to the
overall range of the all-negative control, nuclease-negative controls, and nucleases targeting CCR5
as the control target (0.48–0.81). At the protein level, a similar pattern of functional correction was
observed, and the HBB/Hba ratio detectable in immunoblots (Figure 1d) was significantly increased
across multiple experiments up to 0.76 and 0.83 in the TALEN R1/L1- and R1/L2- edited populations,
respectively, compared with 0.36 detected in the all-negative control (Figure 1e). A non-significant
increase (0.48) was observed in RGN-edited bulk populations.
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Figure 1. DARE-based correction in humanized transgenic MEL-HBBIVS bulk cell populations.
HBB-specific designer nucleases were applied in comparison to CCR5-specific designer nucleases and
the GLOBE gene addition vector as a negative and positive reference, respectively, for HBB induction.
(a) The T7 endonuclease I assay depicting HBBIVSI-110(G>A)-targeted disruption in TALEN- (R1/L1 or
R1/L2) and RGN-edited cells relative to nuclease-free, pUC118-transfected negative controls (pUC118).
(b) TIDE analysis depicting HBBIVSI-110(G>A)-targeted disruption efficiencies of TALEN- (R1/L1 or R1/L2)
and RGN-edited cells relative to pUC118. Same-size indels events (-10 deletions to +10 insertions)
are scored as a percentage of the total number of events. Significance cutoff was the TIDE default (p
value < 0.0001). (c) The splice correction is shown at the transcript level as the ratios of normal/aberrant
HBB mRNA levels (±SD) on day 3 of induced differentiation. Significant group-wise comparisons of
ratios to no-electroporation controls for samples analyzed in triplicate by unmatched one-way ANOVA
and Dunnett multiple-comparison correction: HBB TALEN R1/L1 *** p = 0.0007, R1/L2 ** p = 0.0016.
(d) Representative immunoblot of human HBB, murine α-globin (Hba), and actin as calibrator for equal
loading on day 6 of induced differentiation. Different same-blot, same-membrane hybridizations are
separated by a hashed line. (e) Splice correction shown at the protein level as the ratios of HBB/Hba
(±SD) on day 6 of induced differentiation, measured by immunoblots as shown in (d). Significant
group-wise comparisons of ratios to no-electroporation controls for samples analyzed in triplicate by
matched one-way ANOVA, assumed sphericity and Dunnett multiple-comparison correction: HBB
TALEN R1/L1 * p = 0.0118, HBB TALEN R1/L2 ** p = 0.0054.

Taken together, electroporation of plasmids encoding our HBBIVSI-110(G>A)-specific nucleases in
MEL-HBBIVS cells gave superior results for TALENs compared with the RGN, in contrast to our previous
findings for delivery as mRNAs or as ribonucleoprotein complexes [16]. More importantly, even
plasmid-based delivery achieved significant functional correction of MEL-HBBIVS at the transcriptional
and translational level in edited bulk populations without enrichment, thus vindicating DARE as a
robust therapeutic approach.

3.2. Analysis of DARE in Cell Clones of Modified Clonal MEL-HBBIVS Cells

In order to correlate indel events and functional correction directly, we then analyzed DARE
in clonal MEL-HBBIVS cells with a single HBBIVSI-110(G>A) copy per cell [19](Figure 2). The limiting
dilution post-treatment and sequencing of 96 potential clones per designer nuclease allowed us to
identify and proceed with 34 cell clones that represented individual indel events (Figure 2, gDNA
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panel), in addition to four clones without modification as negative controls (clone A1#1 after TALEN
R1/L1, B1#1 after TALEN R1/L2 and Mock A and B after pUC118 plasmid electroporation). In line
with general disruption efficiencies after plasmid-based delivery, TALEN R1/L1 was represented by
14 clones, TALEN R1/L2 by 20 clones, and RGN by 0 clones. After expansion and induced erythroid
differentiation of individual clones, the material was collected for DNA-based confirmation of clone
identity and purity, for RNA-based assessment of normal HBB transcript levels and normal:aberrant
transcript ratios, and for the quantification of HBB protein levels.
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Figure 2. Correlation of indels with restoration of splicing at DNA, transcript, and protein level
in MEL-HBBIVS clones. (gDNA level) Alignment against the HBB consensus sequence of the
HBBIVSI-110-proximal regions of MEL-HBBIVS for 38 MEL clones, specifically two clones unmodified
(A1#1 and B1#1) and 34 clones modified after the treatment with TALEN R1/L1 (A1) and R1/L2 (B1),
and two mock-edited clones (Mock A and B), showing intron 1 unshaded, the intron-1 branchpoint
site (IVSI BPS) in green, exon 2 in orange, the HBBIVSI-110(G>A) mutation in red, and NHEJ-induced
indels in pink. Aberrant (+110 (G>A) Aberrant SA) and normal (+131 Normal SA) splice acceptor
sites are underlined (ag) sequences on the consensus sequence. Binding sites for aberrant and normal
reverse-transcription quantitative PCR (RT-qPCR) probes are indicated in orange and blue, respectively,
below the alignment. (RNA level) The effect of indel events on HBB RNA type and quantity was
assessed via RT-qPCR of RNA extracts on day 3 of the induced differentiation and is indicated, from left
to right, as Hba-normalized expression levels calculated with the ∆∆Ct method of the aberrant (orange
bars), normal (blue bars), and total (green bars) HBB transcripts relative to mock-edited clones (values
<1 indicating downregulation), and as the relative percentage of normal and aberrant transcripts as
part of the total, calculated with the standard-curve-based quantification of each transcript. (Protein
level) The effect of indel events on HBB protein level was assessed via immunoblots on protein extracts
on day 6 of induced differentiation and is indicated as the fold difference of the total HBB globin chain
levels (HBB/Hba) (blue bars) relative to Mock A. Levels of erythroid differentiation are shown as fold
difference of Hba globin chain levels (Hba) (red bars) relative to Mock A and as the percentage of
HBB/Hba levels (purple bar) relative to those in the MEL-HBB controls. The yellow box indicates the
standard deviation (±22.18%) of normal HBB levels seen in induced-differentiated MEL-HBB controls
(n = 3).

At the RNA level and based on RT-qPCR (Figure 2, RNA panel), restoration of splicing was
observed in all clones for which the HBBIVSI-110(G>A) mutation had been disrupted, with the exception
of clones B1#20 and B1#21, in which large deletions also disrupted the normal SA site. Correct splicing
was also restored by many indel events that disrupted the region upstream of the HBBIVSI-110(G>A)

mutation but left the aberrant SA site intact. In general, we noticed that most deletions larger than 5 bp
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(starting from B1#8) completely corrected HBB pre-mRNA splicing. Notable was the unique case of
complete restoration of correct splicing in clone A1#2 with a single-base (T) deletion. In total, 23 out of
34 genome-edited MEL-HBBIVS clones had an increase of normal HBB mRNA by at least 40%. However,
deactivation of aberrant mRNA alone appears to have a therapeutic effect for β-thalassemia, as shown
elsewhere [19], so that DARE-mediated depletion of aberrant mRNA may indicate therapeutic potential
even more than an increase in normal mRNA. In this vein, 22 out of 34 genome-edited clones had
virtually abolished incorrect splicing with ≤ 1.1% aberrant mRNA, at an average of (0.13 ± 0.32)%.

At the protein level and based on immunoblots (Figure 2, Protein panel), the correlation of
differentiation-normalized HBB levels (HBB/Hba) with normal HBB mRNA levels was moderate to
strong (r2 = 0.4). The 32 modified clones with an intact HBB open reading frame all showed increased
HBB expression (by 19.3 ± 11.0 fold, compared to unmodified controls). Predictably, for clones with
large deletions (B1#20 and B1#21) extending into HBB exon 2, HBB production was close to the
background (0.3 and 0.2 of HBB seen in unmodified controls), despite good levels of differentiation
(0.86 and 0.63 of Hba seen in unmodified controls). In addition to the increased HBB levels, most
modified clones also had lowered levels of differentiation (0.68 ± 0.43 fold, compared to unmodified
controls), which in this non-thalassemic model might have been brought about by toxicity of excessive
combined murine and human β-globin expression. In this context, it is of note that clones A1#5,
A#6, B1#6, and B1#7 carried the same indel and showed similarly high residual aberrant HBB mRNA
percentages at low total HBB mRNA levels, at variably low HBB protein expression and at highly
variable differentiation. It, therefore, appeared that the four-nucleotide deletions in question marginally
reduced aberrant splicing, resulting in unpredictable variability of erythroid differentiation, to which
random changes during clonal expansion from single cells might further have contributed. Taken
together, these data establish for the first time that disruption of the upstream region of HBBIVSI-110(G>A)

is sufficient to restore splicing in the presence of the primary mutation, highlighting the importance of
the flanking of regulatory sequences and of the distance from the branchpoint site (BPS) in the selection
of the aberrant vs. the normal SA site.

Besides comparing HBB protein expression after correction with that found in unmodified
MEL-HBBIVS cells, we also compared it to the HBB expression found in polyclonal MEL-HBB cells,
the reference for normal HBB expression in this model. Clonal MEL-HBBIVS cells (VCN = 1) express
≈4.2% (1/24) of the differentiation-normalized HBB protein levels found in polyclonal MEL-HBB cells
(VCN = 2; (100.0 ± 22.2)%) on day 6 of erythroid differentiation, as has been shown elsewhere [19].
Saturation effects of high-level gene expression make normalization for differential gene dosage
difficult, so that we disregarded the lower copy number in clonal MEL-HBBIVS cells and conservatively
assumed a 24-fold increase as representing the full restoration of functional HBB expression (Figure 2
Protein panel). Of the 34 clones analyzed, a total of 16 clones (10 edited by TALEN R1/L1 and six by
TALEN R1/L2), reached or exceeded normal HBB levels, six further clones exceeded 50% of normal
expression, and another six clones exceeded 30% of normal expression. Accordingly, 16/34 clones
would have been completely therapeutic and 28/34 clones would have given substantial therapeutic
benefit if these fold-changes in HBB expression had been observed in HBBIVSI-110(G>A)-homozygous
CD34+ cells.

The observed distribution of indels tied in with deletion patterns in bulk MEL-HBBIVS cultures
(Supplementary Figure S2) and with target alignments of both nucleases on HBBIVSI-110(G>A) [16].
Moreover, the indel patterns observed in bulk and clonal analyses significantly correlated with those
observed in CD34+ cells [16] for deletion size (p = 0.007) and for maximum distance of deletions from
the expected cleavage site (p = 0.005) (Supplementary Figure S4), emphasizing the relevance of the
MEL-HBBIVS data for the prediction of on-target action and functional correction. In this context, clonal
analyses in MEL-HBBIVS provide direct evidence for the suggestion from our work in primary cells
that deletion of context sequences of the aberrant splice site, or the reduction of its distance to the BPS,
would be sufficient to achieve functional correction.
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3.3. Analysis of Potential Alternative DARE Targets for β-Thalassemia

Our findings, therefore, suggested that DARE-based strategies would be suitable at high bulk
efficiencies for any target site at least 5 nucleotides from coding or otherwise conserved sequences,
following the strategy indicated in Supplementary Figure S5. For aberrant or cryptic splice sites, in
particular, nuclease design might be offset by several bases from the site itself and still have significant
therapeutic effect. We, therefore, proceeded to identify potential targets for disruption amongst all
know β-thalassemia mutations [25] that fulfilled those position requirements and for which disruption
would conceivably have at least partial therapeutic effect (Supplementary Table S1). Of those, mutations
with a detectable contribution to disease pathology, i.e., with the absence of HBB expression (β0),
significant reduction of HBB expression (β+) or with an established contribution to at least thalassemia
intermedia in compound heterozygote conditions, were analyzed further. Finally, those mutations with
a mixed mechanism of disease causation, i.e., combining partial loss of function (LoF) with activation
of cryptic splice sites, those creating new aberrant splice sites, as well as any non-exonic cryptic splice
sites were shortlisted further as the most promising targets for DARE-based therapy of β-thalassemia
(Table 1).

Table 1. Shortlisted potentially therapeutic mutation-specific targets for DARE-based functional
correction of β-thalassemia. A full list of β-thalassemia mutations passing initial filter criteria for
analysis is shown in Supplementary Table S1.

IthaID1 Common Name HGVS2 Name Type of Mutation Region Exon
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Figure 3. Artificial nucleases for functional assessment and potential therapy by DARE. Shortlisted
HBB target sites and corresponding Cas9, Cas12a, and TALEN nucleases. (a) Schematic representation
of HBB and the position of the shortlisted target sites. Exons are shown as boxes. (b) Artificial nucleases
shortlisted for functional assessment and potential therapy by DARE. Design is based on constraints
imposed by CRISPOR (under default conditions) for Cas9 and Cas12a guide RNAs and by TALEN
Effector Nucleotide Targeter for TALEN (spacer length: 10–15 nt, RVD length: 15–20, see Experimental
Section for further custom parameters). IthaID identifies the target by Ithanet ID (www.ithanet.eu) and
Nuclease the type of nuclease, Cas9 [CAS], Cas12a/Cpf1 [CPF] or TALENs [TAL]. Sequence Information in
the case of Cas9 and Cas12a present gRNA sequences (5′–3′) with the protospacer adjacent motif (PAM)
sequence (-NGG and TTTN-, respectively) shown in bold, whereas in the case of TALENs, upper-case
letters indicate the binding sites of TALEN pairs and minor-case letters give the spacer sequence.
The preceding T and trailing A for TALEN are not represented by RVDs in TALEN monomers, for
which RVD usage is as follows: A = NI, C = HD, G = NH, T = NG, excepting Patsali et al. (TALA

and TALB) where C = NN [16]. The minor-case letter for RGN (CPFA) gives a deviation from perfect
complementarity of the gRNA with the (mutant) target sequence. Target
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Target and Exon give the distance of the predicted cleavage site from the target and from the 

nearest exon, respectively. Suitable nucleases were first shortlisted by a minimum 5-nt distance of 

cleavage from exons, then by the distance of the cleavage site from the target site. Scores give efficiency 

and, where available, off-target scores as additional criteria for selection, specifically for Cas9: 

give the
distance of the predicted cleavage site from the target and from the nearest exon, respectively. Suitable
nucleases were first shortlisted by a minimum 5-nt distance of cleavage from exons, then by the
distance of the cleavage site from the target site. Scores give efficiency and, where available, off-target
scores as additional criteria for selection, specifically for Cas9: efficiency score (Doench ‘16)/off-target
activity (MIT Specificity Score), Cas12a: efficiency score (DeepCpf1), and TALENs: efficiency score of
monomers RVD1/RVD2 (TALEN Finder). The nuclease with the highest efficiency score was selected
for inclusion here.
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3.4. Additional Disease Targets for DARE

Literature and database searches based on our findings revealed that a great number of mutations
and diseases could be repaired by DARE. While most individual genetic diseases and in particular
patients stratified for specific underlying mutations are rare, several potential DARE targets outside the
field of hemoglobinopathies have a high relative carrier frequency and would, therefore, be of interest
for clinical translation and commercial exploitation, with examples covering major organ systems
shown in Table 2.

Table 2. Disease categories and exemplary mutations with high relative allele frequency, likely treatable
by DARE-based gene therapy.

Primarily
Affected Exemplary Exemplary Mutations References

Organ System Disorders Gene dbSNP ID Effect1 Frequency2

Circulatory Poikilocytic anemia SPTA1 rs757147440 aSA 25%3 [47]

Endocrine Hyperinsulinemic
hypoglycemia ABCC8 rs151344623 aSA 68.8%4 [48,49]

Nervous Leber congenital
amaurosis CEP290 rs281865192 cSD activation 43%5 [50–52]

Sensory Stargardt disease ABCA4 rs1457937638 cSD activation 7.5%6 [53,54]
Muscular Miyoshi myopathy DYSF rs1285082850 cSD activation 17 families7 [55]

Congenital muscular
dystrophy FKTN rs1554754182 cSD activation 20.8%8 [56]

Integumentary Erythropoietic
protoporphyria FECH rs2272783 cSA activation 42.6%9 [57,58]

Respiratory Cystic fibrosis CFTR rs397508266 aSD 2.0%10 [59,60]
Multisystemic Fabry disease GLA rs199473684 cSD activation 41.1%11 [61,62]

Cancer Breast cancer BRCA2 rs191253965 cSD activation 0.2%12 [63]
1 Effect of the specific mutation, which might be activation of a cryptic splice donor (cSD) or splice acceptor (cSA), or
creation of an aberrant splice donor (aSD) or acceptor (aSA) site. 2 Peak relative allele frequency of the mutation for
a representative sample, as available and as annotated below for each number given. 3 The mutation represented 20
disease alleles in 40 patients. 4 The mutation represented 74 in 158 identified disease alleles in patients, with an
overall carrier rate of 351 in 21,122 Ashkenazi Jews [48]. 5 The mutation represented 33 in 80 identified disease
alleles and was present in 28 of 57 patients with identified disease alleles [51]. 6 The mutation represented 20 in
261 alleles studies and was represented in 15% (20 of 131) of patients [53]. 7 The mutation was detected in 23
patients from 17 independent families [55], and while the study overlaps with a wider dysferlinopathy study of 193
patients [64], neither publication gives the total number of families investigated. 8 The mutation was detected in
the compound heterozygous condition in five out of 12 patients investigated. 9 The mutation was detected in the
compound heterozygous condition in 132 out of 155 patients investigated [58]. 10 The mutation was detected in 21
chromosomes in 520 affected families [59]. 11 The mutation was detected in 37 out of 45 patients, in a screen of 110,027
neonates [61]. 12 The mutation was detected in nine out of 2000 families presenting with BRCA1/BRCA2-negative
breast and ovarian cancer [63].

Splicing mutations for many disorders have been tackled successfully, but with mostly
subtherapeutic efficiencies, with antisense oligonucleotide approaches, for instance, for Leber
congenital amaurosis [50–52], Stargardt disease [54], choroideremia [54,65], Miyoshi myopathy [55],
and erythropoietic protoporphyria [57]. Similar to what has been achieved for HBBIVSI-110(G>A)

thalassemia by moving from the antisense oligonucleotide application [66] to DARE [16], those same
mutations and many more may instead be addressed by potentially highly efficient, disruption-based
curative therapies. Of note, the CFTR mutation listed as rs397508266, together with two other splice
site mutations, has already been targeted successfully by a dual-nuclease approach for excision [60].
Our data indicate that for this and the other significant mutations listed in Table 1, the single-nuclease
approach presented here would be sufficient for restoration of normal splicing at the reduced potential
for off-target activity, and at comparable or better on-target efficiency compared to excision based on a
pair of nucleases.

4. Discussion

In this study we present clonal data for single-nuclease genome disruption of aberrant regulatory
elements (DARE) and functional restoration of aberrant splicing in HBBIVSI-110(G>A) β-thalassemia at the
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DNA, RNA, and protein level, show significant correlation of findings in the utilized MEL-HBBIVS cell
model with our published data in CD34+ cells, and extrapolate our findings to additional β-thalassemia
mutations and prominent mutations in other genetic diseases. For β-thalassemia, we suggest suitable
designer nucleases based on the Cas9, Cas12a, and TALEN platforms for successful application
of DARE.

In the clonal analysis, we found that most events removing upwards of 5 nt from the target
sequence and in particular also indels leaving the primary mutation intact had a therapeutic effect for
HBBIVSI-110(G>A) thalassemia. This provides flexibility in target design and renders DARE a therapeutic
approach of potentially wide-ranging applicability. Suitable for the removal of any gain-of-function
regulatory element at several nucleotides distance from open reading frames or other conserved
elements, DARE might be most reliably applied to aSA or aSD sites or inadvertently activated cryptic
splice sites, owing to our detailed understanding of splicing regulation.

Resources for therapy development are preferentially invested in severe and common mutations so
that several of the mutations, listed in Table 1 will have low priority for commercial therapy development.
For instance, specific correction of a mild mutation might prove insufficient for significant correction
of disease parameters in compound heterozygous conditions with more severe mutations. Similarly,
several of the β-thalassemia targets selected for nuclease design have low frequency and may, therefore,
not see the development of mutation-specific therapies in practice. However, target sites with potential
impact on several mutations, such as the cryptic splice site IthaID3445 or a cleavage site upstream of
IthaID107 (IVS I-5 G>A) and IthaID111 (IVS I-6 T>C), which would affect both mutations, would be of
practical interest. Likewise, the HBBIVSI-110(G>A)-specific nucleases employed in the present study may
also prove therapeutic for patients carrying the mutation IthaID114 (IVS I-116T>G) [35]. In this context,
it is important to note that the effect of DARE in bulk population in the vicinity of splice consensus
sites, branchpoint, and context sequences will be a mixture of activating and deactivating events for the
normal, aberrant or cryptic splice sites concerned. In particular, for IthaID107 and IthaID111 close to
the intron 1 splice donor of HBB, a large proportion of indel events may turn out to be non-therapeutic,
but this can only be established by experimental evidence.

For several mutations identified as potential therapeutic targets, the exact mechanism of disease
causation is yet to be established. For instance, would the removal of cryptic splice sites at positions
IthaID3445 and IthaID3446 favor the use of the normal splice site, or would splicing switch to yet
another cryptic site instead? Likewise, the effect of IthaID215-217 and IthaID2183 on splicing of HBB
intron 2 has not been validated experimentally, so that the effect of their removal by disruption is
equally unclear. In all these instances, the designer nucleases put forward by this study would be tools
for functional analysis, in addition to their being potential tools for therapy.

Literature searches and existing mutation databases dedicated to splicing readily reveal that there
are mutations suitable for this approach in over 180 genes, responsible for many human diseases in
which DARE could, therefore, have essential therapeutic effects [67,68]. In this context it is important
to note that for some targets or applications ZFN-based tools, though not covered by our analyses, may
be a superior choice, because size and repetitive sequences of TALEN, and size and PAM restriction of
RGN may favor the ZFN platform, once an efficient and specific nuclease has been established [69].

Whatever platform is used, our observations inform future selection of target sites for NHEJ-based
strategies. Investigation of indel patterns in both, cell lines and primary cells, and our clonal analyses
and direct functional correlation of indels in MEL-HBBIVS cells showed that DARE-based functional
correction is suitable even for treatment of exon-proximal mutations. Further inferences can be
drawn for DARE-specific target site selection and nuclease design for effective and safe functional
correction. The observed distribution of indels reported here tied in with target alignments of both
nucleases on HBBIVSI-110(G>A), and our published TIDE analyses and targeted deep-sequencing results
in CD34+ cells [16]. Additionally, our present findings in MEL-HBBIVS cells give direct evidence
that disruption of the HBBIVSI-110(G>A) upstream region is sufficient to restore splicing and protein
expression completely, highlighting the general importance of the flanking regulatory sequences and of
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the distance from the BPS as parameters for the correction of aberrant splicing by DARE. This reflects
the importance of specific regulatory sequence elements, such as the polypyrimidine tract and the BPS,
for pre-spliceosome assembly and pre-mRNA processing [70,71], and of the distance between BPS
and the aSA. Alteration of the BPS–SA distance might impair selection of the aSA and favor correct
splicing [72], and in this study might have been at the heart of full splice correction for deletion events
≥5 bp. Targeting of context sequences by DARE would, thus be a promising alternative strategy for
functional correction in cases where the primary mutation is not a suitable target for disruption, for
instance, because of adjacent essential sequences or because of an absence of suitable PAM sites for
currently available RGNs [73].

5. Conclusions

This study has shown that DARE represents a flexible and highly efficient therapeutic option for
genetic diseases where faithful repair is not required. Accelerated discovery of primary mutations
in non-conserved regions, ongoing clinical validation of disruption for other therapeutic strategies,
and increasingly favorable conditions for mutation-specific curative therapies through technological,
regulatory, and market developments [1], all point to a likely future clinical translation of curative
therapies based on DARE for thalassemia and other diseases.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0383/8/11/1959/s1,
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for analysis.
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