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Abstract: Proteomics data encode molecular features of diagnostic value and accurately reflect
key underlying biological mechanisms in cancers. Histopathology imaging is a well-established
clinical approach to cancer diagnosis. The predictive relationship between large-scale proteomics
and H&E-stained histopathology images remains largely uncharacterized. Here we investigate
such associations through the application of machine learning, including deep neural networks, to
proteomics and histology imaging datasets generated by the Clinical Proteomic Tumor Analysis
Consortium (CPTAC) from clear cell renal cell carcinoma patients. We report robust correlations
between a set of diagnostic proteins and predictions generated by an imaging-based classification
model. Proteins significantly correlated with the histology-based predictions are significantly
implicated in immune responses, extracellular matrix reorganization, and metabolism. Moreover, we
showed that the genes encoding these proteins also reliably recapitulate the biological associations
with imaging-derived predictions based on strong gene–protein expression correlations. Our findings
offer novel insights into the integrative modeling of histology and omics data through machine
learning, as well as the methodological basis for new research opportunities in this and other
cancer types.

Keywords: Artificial intelligence; machine learning; histopathology imaging; proteomics; cancer
diagnosis; clear cell renal cell carcinoma

1. Introduction

Kidney cancer is one of the most common cancers worldwide accounting yearly for hundreds
of thousands of deaths [1]. Clear cell renal cell carcinomas (CCRCC) is the most common subtype of
kidney cancer representing ~75% of cases [2,3]. Its diagnosis is typically incidental, e.g., as part of
medical imaging tests unrelated to kidney problems, and ~30% of patients with CCRCC eventually
develop metastases even after removal of the kidney and other treatments [2]. Therefore, there is a
need for developing new approaches to the understanding and early diagnosis of CCRCC.

Histopathology is a well-established technique for confirming diagnosis and subsequent
sub-classification of kidney and other cancer types [4,5]. Histopathology consists of the visual
analysis of microscopic slides obtained from tissue samples typically stained with H&E (hematoxylin
and eosin stains). This allows the pathologist to identify cellular patterns associated with the presence
of cancer, its staging and potential clinical outcomes. Even when performed by well-trained experts,
this task is time-consuming and not always highly-reproducible among pathologists [6,7]. Moreover, in
kidney and other cancers, the use of histological analysis for diagnostic purposes is often challenging
because different cancer subtypes may share non-specific morphological patterns [2,8]. Therefore,
the accurate and robust analysis of large amounts of digitized histological slides for cancer diagnosis
remains a key challenge in cancer research and clinical practice.
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To address such challenges, different computational techniques have been proposed for analyzing
histology images for diagnostic purposes in multiple cancers [9]. Such analyses have traditionally
relied on the application of classification models, which process “handcrafted” (explicitly defined)
image-derived features such as cell size, shape, and pixel intensity distributions observed in full slides
or selected slide patches [8,9].

With the wider adoption of whole-slide high-content imaging and the increase in the volume of
histology datasets, new opportunities have risen for the application of deep learning (DL) techniques [10].
Unlike previous generations of machine learning approaches, DL models based on convolutional
neural networks (CNNs) can process raw intensity images and learn to automatically extract predictive
features [11,12]. The accuracy and potential clinical relevance of DL models for analyzing histology
images for diagnostic and prognostic purposes have already been shown in different cancer research
domains [13–21]. Thus, DL is expected to play a key role in the era of digital pathology and precision
medicine [6,22,23].

The analysis of large amounts of omics data, including transcriptomics and proteomics, has
significantly advanced the molecular characterization of dozens of cancer types and offers deeper
insights into their diagnosis, prognosis and treatment response assessment [24,25]. This has been
possible in large part because of consortia such as The Cancer Genome Atlas (TCGA) and the Clinical
Proteomic Tumor Analysis Consortium (CPTAC) [25,26]. For example, The TCGA recently reported a
comprehensive analysis of multiple omics features of renal cancer and their associations with cancer
subtypes and patient prognosis [3]. The study found that CCRCC tumors show elevated immune
cell-specific gene expression in comparison to other kidney cancer sub-types. Other comprehensive
characterizations of omic profiles for diagnostic, prognostic or biological understanding purposes in
CCRCC have been recently reported [27–29].

The integration of omics and histopathology data has the potential to improve our understanding
of the biological mechanisms underlying tumors, their detection, and treatment [30]. Previous efforts to
achieve these goals include the integration of H&E-stained tissue sections and genomic markers from
patients diagnosed with gliomas [31]. CNNs were applied to analyze the images and predict patient
survival, and the combination of such models with genomic biomarkers outperformed the current
clinical prognosis approach [31]. In lung adenocarcinomas (LUAD), histopathology-derived features
have been shown to correlate with omics-based classification, using gene and protein expression, and
to improve patient survival prediction [32]. More recently, using LUAD and liver cancer datasets, the
combination of gene expression and imaging features was also shown to improve patient prognosis [33].
In both investigations the histology-based prediction models processed inputs that represented
handcrafted image-derived features reflecting specific cellular and sub-cellular morphological patterns.
The application of DL models has also been demonstrated with TCGA-derived histopathology images
and omics data. For instance, a CNN applied to whole-slide images showed a diagnostic performance
comparable to that of pathologists and was also capable of predicting the mutation status of commonly
mutated genes in LUAD [34]. In breast cancer and using histopathology images, CNN-based models
assigned patients to diagnostic attributes, e.g., tumor stage, and outperformed models based on
transcriptomic data only [35]. Examples of other applications of integrative analysis in renal cancer
research are provided in [36] and [37].

Despite the progress achieved to date, such investigations tend to emphasize the implementation
of histology-based models for improving classification accuracy. Moreover, the integrated analysis of
such models with large-scale proteomics data have received relatively less attention in comparison
to genomics and transcriptomics data. Deeper investigations of the association of histology imaging
models and large-scale proteomics will not only improve our understanding of the predictive
complementarity of such data sources, but also may offer the basis for more precise diagnostic
systems. Here we address these research needs through the application of machine learning techniques,
including DL models, for proteomics and imaging data. Based on the identification of correlations
between image-based models and proteomics profiles, we generate hypotheses about the roles of



J. Clin. Med. 2019, 8, 1535 3 of 15

proteins and biological processes in CCRCC, whose molecular activity can be accurately captured
by histopathology imaging. Furthermore, to the best of our knowledge, we are the first team to
systematically investigate the association of histology imaging and proteomics data in CCRCC using DL.

2. Methods

An overview of our research strategy is summarized in Figure 1A. Here we address the question
of finding associations between diagnostic imaging and proteomics data. To achieve it, we analyzed
histology images and proteomics data from hundreds of tumors and control samples. Machine learning
models for distinguishing tumors from normal samples were built for each dataset independently
(Figure 1B). Based on the resulting models, we investigated correlations between the diagnostic
proteins and the image-based predictions. Using different databases containing annotations of
biological processes and pathways, we detected statistically significant correlations that are relevant to
cancer in general, and CCRCC in particular. Moreover, we investigated associations between mRNA
obtained from the same patient cohort and the histology-based predictions, as well as between mRNA
and their corresponding proteins.
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Figure 1. Overview of research strategy. (A) Analytical and predictive modeling workflow implemented
in this study. (B) Focus on the implementation of diagnostic models based on proteomics and
histology imaging. (C, D) Examples of histology (thumbnail) images obtained from tumor and normal
samples respectively.

2.1. Datasets

The proteomics and histology datasets were generated by the CPTAC Clear Cell Renal Cell
Carcinoma (CCRCC) Discovery Study [38]. The proteomics data, consisting of Tandem Mass Tags-10
(TMT10) experiments of 216 samples, were downloaded from the CPTAC Data Portal. This dataset
included complete information for 9964 proteins measured in 194 samples (84 normal, 110 tumor
samples), which are the focus of our investigation. The histology dataset was obtained from The
Cancer Imaging Archive (TCIA) and included a total of 783 slide images (259 normal, 524 tumor,
examples shown in Figure 1C,D). For some of the patients in this cohort, matching histology slides
and proteomic samples (from the same patient) are available for investigating associations between
proteomic- and image-based diagnostic models (details below). Before implementing diagnostic
models, the proteomics dataset was pre-processed by selecting the LogRatio protein abundant column,
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and null values were replaced with zero. Histology images (raw pixel intensity data from thumbnails
of whole slides) were fed into the DL models, and further processing at the pixel level was carried out
during the model training process, as delineated next.

2.2. Diagnostic Models

The proteomics-based diagnostic model was generated with a Random Forest (RF) classifier with
default parameters and ntree = 500. The selected ntree value was sufficient to obtain the top reported
classification performance. As inputs to this model, we focused on the top-10% most variable proteins
(based on their SD, i.e., 997 proteins) across all available samples. We focused on the top-10% most
variable proteins because these genes were sufficient to obtain the best discrimination between normal
and tumor samples. Using the full set of proteins, we obtained a relatively weaker discrimination
of samples (Results). The RF model was trained, tested and its performance assessed with a 10-fold
cross-validation (10-fold CV) sampling strategy. For both proteomics- and imaging-based models,
we assessed their diagnostic performance using standard quality classification indicators: accuracy,
precision, recall (sensitivity), F1, and AUC values.

The imaging-based diagnostic system consisted of a deep neural network architecture that
combined: A CNN (the VGG16-CNN [39]), a regularized fully connected (FC) neural network and an
output layer (OL). As in the case of the RF model, the objective of the classification task is to distinguish
between normal and tumor samples. Because of the relatively small number of images (compared to
typical large-scale datasets used in DL) and to reduce the computing times needed to train and test the
models, we used a VGG16-CNN that was previously trained on more than 14 million generic images
corresponding to 1000 image classes. Such a “transfer learning” is a well-established DL approach to
extracting and re-using low-level image features across imaging application domains [10].

The histology imaging data were partitioned into training (181 normal and 366 tumor images),
validation (52 normal and 105 tumor images) and test datasets (26 normal and 53 tumor images). These
datasets were used for model generation, selection and independent evaluation respectively. To ensure
an unbiased and robust analysis, we focused on the independent test dataset for implementing the
proteomics-imaging integrative analysis. All the images were resized (to 224 × 224 pixels) and were
input as 3-channel images to the DL model. To enable robust model building and reduce the risk of
overfitting, images were randomly flipped and zoomed during training. The pre-trained VGG16-CNN
was followed by a global average pooling layer, a fully connected network (128 units + ReLu activation)
and a dropout layer to further minimize overfitting (rate = 0.2). Image classification was done with
a 2-output (representing disease and control classes) using the softmax activation function to allow
probabilistic classification. The FC and OL layers were optimized on the histology imaging data using
the Adam optimization algorithm (lr = 0.001, decay = 0.0002), sparse categorical cross-entropy as loss
function, with a maximum of 50 learning epochs and data batch size = 547. The batch size was chosen
to include the full training dataset. Code available at https://gitlab.com/biomodlih/histo-proteo.

2.3. Integrative Data Analysis

Correlations between protein expression and histology-based predictions (p-values generated
by the DL diagnostic system) were calculated with the Pearson correlation coefficient. Out of the 79
images available in our independent test dataset, only 24 of them have patient-matched proteomics
data. Functional enrichment analyses using GO, KEGG and Reactome annotations were implemented
on the set of predictive proteins. To identify highly differentially enriched (Reactome) pathways in the
proteomics data on the basis of their correlation with image-based predictions, we performed Gene Set
Enrichment Analysis (GSEA) [40].

We also performed correlative, functional enrichment and GSEA analyses on mRNA data matched
to the independent dataset, i.e., patients with proteomic, imaging and gene expression data. As the
other datasets in this article, the gene expression data were generated by the CPTAC project (RNASeq)
and analyses were applied to their FPKM expression values [41]. A total of 185 samples were available
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in the RNASeq dataset with matching proteomics data (including 110 tumors), and 9884 genes with
corresponding proteins in the proteomics data. Among these data, 22 samples also have matched
histology images.

2.4. Software and Statistics

The proteomics-based RF classification model was implemented with the R packages caret
and randomForest. The image-based DL classification model was implemented in Python using
Pandas, NumPy, Matplotlib, and Keras libraries. We applied one-sample t-tests for detecting statistical
differences between matched data groups using R. The statistical significance of functional enrichment
analysis and GSEA was estimated with Benjamini-Hochberg adjusted p-values (statistical significance
was defined with a cutoff p-adj value of 0.05 in all analyses). Additional data processing and
visualization tasks were completed with R packages: fgsea, Rtsne, ggplot2, and complexHeatmap.

3. Results

3.1. A Proteomics-Based Classification Model Accurately Detects CCRCC

Before implementing the proteomics-based classifier, we investigated the sample discrimination
potential of the top-variable 997 proteins using an unsupervised classification algorithm. We found that
this set of proteins effectively segregates disease and normal samples into clearly separated clusters
(t-SNE mapping, Figure S1). Interestingly, when using the full set of proteins available in the dataset,
we obtained a relatively good segregation of samples as well: Only 3 normal samples were clustered
closer to tumor samples than to other normal samples (Figure S1). These observations corroborate
both the quality and diagnostic potential of the proteomics dataset, in general, and of our selected set
of 997 proteomic markers, in particular.

The proteomics-based RF classification model was capable of distinguishing between CCRCC
and normal samples with an overall accuracy of 0.98 (10-fold CV results), as well as high sensitivities
and specificities (0.97 and 0.99 respectively). This also resulted in high F1 and AUC values (0.98 and
0.99, 10-fold CV results), which offer further evidence of the powerful diagnostic capacity of our
proteomics-based classification model.

3.2. A Histology-Based Classification Model Accurately Detects CCRCC

The histology-based prediction (DL) model was trained using the transfer learning and network
adaptation strategy detailed in Methods. The training process was implemented to learn the parameters
of the FC and OL layers of our DL model, while keeping the (transferred learning) parameters of the
CNN frozen. The resulting models consistently reported classification accuracies between 0.98 and 0.99
(on the training dataset), and between 0.81 and 0.88 when evaluated on a separate validation dataset
(Methods). Such classification performance was observed when training our DL model during 50
epochs. A relative high classification performance was also obtained on the validation dataset for fewer
training epochs: Accuracies between 0.83 and 0.85 (for 3 and 20 training epochs respectively). To reduce
the risk of model overfitting and decrease the time needed for training and evaluating models, we
selected a DL model trained with 3 learning epochs and the parameters specified in Methods.

The selected model was then applied to the independent test dataset of histology images. Our
histology-based classification model was capable of distinguishing between CCRCC and normal
samples with an accuracy of 0.95 on the test dataset, as well as with high sensitivities and specificities
(1 and 0.93 respectively). This also resulted in high F1 and AUC values (both equal to 0.92), which
further indicates the solid diagnostic capacity of our model. The model actually only misclassified 4
images out of 79 test images: 4 normal images predicted as tumors.
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To rule out the possibility of incidental classification due to imaging artifacts, e.g., differences in
the amounts of white pixels, we further assessed images that were correctly classified as tumor and
normal samples in our test dataset. First, we did not find evidence that the amounts of white pixels or
tissue in the images represented the main distinguishing feature for correctly classifying the images.
For example, there are instances of normal and tumor samples that were correctly classified (test
dataset) despite sharing similar amounts of white pixels and tissue (Figure S2). Next, we examined the
feature maps learned by the CNN in our model and observed that normal and tumor samples generate
different feature activations, even for input (normal and tumor) images that display similar amounts of
white pixels and tissue (Figure S3). These results demonstrate that the classification performance of
our model is not determined by incidental imaging artifacts.

3.3. Proteomic Markers are Correlated with Histology-Based Predictions

The previous section’s findings motivated us to investigate in depth the relationship between
the proteomic markers and the histology-based model predictions. Knowing that the proteomics
data represent a strong source for accurately classifying normal vs. tumor samples, a key question is
how such predictive features relate to the image-based predictions. To answer this question, first we
calculated correlations between each protein in our test dataset of 24 samples (14 tumors, 10 normal
samples) and their corresponding image-based predictions (p-values of assigning a sample to the tumor
class). Also using hierarchical clustering, we further demonstrated that the protein expression data are
sufficient to accurately separate tumor from normal samples (Figure 2A). Moreover, these proteins can
be grouped in terms of their (expression) correlations with the image-based predictions (plot shown on
left side of heatmap, Figure 2A). In particular, the histology-derived predictions are strongly associated,
either highly positively- or anti-correlated, with a sub-set of protein markers (Figure 2B).

A closer examination of these relationships showed that the proteins that are either highly
positively- or anti-correlated with histology-based predictions are significantly enriched in a diversity
of biological processes (Figure 2C and Figure S4, GO terms and KEGG pathways respectively). In the
case of proteins that are highly positively correlated with the image-based predictions, such an
enrichment includes processes relevant to cell adhesion, extracellular organization and immune
responses (Figure 2C, Table S1). Proteins that are strongly anti-correlated with image predictions are
significantly associated with several respiratory and metabolic processes. Unlike highly positively and
anti-correlated proteins, weakly correlated proteins, i.e., those with correlations around 0 (Figure 2B),
are not statistically associated with specific biological processes.
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enrichment analysis technique (GSEA), we found again that proteins either strongly positively- or 
anti-correlated with histology-based predictions are significantly enriched in a variety of cancer-
relevant molecular pathways (Figure 3A, Table S2). Unlike the analysis reported above, here we 
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histology-based predictions for detecting significant functional enrichments.  

Figure 2. Proteomic markers are correlated with histology-based predictions. (A) Heatmap of
proteomics data (vertical axis: Expression values for 997 proteins) measured in 24 samples in our
independent test set (horizontal axis). The top of the heatmap specifies the true and predicted classes
(normal and tumor samples), as well as the corresponding p-values of assigning a sample to the tumor
class, as predicted by our histology-based DL model. The plot on the left side of the heatmap depicts
the correlations between each protein and the predictions generated by the histology-based DL model
(p-values of tumor classification). (B) Plot showing the correlations between each protein expression
and the predictions generated by the histology-based deep learning (DL) model (p-values of assigning
an image to the tumor class). Correlation values are ranked from the highest positive to lowest negative
(anti-correlated) values. (C) Gene ontology (GO) enrichment analysis of proteins highly positively- and
anti-correlated with the histology-based predictions. Bars indicate the magnitude of the enrichment
scores, and adjusted p-values of the enrichments are color coded. Statistically enriched GO terms
were not detected for proteins whose expression values were weakly correlated with histology-based
predictions (i.e., those with correlations around 0).

3.4. Independent Verification of Biological Associations

Using an independent database of annotated molecular pathways (Reactome) and an alternative
enrichment analysis technique (GSEA), we found again that proteins either strongly positively- or
anti-correlated with histology-based predictions are significantly enriched in a variety of cancer-relevant
molecular pathways (Figure 3A, Table S2). Unlike the analysis reported above, here we considered
the actual levels of the observed correlations between the proteomic data and the histology-based
predictions for detecting significant functional enrichments.
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Figure 3. Proteins either strongly positively- or anti-correlated with histology-based predictions are
significantly enriched in cancer-relevant molecular pathways. (A) List of Reactome pathways that
are significantly associated with the proteins on the basis of their correlations with histology-based
predictions, as detected by Gene Set Enrichment Analysis (GSEA) (Methods). Bars indicate the
magnitude of the enrichment scores, and adjusted p-values of the enrichments are color coded. (B)
and (C) show examples of pathways significantly associated with proteins highly positively- and
anti-correlated with histology-based predictions respectively. In (B) and (C) proteins are ranked
according to their correlations with the histology-based predictions, from highest to lowest, and
pathway enrichment scores were estimated with GSEA.

We verified that proteins that are positively correlated with the imaging-based predictions
are also statistically associated with molecular pathways relevant to extracellular organization and
immune responses (Figure 3A,B). Conversely, we found that proteins that are anti-correlated with
histology-based predictions are significantly associated with respiratory and metabolic pathways
(Figure 3A,C). These findings provide additional supporting evidence of the direct connection between
proteomics markers and histology-based predictions, as well as of their biological meaning in the
specific context of CCRCC.

3.5. Genes are Highly Correlated with Proteomic Markers and Imaging-Based Predictions

Next, we analyzed the concordance between proteins and their coding RNAs on the basis of their
expression values. This analysis was applied to a set of 22 samples (14 tumor and 8 normal samples)
with matched proteomics, gene expression and imaging data available. Figure 4 displays a global
view of the correlations between these datasets and the histology-based predictions independently.
To facilitate a comparative visualization of major trends, in each plot the rows show proteins (Figure 4A)
and their corresponding genes (Figure 4B) in full alignment. This analysis first indicates that, as the
proteomics data, the gene expression data are sufficiently informative to perfectly separate tumors
from normal samples (Figure 4). Moreover, as observed in the case of the proteomics data, genes can
also be meaningfully ranked on the basis of their correlations with the histology-based predictions (see
correlation plots on the left side of each heatmap, Figure 4). The latter includes RNAs highly positively-
and anti-correlated with the histology-based predictions (Figure 4 and Figure S5). Also, as in the case of
the proteomics data, such genes are significantly enriched in biological processes (Figure S5): Immune
responses and extracellular organization (for genes highly positively correlated with histology-based
predictions), and metabolic processes (for genes anti-correlated with histology-based predictions).
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Figure 4. Analysis of the correlations between the proteomics data and their encoding genes, and
between each dataset and the histology-based predictions. (A) Focus on the proteomics data. (B) Focus
on the gene expression data. In each plot, the rows show proteins (A) and their corresponding coding
genes (B) in alignment to facilitate comparative visualization, i.e., each row in each heatmap refers
to a protein and its coding gene. Analysis performed on 22 samples with matched proteomics, gene
expression and imaging data available.

A deeper analysis of these datasets (995 proteins with their corresponding gene expression data)
showed strong correlations between protein and gene expression (median absolute Pearson correlation,
r = 0.76). This correlation was statistically higher than that observed when all the proteins available in
the dataset (n = 9984 proteins with corresponding gene expression data) are considered (r = 0.76 vs.
0.47, p < 2.2 × 10−16, Figure 5A). Moreover, we found that the correlations between protein expression
and image-based predictions are also concordant with the correlations between gene expression and
image-based predictions, in particular for the strongest positive and negative correlations observed in
each correlation setting (Figure 5B).

GSEA of the proteins and genes separately, ranked by their correlations with the image-based
predictions, resulted in 35 statistically enriched molecular pathways that were detected by both datasets
independently (Figure 5C). This shared set of functional associations included 31 pathways relevant to
different immune and extracellular matrix organization processes with positive enrichment scores,
i.e., the correlations of protein (and gene expression) with image-based predictions are also positively
correlated with the activity of these pathways (Figure 5D, Table S3). Conversely, there are 4 pathways
relevant to different metabolic processes with negative enrichment scores (Figure 5D). The latter means
that image-based predictions that are not positively correlated with protein and gene expression are
similarly anti-correlated with the activity of these 4 pathways.
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Figure 5. Protein and gene expression data are highly concordant in the diagnosis of clear cell
renal cell carcinomas (CCRCC). (A) Box plot of the gene-protein expression correlations observed
in our set of 995 proteins, compared to distribution of correlation values observed in the full set of
proteomics dataset with available gene expression data. (B) Correlation plot of protein expression-image
prediction correlations (vertical axis) vs. gene expression-image prediction correlations (horizontal
axis). (C) Number of overlapping molecular (Reactome) pathways statistically detected (with GSEA)
in the protein and gene expression datasets independently, on the basis of their correlations with the
image-based predictions. (D) List of significantly enriched 35 pathways shared in common by the
protein and gene expression datasets. Bars indicate the magnitude of the enrichment scores, and
adjusted P-values of the enrichments are color coded.

To further assess the relevance of the correlations between protein (and gene) expression and
image-based predictions, we investigated whether only the correlations between protein and gene
expression would be sufficient to detect the above-identified molecular mechanisms independently
of the image-derived prediction information. This analysis was done by ranking the 995 proteins
on the basis of their expression correlations with their corresponding encoding genes, i.e., from the
highest to the lowest protein-gene expression correlation pairs, followed by GSEA applied to the
obtained ranking. This analysis did not result in any significant pathway enrichments for the set of 995
proteins, though as expected a variety of pathway enrichments were found when using the full set of
9884 proteins (Figure S6). These results confirm that histology imaging-based predictions can reliably
capture information relevant to immune responses and metabolic processes, as encoded in both the
proteomics and transcriptomics data.
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4. Discussion

Our research addressed the problem of integrating histopathology- and proteomics-based
diagnostic models through machine learning approaches. This challenge is important for systematically
determining molecular features that can be accurately captured by pathology-based diagnostic models.
Although our proteomic- and pathology-based models do not show perfect classification capacity,
they are sufficiently accurate for investigating predictive relationships between them, as well as for
establishing commonalities and complementarities at the functional level.

Using CCRCC as a novel study case, we elucidated the correlation of the diagnostic proteomics data
with the predictions generated by the histology-based diagnostic model. This analysis demonstrated
that, on the basis of their expression, a set of proteins are strongly correlated with the image-derived
predictions. Using multiple annotation datasets and statistical analyses, we also showed how these
correlations are significantly linked to specific biological processes relevant to the emergence and
development of cancer. More specifically, we showed how our histology-based diagnostic model
accurately captures predictive features in the proteomics dataset that are implicated in immune
responses and extracellular matrix re-organization. These associations are also relevant in light of
recent findings by the TCGA showing that CCRCC tumors are characterized by elevated immune
activity [3]. Conversely, we showed how anti-correlations between proteomics and histology models
are reflective of metabolic processes. Furthermore, we showed that gene expression data can also very
closely recapitulate these biological associations based on their strong correlation with the proteomics
data. These findings are useful not only for understanding novel ways to integrate these data
types for predictive purposes, but also for generating hypotheses about the mechanisms underlying
patient-specific classifications.

We showed that our model can accurately classify images in a systematic and automatic way.
This would be of particular relevance when analyzing images that have not been annotated by human
experts. Although our prediction model cannot be used for directly discovering relevant genes or
proteins, we showed that the classifications obtained with our model, in particular the P-values of
tumor presence, are correlated with the expression of proteins and genes that are relevant to distinguish
between tumor and normal samples. Moreover, we show that the genes and proteins with the highest
correlation with the image-based predictions are significantly involved in biological pathways relevant
to cancer.

The highest positive correlations indicate that immune responses play a central role, mostly due
to immune cell infiltration and immunotherapy treatment. The protein organization in the membrane
changes the capacity of the motility of the cell, and both events have been described in this type of
cancer previously [42]. The observed biological categories that anti-correlate with the proteomics (and
transcriptomics) data show important effects centered in the metabolism and the respiratory chain in
the cell, indicating decoupling between the respiratory chain and metabolism in the cell, as expected in
many types of cancer [43,44]. Reprogramming of metabolism is considered a key driver of neoplastic
malignancies [45]. The heterogeneous behavior of cancer metabolism is observed between tumors
in terms of genetic and expression changes in signaling and regulatory pathways [46]. The pattern
of positive correlations found in our analyses suggests that the role of oxidative phosphorylation
reflects the adaptation of this type of cancer to physiological conditions such as hypoxia, nutrient
availability, or complement of genetic lesions driving this specific tumor type. We also explored the
anti-correlation between transcriptomics and proteomics profiles and metabolic pathway expression,
and found that the renal tumors retain the metabolic expression patterns of the corresponding native
tissues. This might be a consequence of similar local environments or tendencies to maintain the
metabolic expression program established in the original tissue.

Although our study offers novel and relevant insights into the integration of histology and
proteomics data through the application of machine learning, it shows some limitations that will
merit future consideration. First, our study is limited by our focus on a single patient cohort of
CCRCC patients. Additional validations on datasets obtained from independent cohorts may further
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demonstrate the clinical relevance of our diagnostic models and their integrative analysis, and will
also enable wider investigations of variations related to different clinical factors, such as gender and
tumor subtypes. Nevertheless, our study provides a solid basis for further investigations based on the
analysis of carefully annotated datasets obtained from a CPTAC reference cohort.

Our study is also limited by the relatively small amounts of data, in particular those needed
for independently validating our models on matched histology and proteomics data from the same
patients. Although the CPTAC currently offers the largest amount of data combining histology
and proteomics data for CCRCC research, further validations with cohorts of different sizes are
needed. Although at present we do not have access to another cohort of H&E-stained histopathology
images, additional testing our model on independent image collections will be crucial for further
demonstrating the potential clinical relevance of our model. Future research will also benefit from the
implementation of multi-modal classification models that directly combine proteomics, mRNA and
histology data. Currently, an important obstacle for applying such a strategy are the limited amounts
of data with matched multi-omics and histology measurements. As part of such efforts, it will be
useful to continue investigating the informational complementarities and redundancies among such
datasets [34]. Moreover, this may lead to new approaches to predicting protein or gene expression
from histology data.

It is also important to recall that we analyzed raw pixel intensity data from thumbnails of whole
slides instead of raw full resolution images. This choice may hamper classification performance,
particularly in sub-typing or prognosis tasks. Here we showed that, in the CCRCC domain and in
the diagnostic context (tumor vs. normal sample classification), thumbnails of whole slides contain
sufficient information to achieve a meaningful and accurate classification. Future research will require
analyses based on full resolution whole slides.

To conclude, our study presented a systematic investigation of the association of histopathology and
proteomics data in a diagnostic setting. The resulting models and insights are relevant for understanding
the predictive interplay between these datasets, as well as their informational complementarities at
the molecular level. Furthermore, the proposed integrative analysis approach is applicable to other
investigations with different tumors or omic data types.
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