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Abstract: Bacterial peptide deformylase (PDF) is an attractive target for developing novel inhibitors 

against several types of multidrugresistant bacteria. The objective of the current study is to retrieve 

potential phytochemicals as prospective drugs against Staphylococcus aureus peptide deformylase 

(SaPDF). The current study focuses on applying ligandbased pharmacophore model (PharmL) and 

receptorbased pharmacophore (PharmR) approaches. Utilizing 20 known active compounds, 

pharmL was built and validated using Fischer’s randomization, test set method and the decoy set 

method. PharmR was generated from the knowledge imparted by the Interaction Generation protocol 

implemented on the Discovery Studio (DS) v4.5 and was validated using the decoy set that was 

employed for pharmL. The selection of pharmR was performed based upon the selectivity score and 

further utilizing the Pharmacophore Comparison module available on the DS. Subsequently, the 

validated pharmacophore models were escalated for Taiwan Indigenous Plants (TIP) database 

screening and furthermore, a druglike evaluation was performed. Molecular docking was initiated 

for the resultant compounds, employing CDOCKER (available on the DS) and GOLD. Eventually, 

the stability of the final PDF–hit complexes was affirmed using molecular dynamics (MD) 

simulation conducted by GROMACS v5.0.6. The redeemed hits demonstrated a similar binding 

mode and stable intermolecular interactions with the key residues, as determined by no aberrant 

behaviour for 50 ns. Taken together, it can be stated that the hits can act as putative scaffolds against 

SaPDF, with a higher therapeutic value. Furthermore, they can act as fundamental structures for 

designing new drug candidates. 

Keywords: multidrugresistant bacteria; phytochemicals; dual pharmacophores; molecular 

dynamics (MD) simulation 

 

1. Introduction 

Bacterial infections represent one of the major causes of death in humans [1]. One of the primary 

reasons for this is the capacity of microorganisms to develop resistance to existing antibiotics, thereby 

raising health concerns [2–4]. Currently existing antibiotics might develop resistance, posing a major 

challenge. There is thus a dire need for new antibiotics that can act on a broad spectrum of 

microorganisms. 

Multidrug resistant (MDR) bacteria have often been described as a major impediment to public 

health globally [5] and are associated with nosocomial infections [6]. One notable reason for the 

increase in MDR bacteria is due to the unceasing administration of antimicrobial agents in pursuit of 

treating infections [7]. The bacterial species acquire resistance through several mechanisms such as 
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by inducing mutations to alter the target protein [8–10], through enzymes involved in the inactivation 

of the antimicrobial agents (drugs) [11–16], by genes acquired from other species with low 

susceptibility to target proteins [17], and by avoiding the target [18–21]. 

Multidrug resistance can broadly be categorized into primary resistance and secondary 

resistance [7]. Primary resistance occurs when a drug confronts an organism for the first time, while 

acquired secondary resistance [22,23] is triggered in an organism after exposure to the drug, leading 

to intrinsic resistance or the extensive resistance. Intrinsic resistance refers to the lack of sensitivity of 

all the microorganisms of a single species to specific common firstline drugs [22] and is also known 

as multidrug resistance. On the contrary, extensive resistance (XDR) occurs when the microorganisms 

can withstand exposure to more than one potential antimicrobial agent [24]. These reports urge 

researchers to discover new targets and drugs that can effectively combat MDR bacteria. 

Peptide deformylases (PDFs) are a class of metalloproteinase that are ubiquitously prevalent in 

microorganisms. This enzyme is present on the def gene and interestingly is different from the 

biochemical functions of the mammalian cells. Furthermore, developing potential antibiotics against 

this target induces the inhibitory effects against several organisms. Biologically, the PDF catalyses the 

deformylation step, essential for the biosynthesis and maturation of a protein. Bacterial protein 

synthesis requires the Nformylmethionine that is formed by enzymatic transformylation of 

methionyltRNA by formylmethionine tRNA transferase [25]. The nascent protein is changed to 

matured protein upon the removal of Nformyl methionine by a series of action by PDF. This cycle 

of formylation–deformylation is required for the growth of the bacteria and is seen in all the bacterial 

species [25]. 

Despite the presence of several PDF inhibitors, none of the potential inhibitors have been 

marketed [26,27]. Actinonin was one of the first antibiotics found to be potent against several bacteria, 

and remains as a prototype in developing the slow tightbinding type of inhibitors [26,28,29]. 

However, this compound was not considered for treatment [29] as the natural inhibitor lacks 

specificity [30] and triggers apoptosis [31–33]. Furthermore, it demonstrates minimal in vivo activity 

due to bacterial efflux [34,35] and might avoid the formylation pathway due to the endurance of 

resistance [36,37]. 

Bacterial PDFs can be categorized into PDF1 and PDF2, respectively depending upon their 

functions and their habitant. Type I PDFs are established in both Gramnegative and Grampositive 

bacteria, while type II PDFs are confined in Grampositive bacteria [38] and share a sequence identity 

of about 27~40% [1] with structurally conserved active site bearing a metal ion. Moreover, remarkable 

dissimilarities have been noticed towards the Cterminal regions of type I and type II PDFs. The C

terminal region of type I PDFs demonstrates αhelices, while in type II PDFs this region displays β

strands that are subsequently folded back onto themselves to form βsheets. 

Furthermore, PDF was also detected in humans, sharing a sequence identity of 28–34% with 

bacterial PDFs. Nevertheless, it was reported that the activity of PDF in normal human cells is quite 

low and is elevated in cancer cells [39]. Moreover, it was assumed that human mitochondrial PDFs 

might be nonfunctional or the antimicrobial agents might not reach the mitochondria due to the lack 

of appropriate evidence on toxicity [40,41]. Additionally, the mitochondrial S1’ subsite was revealed 

to be narrower than the bacterial PDFs, a trait which could be exploited in designing inhibitors 

against bacterial PDFs with relatively no effects on human PDF [29,42,43]. Taken together, PDF could 

be regarded as an excellent target for discovering novel antimicrobial agents against multidrug

resistant bacteria. 

Since the ancient ages nature has been offering a stewardship to humankind by providing 

abundant sources of medicines [44]. Plantderived compounds were foremost in demonstrating 

antimicrobial activity and hence have gained wider attention from the pharmaceutical and scientific 

communities [45–47]. Additionally, secondary metabolites of plants have been employed as therapeutic 

tools which exhibit varied ranges of activities enriched with several active compounds [48–50]. Besides 

being therapeutically active, plant phytochemicals induce low side effects and are abundant in 

availability, thereby being costeffective [51,52]. Additionally, different phytochemicals have been 

proven effective against pathogenic multidrugresistant bacteria [52–60]. Encouraged by these 
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reports, the current investigation attempts to identify the potential phytochemical against PDF, 

employing combined ligand and structurebased pharmacophore approaches along with molecular 

dynamics (MD) simulations. 

2. Experimental Section 

2.1. Ligand-Based Approach 

2.1.1. Dataset Construction and Its Composition 

One of the preeminent criteria involved in the pharmacophore generation and subsequently its 

validation largely depends upon the compounds chosen. Specifically, the compounds should exhibit 

varying inhibitory activities (half maximal inhibitory concentration, IC50) with structural diversity. 

Furthermore, to obtain the most reliable pharmacophore model, a dataset of 51 compounds 

(https://www.bindingdb.org/bind/index.jsp) was grouped into the training set compounds and the 

test set compounds. The training set was employed to build the pharmacophore model, while the test 

set was adapted to validate the same. During the formation of the training set, care should be taken 

to include the most active compounds, and the set should encompass of a minimum of 16 compounds 

and should demonstrate 4–5 order magnitude of the activity data. Moreover, the dataset should be 

free of duplicates and any known inactive compounds. Herein, a total of 20 diverse compounds with 

different structures were assembled with the IC50 values ranging between 0.1 nmol/L and ~560,000 

nmol/L. The test set compounds comprised of a total of 31 diverse structures with varied activity 

values. Careful selection of the test set compounds has been performed in order not to repeat the 

compounds of the training set. Correspondingly, the dataset was classified into most active, 

moderately active, and least active compounds based upon the inhibitory activity values. 

Accordingly, the compounds that exhibited inhibitory activity values less than 100 nmol/L (+++) were 

labelled as most active, the compounds with the inhibitory activity values existing between 100 

nmol/L and ~10,000 nmol/L (++) were referred to as moderately active, and the compounds 

demonstrating the inhibitory activity values greater than 10,000 nmol/L (+) inhibitory activity values 

were regarded as most inactive compounds, respectively. 

2.1.2. Generation of the Pharmacophore Model 

To generate the most efficient pharmacophore model, the structural features of the 20 training 

set compounds were exploited employing the Feature Mapping protocol available in the Discovery 

Studio (DS) (Accelrys Inc., San Diego, CA, USA). This module probes into the ligand’s structures and 

derives all the possible pharmacophore features imbibed by the ligands. The knowledge gained was 

invested in the selection of the features to obtain the suitable pharmacophore model. The 3D 

Quantitative Structure Activity Relationship (QSAR) Pharmacophore Generation module, accessible on the 

DS, was initiated to secure a statistically significant pharmacophore model. Mechanistically, the 3D 

QSAR module depends on the HypoGen (available with DS) algorithm to glean the pharmacophore 

models from a given set of training set compounds. The generated pharmacophore model reflects the 

ability of the ligands to fit onto the pharmacophore. Furthermore, for the generation of the most 

dynamic pharmacophore model, properties such as activity and the uncertainty values for the 

training set compounds (input ligands) play a determinant role. For the current investigation, the IC50 

value was considered as the activity property and an uncertainty property of 3 was chosen. The 

minimum and the maximum features were selected as 0 and 5, while the minimum feature points 

and the minimum subset points were set to 4 with weight variation of 0.302, respectively. The Fast 

conformation generation, with a maximum of 10 pharmacophores and a minimum interfeature 

distance of 2.97, was opted for. From the resultant pharmacophore models, the ideal model was 

chosen based upon Debnath’s method. Accordingly, a significant model should portray low cost 

value, high cost difference with low rootmeansquare deviation (RMSD) and high correlation. 

2.2. Generation of the Receptor-Based Pharmacophore Model 
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Receptorbased pharmacophore model generation takes into consideration the inbound 

cocrystal that imparts knowledge on the key residues useful for inhibition. For the present study, the 

protein structure (PDB code: 1Q1Y) of peptide deformylase from Staphylococcus aureus with an innate 

ligand actinonin was employed. During this process, the information pertaining to all the available 

crystal structures was studied (UniProtKBP68826). To logically probe into the pharmacophore 

features located in proximity with the innate ligand around 7 Å, the Interaction Generation module 

available with the DS was applied. The Receptor–Ligand Pharmacophore Generation module embedded 

with DS was launched to obtain the pharmacophore models that are complementary to the active site 

key residues. The generated pharmacophore model was obtained from the features that correspond 

to the protein–ligand interactions and are evaluated from the features. The best pharmacophore 

model was selected based upon the highest selectivity as predicted by the genetic function 

approximation (GFA). 

2.3. Validation of the Pharmacophore Models 

The selected pharmacophores from both the approaches were subsequently validated to assess 

their robustness in predicting the activities and redeeming the active compounds. Subsequently, the 

ligandbased pharmacophore (hereinafter pharmL) was validated by Fischer’s randomization 

method and the test set method, while receptor based pharmacophore model (hereinafter pharmR) 

was validated by receiver operating characteristic (ROC) plot analysis. Furthermore, in order to 

ensure the ability of both the pharmacophores in retrieving the compounds from the same database, 

a common validation method was conducted called as the decoy set validation method. 

2.3.1. LigandBased Pharmacophore Model Validation 

The obtained pharmacophore model should be statistically significant and should possess the 

ability of accurately retrieving the active compounds thereby predicting their activities. Accordingly, 

the best pharmacophore model that has obeyed the Debnath’s analysis was subjected to Fischer’s 

randomization and test set methods of validations. Fischer’s randomization critically acknowledges 

that the pharmacophore model was not generated arbitrary which is reflected by the low cost values. 

Fischer’s randomization was executed alongside the pharmacophore generation at a statistical 

significance of 95% computed by the formula 

S = 1 − �1 +
X

Y
� 100 (1) 

where X denotes the total number of hypothesis with a cost value typically lower than the 

significant hypothesis and Y indicates the number of initial and the random HypoGen runs. 

Correspondingly, 19 random spreadsheets were generated by random shuffling of the activities of 

the training set compounds. 

The test set method of validation evaluates the ability of the chosen pharmacophore in 

categorizing the compounds other than the training set in the same order of magnitude as the 

experimentally obtained IC50 values. This method guides us to comprehend the ability of the 

pharmacophore model in identifying the active compounds. 

2.3.2. ReceptorBased Pharmacophore Model Validation 

The pharmacophore model with high selectivity was subjected to validation alongside the 

pharmacophore generation opting the “validation” as true and the results were read as the ROC plots. 

The obtained plots were an objective and quantitative measure, and the adequacy of the chosen 

pharmacophore in distinguishing between the active and the inactive ligands. A graph was plotted 

with specificity on the xaxis and the sensitivity on the yaxis. If the model cannot discriminate 

between the active and the inactive compounds, the graph appears to be a straight line; however, 

upon gaining accuracy, the propensity of the curve tends towards the ideal condition where the 

sensitivity and the specificity will be one. The area under the curve (AUC) defines the accuracy and 

ranges between 0.5 (random) to 1.0 (excellent). For the current study, a total of 15 active compounds 
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and 20 inactive compounds have been considered. Furthermore, the quality of the model was 

evaluated based upon the true positives, true negatives, false positives and false negatives, which 

determine the sensitivity and the specificity of the model. Sensitivity defines the ability of the 

pharmacophore model in determining the true positives and is computed employing the formula; 

sensitivity = TP / (TP + FN). In the equation, TP refers to true positives, and FN implies false negatives. 

Conversely, the term specificity denotes the ability of the model in identifying the negatives and is 

calculated by specificity = TN / (TN + FP), where TN refers to true negatives and FP represents false 

negatives, respectively. 

2.3.3. Decoy Set Method of Validation 

The decoy set method of validation was implemented to substantiate the competence of pharmL 

and pharmR in retrieving the active compounds when subjected to screen an external database. In 

this pursuit a dataset (D) of 1000 compounds was instituted with 20 active compounds (A). 

Correspondingly, pharmL and pharmR were allowed to screen the database employing the Ligand 

Pharmacophore Mapping accessible with the DS using the Best algorithm. The subsequent results 

generated were assessed based upon the enrichment factor (EF) and the goodness of fit (GF) values 

and were enumerated utilizing the formulae 

EF =
Ha ×  D

Ht ×  A
 (2) 

�� = �
��

����
� (�� + ��)  ×  {� −

�� − ��

� − �
} (3) 

2.4. Virtual Screening of the TIP Database 

The validated pharmacophore was then allowed to screen the Taiwan Indigenous Plants (TIP) 

database [61–63]. This database is enriched with biologically active phytochemicals with anticancer, 

antiplatelet, and antituberculosis activities, as evidenced by the literature. Since nature has been an 

enormous source of medicines from the ancient ages, the present investigation makes an effort to 

retrieve potential candidate chemical compounds from the plant sources encompassed with the TIP 

database. Plantderived natural compounds offer a host of beneficial features over synthetic 

medicines, such as low toxicity [64,65], fewer side effects, and abundance. The pharmL and pharmR 

are used as 3D query to screen 5284 chemical compounds furnished within the database employing 

the Ligand Pharmacophore Mapping with Fast/Rigid fitting method. The compounds mapped with both 

the models, implying that they carry the chemical groups essential for inhibition. Furthermore, these 

compounds were monitored for their druglike properties employing the Lipinski’s Rule of Five (Ro5) 

and absorption, distribution, metabolism, and excretion (ADMET) assessment obtainable with the 

DS. 

2.5. Drug-Like Assessment 

To evaluate the ability of a drug for its good pharmacokinetics, the mapped compounds were 

escalated to delineate on their druglike assessment. This approach helps in weeding out the non

drug like compounds from being processed further. Furthermore, such examinations establish the 

compounds as prospective drugs and enhances their developmental chances during the drug 

development pipeline. Accordingly, the ADMET Descriptors accessible with the DS was launched that 

specifically monitors if a compound could cross the blood–brain barrier (BBB), its solubility, its 

absorption (HIA), and toxicity. Correspondingly, the upper limit for BBB, solubility, and the 

absorption were fixed at 3, 3, and 0, respectively. The resultant compounds were subjected to Ro5, 

which is by far the most influential measure in the preclinical drug development. The Ro5 establishes 

the quality of a lead compound to make it an orally active drug. Subsequently, a drug should possess 

a molecular weight less than 500 Da, have fewer than five hydrogen bond donors, fewer than 10 
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hydrogen bond acceptors, and 10 rotatable bonds, and a Log pvalue of less than 5. To accomplish 

this, Filter by Lipinski embedded in the DS was initiated. 

2.6. Molecular Docking Studies 

The compounds that obeyed the aforementioned criteria were upgraded to the molecular 

docking studies employing the CDOCKER available with the DS. Molecular docking is an effective 

method that guides us to screen the compounds that accommodate well at the proteins active site 

and reveals an ideal binding mode of the small molecules. The CDOCKER programme facilities the 

refinement docking for numerous ligands with a single target protein. This gridbased docking 

method, utilizes CHARMm wherein the protein is held tight while the ligands were allowed to move. 

The results were obtained as CDOCKER energy and CDOCKER interaction energy, where the 

higher the values, the greater the favourable binding between the protein and the ligand. 

To ensure the accuracy of docking calculations, Genetic Optimisation for Ligand Docking 

(GOLD) v5.2.2 (The Cambridge Crystallographic Data Centre, Cambridge, UK) was used. GOLD has 

been widely successful in the field of virtual screening, lead optimization and further identifying the 

most precise binding modes for the ligands and predominately operates by inducing receptor 

flexibility obtained by the side chain flexibility. For the current study, the GoldScore was used as the 

default scoring function while the ChemScore was adapted as a rescore function. Furthermore, the 

GoldScore is a sum of van der Waals energy, ligand torsion strain, Hbonding energy, and metal 

interaction. The ChemScore quantifies the total free energy variations associated with the ligand 

binding together with hydrophobic–hydrophobic contact area, ligand flexibility, hydrogen bonding, 

and metal interaction. 

The target structure for the current study is the peptide deformylase from Staphylococcus aureus 

with the PDB code 1Q1Y. This enzyme belongs to the hydrolase family having a resolution of 1.9 Å 

complexed with the natural inhibitor actinonin and a zinc ion. Prior to docking, the protein was 

prepared by enabling the Clean Protein protocol available on the DS. All the heteroatoms were 

removed and the hydrogen atoms were incorporated by applying the CHARMm forcefield. The 

active site was designated to all the atoms within the range of 10 Å around the innate ligand. 

Furthermore, the histidine protonation state was oriented as observed in the crystal structure. 

The procured leadlike candidates were thereafter docked into the proteins active site. 

Subsequently, 100 conformers for each ligand were allowed to generated while retaining all the other 

parameters as default. Following this, the ideal binding modes were retrieved from the largest cluster, 

which was examined thoroughly for the key residue interactions, and higher dock scores than 

reference, hereinafter the most active compound from the training set. 

2.7. Molecular Dynamics Simulation Studies 

Molecular dynamics simulation studies were executed to comprehend on the dynamic 

behaviour of the ligands at the proteins active site in order to ensure the obtained binding modes and 

further to affirm the stability of the complex. The selected protein ligand complexes from the docking 

studies were employed as the initial structures for the MD studies. GROningen MAchine for 

Chemical Simulations v5.0 (GROMACS, www.gromacs.org) [53] was recruited for studying the 

nature of the protein and the ligand utilizing an allatom CHARMM27 forcefield [53,66]. 

Furthermore, the topologies of all the ligands were secured employing SwissParam. The simulations 

were performed in the dodecahedron water box solvated with TIP3P water model and the system 

was neutralized with the counter ions. The steepest descent algorithm was applied on the initial 

structures to escape the steric clashes and the unsuitable geometry, thereby relaxing the initial 

structures with 10,000 steps with a maximum force below 1000 kJ/mol. Following this, a dual step 

equilibration process was conducted with (constant number of particles, volume, and temperature) 

NVT and (constant number of particles, pressure and temperature) NPT, respectively. The NVT 

ensemble (constant number of particles, volume, and temperature) was used for the first equilibration 

step for 1 ns at 300 K with a Vrescale thermostat. The NPT ensemble (constant number of particles, 

pressure, and temperature) was employed for the second step of equilibration for 1 ns at 1 bar with 
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a ParrinelloRahman barostat [67]. The bond constraints were monitored by the SETTLE [68] and 

LINear Constraint Solver (LINCS) [69] algorithm. Particle Mesh Ewald (PME) [70] was employed to 

compute the longrange electrostatic interactions, while shortrange interactions and van der Waals 

interactions were measured applying an upper limit of 9Å and 14Å, respectively. The equilibrated 

NPT ensemble was subjected to MD simulations for 30 ns [71] with periodic boundary condition. The 

obtained results were evaluated employing the DS and visual molecular dynamics (VMD) [72]. 

2.8. Novelty Assessment of the Compounds 

To further examine the novelty of the obtained hits specific to PDF, the Tanimoto similarity 

search was conducted against all the experimentally available known inhibitors of PDF enabling the 

Find Similar Molecules by Fingerprints module available with the DS, employing the predefined 

ECFP_4 fingerprint property.  The ECFP_4 fingerprint property computes minimum, maximum and 

averages similarities and measures of nearness to known inhibitors. The Tanimoto similarity 

measures are computed as SA/(SA + SB + SC), the number of “and” bits normalized by the number 

of “or” bits, where SA refers to the number of AND bits present in both the target and the reference, 

SB is defined as the number of bits in the target but not the reference, and SC reflects the number of 

bits in the reference but not the target. Alternatively, the search was also performed using the online 

search employing the ChemSpider (http://www.chemspider.com/Default.aspx). 

3. Results 

3.1. Generation of the Pharmacophore Model 

3.1.1. LigandBased Pharmacophore Generation 

The ligandbased pharmacophore modelling was employed to exploit the key chemical features 

present on different known inhibitors crucial for inhibiting the target enzyme. In order to generate 

the statistically significant hypotheses, the HypoGen algorithm was employed that corresponds to 

the experimental and the predictive activities of the known inhibitors. Accordingly, the 20 known 

inhibitors (Figure 1) with divergent structures and IC50 values detected by the same bioassay methods 

have been considered. Guided by the results obtained from the Feature Mapping module, key features 

such as the hydrogen bond acceptor (HBA), hydrogen bond donor (HBD), hydrogen bond acceptor 

lipid (HBL), hydrophobic (HyP) and ring aromatic (RA) were considered during the pharmacophore 

generation. Subsequently, 10 hypotheses have been returned, utilizing the statistical parameters such 

as cost values, correlation, RMSD and the fit values (Table 1). Delineating on the hypotheses, it was 

revealed that all the hypotheses rendered HBA and HyP features as prompted by the Feature Mapping 

protocol. These findings led us to comprehend that the generated pharmacophore models have the 

essential features required for the inhibition of PDF. Correspondingly, to determine an ideal 

pharmacophore model, the analysis proceeds according to Debnath’s postulates, which state that a 

statistically significant model should display low total cost, high cost difference, low RMS and high 

correlation. The cost difference reports the obtained cost as a difference between the null and the total 

cost of the hypothesis. Subsequently, the probable difference if lies between 40 and60 bits implies that 

the predictive correlation probability may exists between 70 and ~90%. Furthermore, if the difference 

is greater than 60 bits, it can be deduced that the propensity of the correlation probability might be 

greater than 90%. Hypo1 demonstrates a high cost difference of 113.10 illuminating its significance 

over the other hypotheses. Moreover, the correlation coefficient reflects the geometric fit index that 

was built on the linear regression. Hypo1 represented a high correlation coefficient of 0.90, portraying 

its favourable predictive ability. Additionally, the RMSD defines the variations of the predicted 

activity values from that of the experimental values. Hypo1 generated the lowest RMSD value when 

compared to all the hypotheses. Moreover, the cost values additionally govern the authenticity of the 

pharmacophore model by judging if the total cost value is far from the null cost and near to the fixed 

cost. In the current study, the null cost was computed to be 240.78 while the fixed was 86.77. Together, 

these results lead us to choose Hypo1 as it obeyed to the Debnath’s analysis. The preferred Hypo1, 
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hereinafter referred to as pharmL, consists of four features, including two hydrogen bond acceptors, 

one hydrogen donor and one hydrophobic feature (Figure 2A,B). 

Table 1. Statistical information of 10 pharmacophore hypotheses derived by HypoGen. 

Hypo 

Number 
Total Cost 

Cost 

Difference a 
RMSD Correlation Features b 

Maximum 

Fit 

Hypo1 127.67 113.10 1.77 0.90 2HBA, HBD, HyP 13.23 

Hypo2 131.722 109.06 2.06 0.86 2HBA, HyP, HyP, HyP 13.34 

Hypo3 132.165 108.62 1.94 0.88 2HBA, HBD, HyP 12.71 

Hypo4 133.398 107.38 2.00 0.87 2HBA, HBD, HyP 12.27 

Hypo5 133.808 106.97 2.14 0.85 2HBA, HyP, HyP, HyP 12.08 

Hypo6 133.895 106.89 1.87 0.89 2HBA, HBD, HyP 13.88 

Hypo7 135.009 105.77 2.09 0.86 2HBA, HBD, HyP 11.53 

Hypo8 135.104 105.68 2.17 0.85 2HBD, HyP, HyP, HyP 12.29 

Hypo9 135.444 105.34 1.97 0.88 2HBA, HBD, HyP 13.30 

Hypo10 135.564 105.22 2.01 0.87 2HBA, HBD, HyP 12.91 

a Cost difference, difference between the null cost and the total cost. The null cost of 10 

scored hypotheses is 240.78, the fixed cost value is 86.77, and the configuration cost is 18.37. 

All costs are represented in bit units. b HBA, hydrogen bond acceptor; HBD: hydrogen bond 

donor; HyP, hydrophobic; RMSD, rootmeansquare deviation.  

 

Figure 1. Twodimensional structures of 20 training set compounds employed for the generation of 

ligandbased pharmacophore model. The experimentally determined half maximal inhibitory 

concentration (IC50) values are expressed in nmol/L in parenthesis. 
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Figure 2. Characteristic fourfeatured HypoGenguided pharmL. (A) PharmL consists of four 

features, including two hydrogen bond acceptor (HBA), one hydrogen bond donor (HBD), and one 

hydrophobic (HyP). (B) The geometry of the pharmL with its corresponding pharmacophore points. 

(C) Aligning of the most active compound to the model shows that it has mapped with all the features 

of pharmL. (D) Aligning of the inactive compound shows that it has mapped with three features of 

pharmL. 

Moreover, to determine the predictive potential of the pharmL, an evaluation of the inhibitory 

activities of the training set compounds using regression analysis was employed. PharmL efficiently 

estimated the activity values of the training set compounds in par with the experimental activities 

(Table 2). However, one active compound and one inactive compound were reported as moderately 

active compounds. These results determine the ability of Hypo1 in distinguishing the active 

compounds in a given dataset. 

To determine the ability of pharmL in selecting the active compounds, the most active and the 

least active compound from the training set were subsequently superimposed. Upon 

superimposition, it vividly elucidated the accuracy of pharmL in distinguishing the active 

compounds from the inactive compounds. The most active compound with an IC50 value 0.1 nmol/L 

aligned with all the features of pharmL (Figure 2C), while the most inactive compound bearing the 

IC50 value 560,000 nmol/L mapped with three features (Figure 2D), thus showcasing the competence 

of pharmL in selecting the most active compounds upon subjecting it to screen the databases. 

Table 2. Experimental and predicted activity values of training set compounds according 

to Hypo 1. 

Name Fit 
IC50 (nmol/L) 

RMSE a 
Activity Scale 

Experimental Predicted Experimental Predicted 

C1 13.03 0.1 0.55 5.5 +++ +++ 

C2 12.29 0.3 3 10 +++ +++ 

C3 12.99 0.41 0.61 1.5 +++ +++ 

C4 12.98 0.5 0.62 1.2 +++ +++ 

C5 12.72 1 1.1 1.1 +++ +++ 

C6 12.54 2.1 1.7 −1.2 +++ +++ 

C7 12.72 8 1.1 −7 +++ +++ 

C8 11.44 15 22 1.4 +++ +++ 

C9 11.16 30 41 1.4 +++ +++ 

C10 10.24 52 350 6.6 +++ +++ 

C11 9.5 74 190 6 +++ +++ 
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C12 9.46 300 2100 6.9 +++ ++ 

C13 9.66 430 130 3 +++ +++ 

C14 9.32 800 2800 3.5 ++ ++ 

C15 9.61 3000 1400 −2.1 ++ ++ 

C16 9.97 7400 630 −12 ++ ++ 

C17 8.07 28,000 51,000 1.8 + + 

C18 9.65 54,000 1300 −40 + ++ 

C19 8.79 100,000 9600 −10 + ++ 

C20 8.8 560,000 9400 −6.0 + ++ 

a RMSE, ratio of the predicted activity (Pred IC50) to the experimental activity (Exp IC50) or 

its negative inverse if the ratio is <1; IC50, half maximal inhibitory concentration; +, IC50 

values are less than 100 nmol/L; +++, IC50 values existing between 100 nmol/L and ~10,000 

nmol/L; (++),IC50 values greater than 10,000 nmol/L (+). 

3.1.2. Generation of StructureBased Pharmacophore Generation 

The structurebased pharmacophore modelling relies on the key features between the inbound 

ligand and the receptor to generate a pharmacophore model. For the current investigation, the crystal 

structure of Staphylococcus aureus (PDBcode: 1Q1Y) was employed. Furthermore, the welldefined 

active site groove demonstrates a remarkably conserved residues such as Val59, Gly60, Gln65, 

Leu112, and Glu155. Subsequently, enabling the Receptor–Ligand Pharmacophore Generation module 

resulted in 10 pharmacophore models with a maximum of six features and a selectivity score of 11.498 

(Table 3). 

Furthermore, it was observed that the HBA and HyP features were present in all the models, 

showing their importance in the inhibition of the SaPDF. Moreover, these features were consistently 

observed in the models generated from the ligandbased pharmacophore approach (Table 3). From 

this, it can be deduced that the HBA and HyP features might be prominent in inducing the inhibitory 

mechanism. Furthermore, to select an ideal pharmacophore, the Pharmacophore Comparison 

module obtainable with the DS was employed. This step was conducted to secure the most reliable 

structure based model demonstrating the lowest RMSD with the ligandbased model. 

Correspondingly, the first model has rendered lower RMSD as compared to the other nine models 

and additionally has shown the complementarity against the catalytic active residues (Table 4 and 

Figure 3C). Therefore, this model was chosen and was labelled as pharmR. The pharmR contains six 

features, one HBA, two HBD, and three HyP features, which are complementary to the key residues. 

The pharmacophore features and the interfeature distance are represented in (Figure 3A and 3B). The 

six obtained features were complementary to the key residues. The HBA was complementary to the 

Val59 and Gly60 residues. One HBD was in the vicinity of Gln65 and Glu155. The two hydrophobic 

features were prompted from His154, Ile150, and Leu150. The third hydrophobic bond was noticed 

with the pentane ring of the ligand and the key residue Val59 (Figure 3C).  

Table 3. Receptorbased pharmacophore generation. 

Pharmacophore 
Number of 

Features 
Feature Set Selectivity Score 

Pharmacophore_1 6 HBA, HBD, HBD, HyP, HyP, HyP 11.498 

Pharmacophore_2 6 HBA, HBD, HBD, HyP, HyP, HyP 11.498 

Pharmacophore_3 6 HBA, HBD, HBD, HyP, HyP, HyP 11.498 

Pharmacophore_4 6 HBA, HBD, HBD, HyP, HyP, HyP 11.498 

Pharmacophore_5 6 HBA, HBD, HBD, HyP, HyP, HyP 11.498 

Pharmacophore_6 6 HBA, HBD, HBD, HyP, HyP, HyP 11.498 

Pharmacophore_7 6 HBA, HBD, HBD, HyP, HyP, HyP 11.498 

Pharmacophore_8 6 HBA, HBD, HBD, HyP, HyP, HyP 11.498 

Pharmacophore_9 6 HBA, HBD, HBD, HyP, HyP, HyP 11.498 
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Pharmacophore_10 6 HBA, HBD, HBD, HyP, HyP, HyP 11.498 

Table 4. Root mean square deviation (RMSD) values generated through pharmacophore comparison 

between the ligandbased and the receptorbased models. Model 1 displayed the lowest RMSD (Å). 

Model Number RMSD 

1 1.41 

2 1.63 

3 1.87 

4 2.03 

5 2.11 

6 2.14 

7 2.47 

8 2.92 

9 2.94 

10 2.99 

 

Figure 3. Receptorbased pharmacophore model generation. (A) A sixfeature model pharmR 

consisting of three hydrophobic (HyP), two hydrogen bond donor (HBD), and one hydrogen bond 
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acceptor (HBA). (B) Geometric interface distance between the features. (C) Key residues (yellow) 

complementary to the pharmacophore features. Pink line and stick represents the inbound ligand. 

3.2. Validation of the Pharmacophore Models 

Validation of the generated pharmacophore models is a step that determines if the obtained 

models could retrieve the active chemical compounds upon subjecting them to database screening. 

Furthermore, pharmL was validated employing the Fischer’s randomization method and the test set 

method and pharmR were validated using the ROC. Additionally, to ensure the robustness of the 

pharmacophores a common method known as the decoy set method was conducted. 

3.2.1 Validation of PharmL 

3.2.2. Fischer’s Randomization Method 

Fischer’s randomization method was executed to judge the statistical significance of pharmL 

when a 95% confidence level was applied. Consequently, 19 random spreadsheets were generated by 

shuffling the experimental activity values to each training set compound. Upon comparing the cost 

values of the 19 random models with pharmL, it was revealed that the cost value of pharmL was far 

lower than the 19 hypothesis, implying that pharmL was not generated by chance and thereby 

illuminating its significance. 

3.2.3. Test Set Method 

Test set validation was performed to analyse the ability of the pharmacophore in categorizing 

the compounds in the same order of magnitude as in the activity scale. Accordingly, 31 compounds 

apart from the training set that exhibited diverse structures and varied IC50 values were considered. 

These compounds were grouped based upon their inhibitory activity values into three categories. 

The IC50 values less than 100 nmol/L (+++) were labelled as most active, the compounds with the 

inhibitory activity values existing between 100 nmol/L~10,000 nmol/L (++) were referred to as 

moderately active, and the compounds demonstrating the inhibitory activity values greater than 

10,000 nmol/L (+) were called the inactive compounds, respectively.  PharmL ably calculated the 

inhibitory activities of the compounds, however it misestimated two inactive compounds as 

moderately active (Table 5). Furthermore, the regression analysis demonstrated that pharmL 

displayed remarkable correlation coefficients between the experimental and predicted activities of 

the training and test set compounds of nearly 0.90. This result strengthen the ability of the model in 

differentiating the active compounds from the inactive compounds. 

Table 5. Experimental and predicted activity values of test set compounds according 

Hypo1. 

Name Fit 
IC50 (nmol/L) 

RMSE a 
Activity Scale 

Experimental Predicted Experimental Predicted 

C1 13.21 0.19 0.45 2.3 +++ +++ 

C2 13.21 0.19 0.45 2.3 +++ +++ 

C3 12.9 0.22 0.92 4.2 +++ +++ 

C4 13.07 0.31 0.61 2 +++ +++ 

C5 12.15 3 5.1 1.7 +++ +++ 

C6 13.07 4.4 0.62 −7.1 +++ +++ 

C7 11.54 7 21 3 +++ +++ 

C8 11.81 10 11 1.1 +++ +++ 

C9 10.95 16 81 5.1 +++ +++ 

C10 11.64 20 17 −1.2 +++ +++ 

C11 11.54 40 21 −1.9 +++ +++ 
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C12 10.14 64 520 8.1 +++ +++ 

C13 10.81 100 98 1.1 +++ +++ 

C14 10.75 120 130 1.1 ++ ++ 

C15 10.02 170 690 4.1 ++ ++ 

C16 9.7 180 1400 8.2 ++ ++ 

C17 10.11 290 560 1.9 ++ ++ 

C18 9.43 330 2700 8.1 ++ ++ 

C19 10.01 590 700 1.2 ++ ++ 

C20 9.7 1000 1400 1.4 ++ ++ 

C21 9.86 1400 990 −1.4 ++ ++ 

C22 9.88 2200 950 −2.3 ++ ++ 

C23 8.89 4100 9200 2.2 ++ ++ 

C24 8.92 7500 8600 1.1 ++ ++ 

C25 8.39 21,000 29,000 1.4 + + 

C26 8.36 34,000 32,000 −1.1 + + 

C27 9.36 61,000 31,000 2.0 + + 

C28 9.48 80,000 24,000 3.4 + + 

C29 9.57 100,000 1900 −52 + ++ 

C30 8.95 200,000 8100 −25 + ++ 

C31 7.18 380,000 480,000 1.3 + + 

a RMSE, ratio of the predicted activity (Pred IC50) to the experimental activity (Exp IC50) or 

its negative inverse if the ratio is <1. 

3.2.4. Validation of PharmR 

3.2.5. Receiver Operating Characteristic (ROC) Plot Analysis 

The receptorbased pharmacophore model, pharmR was validated employing the ROC by 

subsequently determining the area under the curve (AUC). A total of 35 compounds (15 known active 

+ 20 known inactives) were considered alongside the model generation. As a result, the numbers of 

retrieved true positives and true negatives were 13 and 17, with false positives and false negatives 

being three and two, respectively. Furthermore, the sensitivity and the specificity were computed to 

be 0.86 and 0.85, respectively, with a model quality of 0.87. This score infers that the model is of a good 

quality and displays affinity towards the active compounds (Figure 4). 

 

Figure 4. Validation of pharmR employing the receiver operating characteristic curve. 
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3.2.6 Decoy Set Method of Validation for PharmL and PharmR 

The decoy set validation was performed for both the models to analysis their ability in 

redeeming the active compounds when subjected to an external dataset. An external dataset (D) of 

1000 compounds was instituted with 20 active (A) compounds, and pharmL and pharmR were 

allowed to map, enabling the Ligand Pharmacophore Mapping protocol embedded with the DS with 

Fast flexible parameters, while retaining the other options as default. The robustness of the models 

was interpreted from the results obtained through enrichment factor (EF), and goodness of fit score 

(GF). PharmL has retrieved 25 hit , (total hits, Ht), compounds with 19 (Ha) active compounds, while 

PharmR mapped 24 (Ht) compounds that consisted of 20 (Ha) active compounds (Table 6). From the 

results, it can be observed that both the models exhibit an exceptional capability in inclining towards 

the active compounds as rendered by the percentage yield of the active compounds and the ratio of 

the actives being 95 % and 100 % for pharmL and pharmR, respectively (Table 6). The goodness of fit 

(GF) was adapted to judge the quality of the model that ranges between 0~1 implying a model to be 

null to ideal. From the results (Table 6) the GF values for pharmL and pharmR were computed as 

0.79 and 0.83 respectively, reflecting the tendency of the models towards the true positives. These 

findings imply the usability of the models to screen databases in virtue of mapping to the prospective 

leads that can inhibit the PDF. From these findings it can be unequivocally stated that pharmL and 

pharmR are the quintessential models that can distinguish the active compounds from the inactive 

compounds. 

Table 6. Decoy set validation of both the pharmacophore models. 

Parameters PharmL PharmR 

Total number of molecules in database (D) 1000 1000 

Total number of actives in database (A) 20 20 

Total number of hit molecules (Ht) 25 24 

Total number of active molecules (Ha) 19 20 

% Yield of active ((Ha/Ht) × 100) 76.0 83.3 

% Ratio of actives ((Ha/A) × 100) 95 100 

Enrichment factor (EF) 38.0 41.5 

False negatives (AHa) 1 0 

False positives (Ht–Ha) 5 4 

Goodness of fit score (GF) 0.79 0.83 

D, external dataset; A, active compounds; Ht, Total number of hit compounds; Ha, total number of 

active compounds; EF, enrichment factor; GF, goodness of fit. 

3.3. Virtual Screening of Taiwan Indigenous Plants (TIP) Database 

The TIP database was screened by pharmL and pharmR, which comprises the plantderived 

chemical compounds (5284) that serve as an enriched source for biologically active phytochemicals. 

Subsequently, pharmL yielded 2267 compounds and pharmR resulted in 1151 compounds, 

respectively. Furthermore, their pharmacokinetic properties were determined and druglike 

assessment was executed employing the ADMET Descriptors and Filter by Lipinski available in the 

DS, which retrieved 415 compounds by pharmL and 68 compounds by pharmR. The mapped 

compounds were manually visualized for the presence of common ligands that were procured from 

by pharmL and pharmR and resulted in 20 compounds (Hits). The 20 compounds typically consisted 

of all the inhibitory features possessed by the pharmL and pharmR as illustrated in Figure 5A. These 

compounds were additionally assessed for their behaviour at the proteins active site, employing the 

molecular docking simulations. 

3.4 Molecular Docking-Based Screening 

The resultant 20 compounds were upgraded to molecular docking studies to collectively refine 

the hit compounds and to discard the false positives. The suitability and the aptness of the docking 

parameters considered for both the docking programmes were assessed by docking the inbound 
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ligand into the active site groove. This resulted in the generation of the pose with a binding mode as 

was observed within the crystal structure, with an acceptable RMSD of 0.97 Å for CDOCKER 

(Supplementary Figure 1A) and 1.25 Å for GOLD (Supplementary Figure 1B). Furthermore, among 

the 20 compounds, 14 compounds demonstrated the dock scores higher than the reference and the 

inbound ligand rendered by both the docking programmes and belonged to the largest cluster. These 

14 compounds were examined for the knowledgebased screening by manually probing into their 

interactions with the key residues, yielding six compounds (Figure 5B, Supplementary Figure 2) from 

which the top three compounds were studied extensively. 

 

Figure 5. Computational methods to retrieve the potential candidate compounds. (A) Pictorial 

depiction of the generation of pharmacophore models and virtual screening process. (B) Sequential 

steps involved in binding affinities and knowledge based screening for potential compounds. (C) 

Evaluation of the binding modes and the stability of the final complex compounds through molecular 

simulations. (D) Twodimensional representation of the potential compounds. 

3.5. Molecular Dynamics Simulations 

MD studies have been extensively exploited to decipher the behaviour of the complex molecules 

at the atomic level. In the current study, the MD simulations were conducted to authenticate the 

docking results and binding stability and to affirm the binding modes by monitoring the orientation 
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of the protein–ligand complex during 30 ns (Figure 5C). The bestdocked poses obtained from the 

molecular docking results were taken as the initial structures for the MD. The findings were inferred 

as root mean square deviation (RMSD) of the protein backbone atoms, the potential energies for each 

system by interpreting the stability of the backbone atoms throughout the simulations, binding mode 

analysis, and hydrogen bond count (Figure 5C). The RMSD profiles of the three hits and reference 

were found to be below 2 nm throughout the simulations inferring that the systems were well 

converged. Upon examining the average RMSD of the reference, it was recorded to be 0.16 nm, while 

Hit1, Hit2, and Hit3 rendered values of 0.11 nm, 0.12 nm, and 0.12 nm, respectively (Figure 6A). 

Additionally, the potential energy profiles of the four systems remained relatively stable between 

−3.87× 105 and ~−3.85× 105 (Figure 6B). These results elucidate the stable nature of the systems during 

30 ns. 

Subsequently, the representative structures from the last 5 ns were extracted to delineate on the 

binding modes of the hits. Upon superimposition, it was found that the hits and the reference 

compounds were accommodated in the same binding pocket in a similar fashion, as was seen in the 

crystal structure anchored by the several key resides through hydrogen bonds, hydrophobic 

interactions, and the van der Waals interactions (Figure 6C). 

 

Figure 6. Molecular dynamics simulation results. (A) Stability assessment by root mean square 

deviation. (B) Stability assessment by potential energy profiles. Both the graphs demonstrate that the 

systems were highly stable through a 30ns run. (C) Evaluation of the binding modes (D) Enumeration 

of stable Hbond interactions during 30ns run. 
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Figure 7. Intermolecular hydrogen bond interactions of the reference (A), Hit1 (B), Hit2 (C), and Hit3 

(D), respectively. 

Delineating on the interactions of the reference compound, it was revealed that the reference 

compound formed four hydrogen bonds involving three residues: Arg56, Leu112, and Asn117. The 

residue Asn117 demonstrated two hydrogen bonds with an acceptable bond length (Table 7 and 

Figure 7A). Furthermore, several hydrophobic charged residues interacted with the reference 

compound to accommodate the compound in an appropriate position in the proteins active site. The 

residues Ser57, Gly58, Gly60, Leu105, Gly108, Glu109, CDS111, Tyr147, and Glu155 held the reference 

compound firmly. Furthermore, the ring A interacted with the benzene ring of His154 by a πalkyl 

interaction rendered by a bond length of 4.2 Å. The residues Val151 and Val59 formed alkyl 

hydrophobic interactions with ring A with a bond length of 4.2 Å and 5.1 Å, respectively. 

Additionally, Gly110 and Glu185 were noted to lock in the reference compound in the active site of 

the protein (Table 7). Moreover, the hits were observed to interact with different charged residues of 

the protein clamping the ligands at the active site of the proteins (Supplementary Figure 3). 

Hit1 has formed four hydrogen bonds with the active site residues such as Ser57, Gln65, Gly108 

and Leu112 with the bond length less <3 Å (Table 7 and Figure 7B). Additionally the residues Gly58, 

Val59, Leu61, Leu105, Thr107, Glu10, CSD111, Ile150, Val151, His154, and His186 aided in seating of 

the Hit1 at the active groove of the protein through van der Waals interactions. The residues Gly60, 

Glu108, Glu115, Tyr147, and Glu185 anchored to the ligand by forming the carbonhydrogen bonds. 

Moreover, the O atom of Gly110 interacted with the ring B of Hit1 forming a π lone pair interaction 

rendered by a bond distance of 2.9 Å clamping the centre of the ligand. Such an interaction was not 

noticed with the other candidate compounds, portraying that it has a unique feature of Hit1 

(Supplementary Figure 3). Careful assessment of the interaction reveals that the Ser57 and Gln65 

andLeu112 have held the ligand towards the extreme ends while Gly108 was found to interact with 

the chain of the ligand. Additionally, the residues Gly58, Val59, Leu61, Leu105, Thr107, Glu109, 
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CSD111, Ile150, Val151, His154, and His186 participated through van der Waals interaction, firmly 

accommodating the ligand at the active site (Supplementary Figure 3). 

Hit2 generated three hydrogen bonds, one each with Ser57, val59, and Gly60, respectively 

showcased by an acceptable bond length (Table 7 and Figure 7C). The residues Gly110 and Glu185 

were observed to form a carbonhydrogen bonds while the residues Arg56, Gly58, Gln65, 

Leu61,Leu105, Glu109,Gly108, CDS111, Leu112,Arg124, Tyr147, Ile150, and Glu155 locked the ligand 

firmly through the van der Waals interactions. Furthermore, ring C of the ligand formed π/alkyl 

bonds with Val151 and His 154, respectively. The residue Val151 formed a hydrophophic πalkyl 

bond with the ring C of the ligand with a bond length of 5.3 Å. The benzene ring of His154 residue 

has formed ππ stacked hydrophobic interaction with the C ring of the ligand portraying a bond 

distance of 4.1 Å. Deciphering of the distribution of the residue interactions, it was revealed that the 

Val151 and His 154 held one end of the ligand while the other end was held by the Ser57. Val59 and 

Gly60 residues clamped the centre portion of the ligand while the other charged atoms contribute to 

proper stationing of the ligand at the proteins active site, Supplementary Figure 3. 

Hit3 promoted Val59, Gly60, Gly110, and Tyr147 hydrogen bonds, displaying by an acceptable 

bond length (Table 7 and Figure 7D). The residues Tyr147, Glu155, Glu185, and His186 involved in 

the formation of carbon hydrogen bonds. Additionally, several charged residues Leu41, Arg56, Ser57, 

Gly58, Leu61, Gln65, Pro78, Ile77, Glu109, CSD111, Gly110, Leu112, Ile150, His154, and His158 

assisted in locking the ligand at the active site through the van der Waals interactions. Besides 

forming the hydrogen bond, the residue Val59 has additionally formed πalkyl bonds. The ring A 

and ring B of the ligand has formed πalkyl hydrophobic bonds displayed a bond length of 4.5 Å and 

4.9 Å, respectively (Supplementary Figure 3). The residues Val59, Gly60, Gly110, and Tyr147 are 

distributed on either side of the ligand, while the charged residues served in proper lodging of Hit3 

in the active site of the protein.  From the obtained results, it can be drawn that the hits have prompted 

greater number of interactions upon comparing with reference compound. These findings are in 

parallel with the previously reported work [3]. The leads us to comprehend that the hits can offer 

better inhibitory effects than the reference compound and the cocrystal natural inhibitor actinonin. 

Table 7. Intermolecular molecular interactions between the proteins and the hits. 

Name 
Hydrogen Bond 

(<3 Å) 
Alkyl / π- alkyl Van der Waals Interactions 

Ref 

Arg56: HH21 O5 (2.7) 

Leu112: HN  O24 (2.9) 

Asn117: HD22  O5 (2.8) 

Asn117: OD1 H35 (2.1) 

Val59, 

Val151, 

His159 

Ser57, Gly58, Gly60, Leu105, Gly108, 

Glu109, CDS111, Tyr147, Glu155, Glu185 

Hit1 

Ser57: HG  O17 (2.1) 

Gln65: HE22  O23 (1.8) 

Gly108: O H49 (2.4) 

Leu112: HN  O23 (2.6) 

 

Gly58, Val59, Leu61, Leu105, Thr107, 

Glu109, CSD111, Ile150, Val151, His154, 

Glu185 His186 

Hit2 

Ser57: HG  O16 (2.7) 

Val59: HN1  O23 (1.8) 

Gly60: O H44 (1.7) 

Val151 

Arg56, Gly58, Gln65, Leu61, Leu105, 

Gly108, Glu109, CDS111, Leu112, Arg124, 

Tyr147, Ile150, Glu155, Glu185 

Hit3 

Val59: HN  O22 (2.9) 

Gly60: O H50 (1.8) 

Gly110: O H46 (1.8) 

Tyr147: HH O1 (2.1) 

Val59 

Leu41, Arg56, Ser57, Gly58, 

Leu61, Gln65, Pro78, Ile77, Glu109, 

Gly110, CSD111, Leu112, Ile150, His154, 

His158, Glu185 

3.8. Probing the Novelty of the Hits 

The similarity search was performed employing the inbuilt Find Similar Molecules by Fingerprints 

tool within the DS using the welldefined parameters. The number of similar molecules was selected 

as five and the percentage of similar molecules was opted as one. The search was conducted 

employing the minimum similarity of 0.50 and 0.90, respectively. The similarity search analysis 

executed over three final Hits proved that they shared no similarity with the known PDF inhibitors. 
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Furthermore, the SMILESbased ChemSpider search additionally reiterated the same illuminating 

that the hits were novel inhibitors of PDF. 

4. Discussion 

Bacterial peptide deformylase is an attractive target for developing new antibiotics because of 

its presence in prokaryotes and absence in eukaryotes [3]. Therefore, the current research focuses on 

identifying new inhibitors representing the inhibitory features of pharmL and pharmR, respectively. 

The pharmL was generated from the known PDF inhibitors, while pharmR was developed 

considering the available PDF targets and the innate ligands so as to generate a model representing 

the broad spectrum. Subsequently, these models retrieved a total of six compounds that were in 

common to both. This leads us to speculate that the prospective drug candidates have greater 

inhibitory potency towards the bacteria imbibed with the inhibitory features inherited from the 

ligand based and structure based pharmacophore models. 

The hits demonstrated a higher number of molecular interactions than the reference compounds 

while been accommodated at the active site groove. Furthermore, the hydrogen bond interactions 

were tracked during the 30 ns simulation run. The results indicated that the hits have displayed 

greater number of hydrogen bonds as depicted in Figure 6D. Correspondingly, the average number 

of hydrogen bonds for reference and the hits were computed. The results exhibited that the reference 

had 1.8 hydrogen bonds, while the Hit1, Hit2, and Hit3 demonstrated an average of 2.0, 2.2, and 2.5 

hydrogen bonds, respectively. These results are clear indicative that the hits have portrayed higher 

number of hydrogen bonds inferring the ability of the compounds as probable PDF inhibitors. 

Furthermore, upon scrupulous evaluation of the interactions, it was observed that the two residues, 

CDS111, and Glu185 have been consistent with the hits as was noticed with the reference anchored 

by the van der Waals interactions. These finding are in agreement with the previous reports [2] and 

further showcase the probable importance of these residues in inducing the inhibitory mechanism. 

Furthermore, we meticulously contemplated on the accommodation of the reference and the hits 

at the active site of the protein. Structurally, the binding pocket of the PDF was further divided into 

three subsites, namely, S1’, S2’, and S3’, respectively [1]. The residues in vicinity to S1’ subunit of 

Staphylococcus aureus is comprised of Gly60, Leu105, Gly108, Glu109, Ile150, Val151, His154, and 

Glu155. The S2’ subunit was in proximity to Arg56, Cys111, and Leu112 while the S3’ subunit is 

encompassed of residues such as Ser57, Gly58, Val59, and Tyr147. 

The reference compound has formed hydrogen bond interactions with three residues (Table 7). 

The residues Arg56 and Leu112 belong to the proximity of subsite S2’, while the residue Asn117 lies 

in close proximity to subsite S2’ (Figure 8). The residues from the subsite S3’ Ser57, Gly58, and Tyr147 

interacted with the ligand through the van der Waals interactions. The residues, Leu105, Gly108, 

Glu109, and Glu155 from the subsite S1’ also assisted to firmly nestle the reference compound at the 

active site. Furthermore, a rigorous evaluation of the hits revealed their interactions with the residues 

located at subsites S1’, S2’ and S3’. Hit1 interacted with Ser57 residue through hydrogen bond that 

hails from S3’, while the residue Gly108 belongs to S1’ subsite. The residue Leu112 that formed the 

hydrogen bond interaction with the ligand is contributed by the S2’ subsite of the binding pocket 

(Figure 8). The residues Gly60 and Glu115 that are originated from the S1’ subsite and Tyr147 from 

S3’ subsite firmly held the ligand through the carbonhydrogen bond. Evaluating the van der Waals 

interactions, it was noted that the residues Gly58, Val59 are from the S3’ subsite, while the residues 

Leu105, Glu109, Ile150, Val151 and His154 from the S1’ subsite were found to interact with the van 

der Waals interactions. Hit2 rendered the hydrogen bond interactions with residues such as Ser57, 

Val59, and Gly60. The residues Ser57, Val59 were contributed by the S3’ subsite, while the residue 

Gly60 was from S1’ subsite, respectively (Figure 8). A single residue Val151 that anchored the ligand 

via alkyl /π alkyl interactions is from S1’ subsite. From the residues that participated in the van der 

Waals interaction, Leu105, Gly108,Glu109,Ile150, and Glu155 are from S1’ subsite, Gly58, CDS111, 

and Leu112 reside at the S2’ subsite, and Gly58 and Tyr147 belong to the S’ subsite. Hit3 demonstrated 

the hydrogen bond interactions with Val59, Gly60, Gly110, and Tyr147 residues. The residue Val59 

and Tyr147 originated from the S3’ subsite and Gly60 from the S1’ subsite, respectively (Figure 8). 
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Additionally, the residues Glu155 from S1’ subsite and Tyr147 from S3’ subsite generated carbon–

hydrogen bonds, while Val59 from S3’ subsite has formed alkyl/πalkyl interactions. Moreover, the 

residues Glu109, Ile150, and His154 from S1’ subsite, residues Arg56, CDS111, and Leu112 from the 

S2’ subsite, and the residues Ser57 and Gly58 from the S3’ subsite displayed the van der Waals 

interactions with the ligand. Additionally, several other residues have been noted to favour the 

accommodation of the hits at the proteins active site (Supplementary Figure 3). These results guide 

us to infer that the hits nestled at the active site and were firmly seated through several key residues 

contributed by the three subsites. 

 

Figure 8. Subsite occupation of the compounds. The residues from S1’ region are represented in blue, 

the residues from S2’ region are indicated in purple and the residues from S3’ region are represented 

in orange colour, respectively. 

During the docking simulations, the bonded model of Zn2+ ion chelation was applied as reported 

previously [3] in which the coordinate bonds between the Zn2+ ion and the residues interacting with 

the protein were treated as covalent bonds. Moreover, the distance constraints for the three residues, 

CSD111, His154 and His158 that are involve in the Zn2+ ion were configured between 2.3–2.5 Å 

(Figure 9). The resultant molecular docking results have demonstrated a distance constraint within 

the fixed length without any variation. However, it is worth noting that the O23 atom of Hit1 has 

displayed an interaction with the metal ion, while Hit2 and Hit3 did not generate any interaction 

with the metal ion. Furthermore, it was observed that the hydrogen bonds of Hit1 were prompted 

from three subsites, thereby showing its significance as the most valuable antimicrobial agent (Figure 

8). Taken together, the obtained results illuminate the importance of the hit compounds as potential 

PDF inhibitors. The three hits demonstrated higher dock scores than the reference compounds (Table 

8), complemented by enhanced inhibitory activities. Additionally, the hits depicted all the features of 

the pharmL and pharmR, correspondingly (Supplementary Figure 4) and the twodimensional 

structures are represented in Figure 5D. These findings suggest that the identified hits serve as 
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potential broad spectrum antibiotic agents and further may serve as novel scaffolds in determining 

new drugs. 

Table 8. Tabulation of the dock scores of reference and the hits employing two different approaches. 

Compound Name -CDOCKER Energy -CDOCKER Interaction Energy GoldScore ChemScore 

Reference1 4.00 46.42 42.86 –19.68 

Actinonin 29.12 45.94 41.05 –18.56 

Hit1 30.66 51.11 51.29 –26.55 

Hit2 30.76 50.13 48.55 –27.00 

Hit3 21.78 47.32 55.33 –28.97 

 

Figure 9. Stable triad metal ion interaction. 

5. Conclusions 

An ideal way to encounter MRDs is to use natural compounds due to their abundance and 

relatively low toxicity. In the current investigation a dual pharmacophorebased virtual screening 

method was executed to redeem the compounds using structurebased and ligandbased approaches. 

The ligandbased approach was carried out to redeem the compounds exploiting the chemical 

features from the known inhibitors, and the structurebased approach was performed to screen for 

compounds better than the inbound ligand. The computational approaches rendered 14 

phytochemicals from the TIP database that demonstrated highest molecular dock scores and key 

residue interactions with the target protein. Upon subjecting the top three compounds to MD 

simulation studies, they displayed the stable RMSD values accommodated at the protein’s active site, 

demonstrating greater number of hydrogen bonds during the 30ns MD run. The identified hits 

displayed stable interactions with the active site residues such as Ser57, Val59, Gly60, Gly110, and 

Leu112, respectively. Among the three identified compounds, Hit1 showed stable key interactions 

with respect to the three subsites. This compound also imbibes the features from pharmL and 

pharmR, illuminating its superiority as the most valuable antimicrobial agent. Taken together, we 

recommend three potential candidates as novel PDF inhibitors that can additionally serve as scaffolds 

in designing new lead candidates. 
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21, doi:10.3390/molecules21070877. 

57. Shin, J.; Prabhakaran, V.S.; Kim, K. sun. The multifaceted potential of plantderived metabolites as 

antimicrobial agents against multidrugresistant pathogens. Microbial Pathogenesis. 2018, 209–214, 

doi:10.1016/j.micpath.2018.01.043. 

58. Chew, Y.L.; Mahadi, A.M.; Wong, K.M.; Goh, J.K. Antimethicillinresistance Staphylococcus aureus (MRSA) 

Compounds from Bauhinia kockiana Korth. and their mechanism of antibacterial activity. BMC Complement. 

Altern. Med. 2018, 18, doi:10.1186/s1290601821375. 

59. Khalil, N.; Ashour, M.; Fikry, S.; Singab, A.N.; Salama, O. Chemical composition and antimicrobial activity 

of the essential oils of selected apiaceous fruits. Futur. J. Pharm. Sci. 2018, doi:10.1016/j.fjps.2017.10.004. 

60. Upadhyay, A.; Upadhyaya, I.; KollanoorJohny, A.; Venkitanarayanan, K. Combating pathogenic 

microorganisms using plantderived antimicrobials: A minireview of the mechanistic basis. Biomed. Res. 

Int. 2014, doi:10.1155/2014/761741. 



J. Clin. Med. 2018, 7, 563 25 of 25 

61. Tung, C.W.; Lin, Y.C.; Chang, H.S.; Wang, C.C.; Chen, I.S.; Jheng, J.L.; Li, J.H. TIPdb3D: The three

dimensional structure database of phytochemicals from Taiwan indigenous plants. Database 2014, 2014, 

doi:10.1093/database/bau055. 

62. Lin, Y.C.; Wang, C.C.; Chen, I.S.; Jheng, J.L.; Li, J.H.; Tung, C.W. TIPdb: A database of anticancer, 

antiplatelet, and antituberculosis phytochemicals from indigenous plants in Taiwan. Sci. World J. 2013, 

2013, doi:10.1155/2013/736386. 

63. Tung, C.W. Public databases of plant natural products for computational drug discovery. Curr. Comput. 

Aided-Drug Des. 2015, 10, 191–196, doi:10.2174/1573409910666140414145934. 

64. Zhou, Y.; Li, Y.; Zhou, T.; Zheng, J.; Li, S.; Li, H. Bin. Dietary natural products for prevention and treatment 

of liver cancer. Nutrients 2016, 8,156, doi:10.3390/nu8030156. 

65. Aung, T.N.; Qu, Z.; Kortschak, R.D.; Adelson, D.L. Understanding the effectiveness of natural compound 

mixtures in cancer through their molecular mode of action. Int. J. Mol. Sci. 2017, 18, 656, 

doi:10.3390/ijms18030656. 

66. Rampogu, S.; Son, M.; Park, C.; Kim, H.H.; Suh, J.K.; Lee, K. Sulfonanilide derivatives in identifying novel 

aromatase inhibitors by applying docking, virtual screening, and MD simulations studies. Biomed. Res. Int. 

2017, 2017, 1–17. 

67. Parrinello, M. polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 

1981, 52, 7182, doi:10.1063/1.328693. 

68. Miyamoto, S.; Kollman, P.A. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid 

water models. J. Comput. Chem. 1992, 13, 952–962, doi:10.1002/jcc.540130805. 

69. Hess, B.; Bekker, H.; Berendsen, H.J.C.; Fraaije, J.G.E. M. LINCS: A linear constraint solver for molecular 

simulations. J. Comput. Chem. 1997, 18, 1463–1472. 

70. Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large 

systems. J. Chem. Phys. 1993, 98, 10089, doi:10.1063/1.464397. 

71. Rampogu, S.; Baek, A.; Zeb, A.; Lee, K.W. Exploration for novel inhibitors showing backtofront approach 

against VEGFR2 kinase domain (4AG8) employing molecular docking mechanism and molecular 

dynamics simulations. BMC Cancer 2018, 18, 264, doi:10.1186/s1288501840501. 

72. Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38, 

doi:10.1016/02637855(96)000185. 

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons 

Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). 


