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Abstract: The role of ω3 alpha linolenic acid (ALA) in the maternal diet during pregnancy and
lactation, and its effect on the prevention of disease and programming of health in offspring, is largely
unknown. Compared to ALA,ω3 docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids have
been more widely researched due to their direct implication in fetal neural development. In this
literature search we found that ALA, the essentialω3 fatty acid and metabolic precursor of DHA and
EPA has been, paradoxically, almost unexplored. In light of new and evolving findings, this review
proposes that ALA may have an intrinsic role, beyond the role as metabolic parent of DHA and EPA,
during fetal development as a regulator of gene programming for the prevention of metabolic disease
and promotion of health in offspring.
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1. Introduction

More than 80 years ago, Burr et al. [1] described the essential fatty acids (EFA) linoleic acid (ω6
LA) and alpha linolenic acid (ω3 ALA) in animals. Their research contributed to the knowledge and
concept that normal growth, development and health in mammals depends on EFA nutritional supply.
Both EFA share enzymes like the ∆6 desaturase and elongases, and, thus, compete as substrates in
this metabolic pathway (Figure 1). The genetic variants of desaturases determine the nutritional
requirements for the supply of fatty acids and consequently, health and/or disease, as previously
reviewed [2,3].

During the course of mammalian development, fatty acids (FA) are transferred to the fetus through
the placenta [4] and their composition depends, to a great extent, on the maternal diet [5]. Maternal
nutrition during pregnancy-lactation can induce significant changes in body composition, physiology
and metabolism in offspring. Thus, the Fetal Origins Hypothesis was inspired by evidence showing that
adult cardiovascular disease begins through developmental activation of a set of genes and metabolic
pathways in the offspring in response to in utero under- or over-nutrition [6]. FAs play a primary role
in growth and development and it is now accepted that imbalances in their intake during pregnancy
and lactation may result in permanent changes that affect appetite control, neuroendocrine function
and energy metabolism in the fetus; thus, influencing the metabolic programming [7]. However, the
roles of EFAs and the mechanisms by which they impact the long-term health of the offspring remains
to be determined [8]. The importance of the FA composition in the diet and the significant differences
between ALA and its metabolic products DHA and EPA has been spotted both in adults [9] and in
maternal diets during pregnancy [10]. Some recent reviews even reinforce the importance of maternal
dietary FA quality for the health outcomes in offspring [7,8,11,12].
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Figure 1. Linoleic (C18:2n-6) and α-Linolenic (C18:3n-3) acid metabolism and elongation.

Beyond the existing differences between human and animals, the basic tissue, physiological and
morphological placental developments are conserved between species. Therefore, animal models
can be considered suitable when researching the impact of nutritional FAs on development and
their long-term influence on the offspring’s susceptibility to metabolic diseases, including obesity,
insulin resistance (IR), and cardiovascular risk [13]. Importantly, when looking for a comprehensive
understanding of the role of nutritional FAs on development for the prevention of adult disease,
a nutrigenetics approach is recommended [14,15].

2. Dietaryω3 Fatty Acids and Health

DHA and EPA: As defined by Burr [1], ALA is the onlyω3 essential FA for mammals, while DHA
and EPA are its downstream metabolic products. The benefits of consumption or supplementation
of ω3 polyunsaturated fatty acids (PUFAs) by adults on the prevention and treatment of obesity,
metabolic syndrome (MS), and cardiovascular disease (CVD) have been reported [16,17]. Most of the
reviewed studies were randomized-controlled intervention trials suggesting that supplementation
withω3 PUFA might improve some obesity-associated metabolic syndrome features such as insulin
resistance, hypertension and dyslipidemia by decreasing plasma triglycerides [18]. Similarly, they
also confer cardio protection by lowering blood pressure and through their benefits on vascular
and anti-inflammatory properties [19]. The efficacy ofω3 PUFA on reducing myocardial infarction,
arrhythmia, cardiac and sudden death, or stroke is, however, controversial [20]. Although it is now
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widely accepted that DHA and EPA have beneficial effects on CVD, it is not yet clear if these benefits
are directly or exclusively related to DHA and EPA [21,22]. Other benefits of DHA and EPA, such as
reversion of neuropathies, have also been described [23,24] for both plant and marineω-3 FAs.

ALA: The relationship between ALA and chronic disease is unclear. As supported by human
studies [22–24], high intake of ALA is protective against fatal ischemic heart disease. In later years, the
use of ALA-rich oils deserved attention in the search for nutritional ways of preventing or ameliorating
cardiovascular disease and metabolic syndrome. Rodriguez-Leyva et al. reported that epidemiological
randomized studies using flaxseed oil as a preventive intervention in a healthy population or in
subjects identified as "at risk" for CVD are missing [25]. Baxheinrich et al. reported the beneficial
effects of ALA rich rapeseed oil on body weight, systemic inflammation and endothelial function in
patients with MS traits [26,27]. These past works showed that providing ALA significantly contributed
to reductions in systolic blood pressure, total cholesterol, LDL-cholesterol and insulin levels after six
months. Moreover, ALA was shown to significantly decrease body fat mass, as well as improve both
vascular function and inflammation.

The effects of ALA, as well as those of EPA and DHA, on the metabolic syndrome have been
further reviewed by Poudyal et al. [28]. They addressed ALA, DHA and EPA as individual entities,
and provided evidence of potentially independent effects for each of the ω3 FAs on cardiovascular
health. These same authors also reported that the three ω3 FA could each reduce inflammation in
cardiac fibrosis and hepatic steatosis in a high-fat diet induced model of metabolic syndrome in rats.
Those effects were associated to a complete suppression of Stearoyl CoA desaturase (SCD1) function.
In those studies, ALA induced comparatively different FA redistribution of retroperitoneal fat, skeletal
muscle and liver. Furthermore, it was suggested that the accumulation of theω3 FA in adipose tissue,
as well as in skeletal muscle, may account for their crucial role in the reduction of abdominal fat,
inflammation, dyslipidemia and IR [28]. Conversely, recommendations for ALA intake in pregnant
women for the prevention of metabolic diseases in offspring are limited [29–33].

3. How Efficient Is ALA Conversion to EPA and DHA in Humans?

Dietary ALA is metabolically converted into acetate or CO2 through β-oxidation, or desaturated
and elongated into EPA, ω3 DPA and DHA [34]. ALA conversion to longer products in tracer
studies has been observed in nearly all humans studied from birth through late middle-aged men and
women [34,35].

It is clear that the metabolism of ω3 FA depends on other nutrients, in particularω6 FAs, due to
their competition for the same enzymes and transport systems [2]. They also compete for incorporation
into more complex lipids that comprise mammalian tissues, where high levels ofω6 PUFA replace and
reduceω3 PUFA levels. Early studies of rat liver microsomes showed that the ∆-6 desaturase activity
measured in vitro was subject to competitive inhibition by other substrates. In particular, desaturation
of ALA toω3 eicosatrienoic acid was shown to be inhibited by LA and, conversely, LA conversion to
ω6 gamma linolenic acid was inhibited by ALA [36,37].

When studying the impact of ALA on the improvement of the metabolic syndrome, the following
question arises: is the conversion of ALA into EPA and DHA responsible for the observed effects?
This question was addressed by Truong et al. [32] in relation to genetic variants in the ∆6 desaturase
gene (Fads2). Adipose tissue was used as a biomarker of ALA intake in adult humans, and the authors
showed that high concentrations of ALA in adipose tissue were associated with lower prevalence
ratios of the metabolic syndrome compared to low ALA. Although an interaction between ALA and
Fads2 genotype (T-del) was borderline significant, it nevertheless suggested that genetic variation
may play an important role along with diet in the development of metabolic syndrome, at least in the
studied population. A variety of models have confirmed that ALA accumulates significantly and is
converted into longerω3 FA in humans [34]. According to the ISSFAL official statement #5, studies
in healthy adults showed that supplementing ALA to Western diets containing LA raises DHA and
EPA levels in blood and breast milk [38]. In addition, these and other studies have provided evidence
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indicating that FA accumulation is tissue-dependent [38] suggesting that metabolism may be based
upon a tissue-selective need for longerω3 FA, such as DHA.

As claimed by Anderson et al. [39], clarification of ALA’s involvement in health and disease is
essential. Indeed, it is insufficient to assume that ALA exerts its beneficial effects through conversion
to EPA and DHA. More thorough research is required to identify the differential effects of ALA on
metabolic disease like IR and CVD and to differentiate the possible heterogeneous effects of ALA
versus DHA and EPA. The use of developed animal models such as the ∆6 knockout mouse [40] that
inhibits the conversion of ALA into EPA, and EPA into DHA, could be highly useful in this regard.
No such work has been performed to date.

4. Adults

It has been observed that humans of all ages, from preterm and even fetuses to adults, convert
ALA to DHA. However, the efficiency of conversion seems to decrease as infants mature [35]. ALA
is partitioned to β-oxidation as energy source, for metabolic conversion to longer PUFA and for
incorporation into tissues [39,41,42]. Importantly, studies were also reported in which a significant
increase in plasma DHA levels was achieved by altering the oils in the diet and changing both ALA
and LA content [43].

There seems to be an agreement that the partitioning of ALA towards β-oxidation in humans
is lower in women than in men [44,45], an effect attributed to estrogen [34], which may explain the
higher conversion of ALA to longer-chain PUFA in women [32,41]. The explanation for the preferred
use of ALA for β-oxidation seems to be the greater affinity of carnitine palmitoyl transferase-1, the rate
limiting enzyme in mitochondrial β-oxidation, for this EFA compared to other PUFA [41]. Most studies
examining ALA have been performed in young men. The few studies focused specifically on women
of reproductive age showed that conversion of ALA to EPA and DHA is 2.5ˆ greater in women
compared to age-matched men [43–45]. This is ascribed not only to the differential partitioning
towards β-oxidation, but also to an up-regulation of the translocation of very long metabolic products
towards the peroxisome in women [34]. It has been suggested that ALA conversion increases in
pregnancy, which is supported by data in pregnant rats [44–46].

Clearly, gender differences exist and are of importance when recommending ω3 FA to men or
women and, in this case of the latter, whether they are pregnant or not [41]. Work performed by Childs
and others [46,47] have provided further support for this concept. The examination of whether there
are sex differences in the long-chain ω3 FA response to increased ALA intake in humans showed that
women have a higher increase than men in the EPA content of plasma phospholipids after six months.
The gender differences in ALA use, metabolism and destination, warrant further investigation.

5. Fatty Acids Quality and Early Life

Pregnancy is supposed to be a period of high requirement for DHA in humans due to the fetus’
need for rapid growth and neural development [34]. FA levels in the embryo and newborn babies are
directly associated with maternal FA levels and composition; therefore, any variation in the maternal
intake of FAs susceptible to genetic variability is pivotal for fetal growth, development and health [47].
There is some evidence suggesting that the influence of genetic variation in FADS genes on both
circulating and tissue FA profiles, which can influence disease risk, may have a trans-generational
effect [48,49]. Moreover, it has been shown that breastfeeding also exposes babies to the maternal
genetic Fads variations through their effects on milk quality and quantity of fatty acids that, in turn,
affect the baby health and intelligence quotient [50]. Consequently, these studies show that the
influence of FADS2 polymorphisms in the mother is of uttermost importance for the array of FAs
transferred from mother to child during uterine development and breastfeeding. This knowledge
reinforces the importance of a nutritional adjustment during the critical perinatal period.

DHA and EPA: The effects of different qualities of dietary FAs during pregnancy and/or
lactation on fetal development and offspring metabolism have been recently reviewed [7]. Maternal
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consumption of diets rich in ω3 PUFA in particular showed benefits for the development of offspring
and it was even suggested that they exert epigenetic regulation for the prevention of obesity, insulin
resistance and cardiovascular diseases [51,52]. The consumption of DHA and EPA during crucial
periods of fetal development has beneficial physiologic and metabolic effects on the health of offspring
by protecting them from the onset of metabolic diseases [7,11]. Nevertheless, results in the field are
controversial, and the independent effects of ALA have not been studied enough.

ALA: During pregnancy there is a reduction of DHA in maternal serum while, at the same
time, an increased requirement of DHA and EPA for fetal brain development [38,49]. The solution
to compensate for this supposed imbalance can be to either provide ALA, the precursor for DHA
and EPA, or these end products directly. Not enough scientific information exists comparing for the
benefits of either supplementation. From the clinical aspect, criticism is raised regarding the claim
of support for fetal cognitive health and brain function improvement associated with DHA and EPA
supplementation [53].

Larque et al. [12] reported a somewhat positive relationship between maternal or cord serum
DHA percentages and cognitive skills in young children. Unfortunately, valuable information was
missing from this study: ALA is not mentioned amongst ω3 FAs and the blood FA composition of
mothers and/or children was not described.

During the literature search described here, only one study was found indicating a negative effect
of maternal over-consumption of ω3 FAs on life span and auditory brainstem response in older adult
offspring. As in several papers, the termω3 FA was broadly used, without specifying the dietary FA
composition and without mentioning the specific effects of ALA [54].

6. Perinatal Manipulation of ALA

In relation to perinatal metabolism, significant FA desaturase activities have been detected in
fetuses and preterm infants, indicating the existence of the molecular pathways at early stages of
life [55,56].

Published research regarding the positive effects of DHA and EPA has been reviewed showing
that they are essential for proper fetal development [57]. Supplementation of ω3 PUFA during
pregnancy has been linked to decreased incidence of allergies [58]. An interesting study using flaxseed
oil in mice questions whether ALA provision during gestation and lactation could induce epigenetic
changes in maternal and offspring livers [58]. In this study, the authors described an interaction
between ALA dietary content and the FA metabolism, through down-regulation of the expression
of enzymes involved in the elongation (Elovl2) and desaturation (Fads1) of FAs in maternal livers.
A positive correlation between Fads2 promoter methylation in maternal livers and offspring livers
with changes in the expression of DNA methyltransferases at day 19 of pregnancy was described.
Even though the work was inconclusive, the authors suggested that the maternal availability of ALA
during gestation-lactation could differentially alter the metabolism ofω3 andω6 FAs, as well as the
epigenetic status of Fads2 in maternal and offspring’ livers.

Research focusing on ALA content in the maternal diet and the long-term side effects on metabolic
syndrome in the offspring is scarce. Our laboratory has begun focusing on those effects and showed
that maternal dietary enrichment of ALA, compared to SFA, led to lower body weight gain, liver fat
accumulation, and homeostasis model assessment (HOMA) index, as well as reduced SCD1 in the
adult offspring exposed to a high fat diet [59]. Those results suggested that the relative increase in
dietary ALA during pregnancy and lactation may have the potential to prevent obesity and insulin
resistance in the offspring. Furthermore, Shomonov-Wagner et al. [60] compared the effects of dietary
enrichment inω3 ALA, DHA or EPA, compared to saturated fatty acids (SFA). That work showed that
SFA, independent of total fat amount or calories, induced liver lipid accumulation and IR in offspring
at weaning, while ALA was the most efficient ω3 FA to prevent the induced metabolic alterations.
That work proposed that not only ALA and SFA have divergent effects on IR and liver lipid levels, but
also that each of ALA, DHA and EPA behaved differently. Furthermore, ALA preventive effects were,
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apparently, unrelated to its conversion into DHA and EPA. Consequently, we conclude thatω3 ALA,
DHA and EPA should be studied and referred to individually and not as a group.

Recently published results seem to indicate that ALA, as opposed to SFA, up-regulates the
expression of genes involved in lipid oxidation and in the circadian rhythm [61].

7. Regulatory Mechanisms

The ω3 FA family seems to have distinct abilities to modulate metabolic functions and gene
expression [62]. Deckelman et al. [63] mentioned that the longer chain length and higher number of
double bonds give these FAs unique properties and suggested that they relate to modulation of enzymes
associated with signaling pathways/incorporation of EPA and DHA into membrane phospholipids and
direct effects on gene expression, amongst others. However, ALA has not been studied enough, and the
molecular interactions between ALA and genes, are only now beginning to be described [61].

Maternal dietary enrichment with ALA and the long terms effects on offspring susceptibility
to obesity and metabolic syndrome are an important and urgent subject waiting to be investigated.
Also important to consider are FA-gene interactions. Based on the literature found, we may assume
that ALA has beneficial effects during gestation, presumably on the prevention of obesity-associated
disease in offspring [61]. Ahmed [64] described a proteomics approach to examine the regulatory
roles ofω3 FAs. By using mice fed high or lowω3 FA containing diets, some affected proteins were
identified related to lipid, glucose and protein metabolism. Unfortunately their work excluded ALA,
but their information hints at the interaction between FAs and protein targets for the regulation of
metabolic pathways. These results, together with preliminary evolving information, warrant more
studies that would benefit from testing ALA, DHA and EPA separately.

8. Epigenetics

Environmental factors such as diet during fetal development can induce long-term modifications
in the genes of the fetus. Human epidemiological data and controlled animal studies corroborate the
impact of diet in the perinatal period and its lasting effect on gene expression and metabolism [65].
The question, “how do FAs influence the establishment of an epigenotype” [66], is intriguing and
stimulating. It is proposed that the peroxisome proliferator-activated receptor alpha (PPARa), an
abundant nuclear receptor transcription factor, may be a candidate to be regulated by maternal dietary
FAs in embryonic life. Wang et al. [67] described the way maternal and, possibly, paternal imbalanced
over- and under-nutrition may induce epigenetic modifications. Thus, DNA methylation, histone
modification and miRNAs, may regulate genome activity and gene expression leading to proteins
that affect fetal programming and organ physiology with lifelong consequences, sex-dependent in
some cases. The developmental adaptations that permanently change structure, physiology and
metabolism in offspring would thereby predispose for metabolic and cardiovascular risk later in adult
life. Vickers’s [68] analyzed not only the in utero, but also the trans-generational, possibilities for
epigenetic modifications and its consequences. Niculescu et al. [58] showed epigenetic modifications
induced specifically by ALA in an in vitro study. ALA was shown to alter the distribution of cells by
influencing cell cycle phases, apoptosis and gene and protein expression of DNA methyl transferases 1
and 3. However, no modifications in global DNA methylation were found.

Burdge et al. [69] reviewed the interaction between FAs and the epigenome to conclude that it is
not known, at present, how FAs modify the epigenome. Some of the existing limitations include the
lack of definition of the experimental diets and the susceptibility of histone deacetylases to inhibition
by short chain FAs present in most experimental diets. Nevertheless, the mechanisms underpinning
transmission of developmental programming urgently require further research.

9. Final Thoughts and Recommendations

The importance of ω3 FAs for the development and long-term health of offspring is widely
recognized. The importance of ALA, specifically, is only now beginning to be recognized; however,
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more thorough research is necessary in order to better understand its independent role in
developmental programming.

Based on ongoing research [28,61] we propose here the concept that ALA may have a role in the
programming of health. Specifically, it may have intrinsic regulatory properties on gene expression
during fetal development that extend beyond its simple metabolic conversion to DHA and EPA.

Although the human conversion of ALA to DHA and EPA is gender-related and relatively low
(up to 4%) [41], a higher consumption of ALA related to LA may increase it. Besides, individual DHA
and EPA are not easily available and expensive. Moreover, DHA- and EPA-rich fish oil has some health
disadvantages [22] due to contaminating factors such as heavy metals, teratogens, and others.

Due to the widespread use of the general term “ω3 FA”, that is sometimes misleading, we
propose that scientific publications apply a more precise nomenclature to identify the specific FAs
tested (i.e., ALA, DHA, and EPA).

In order to enlarge the understanding of ALA’s role in fetal development and programming, we
recommend to analyze the effects of a maternal diet enriched in each of the individual ω3 FAs, in
simple nutritional animal models that examine the tissue distribution, as well as gene expression and
metabolic outcomes, in offspring.
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Abbreviations

ALA ω3 alpha linolenic acid
FA fatty acid
CVD cardiovascular risk disease
DHA docosahexenoic acid
DPA docosapentenoic acid
EFA essential fatty acid
EPA eicosapentenoic acid
Fads2 gene of ∆6 desaturase enzyme
IR insulin resistance
LA linoleic acid
LDL low density lipoproteins
Ppargc1a/Ppargc1a peroxisome proliferative activated receptor gamma coactivator1a

enzyle and gene, respectively
PUFA polyunsaturated fatty acid
SCD1/Scd1 stearoyl-CoA desaturase 1 enzyme and gene, respectively
SFA saturated fatty acid
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