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Abstract: Microalbuminuria provides the earliest clinical marker of diabetic nephropathy 

among patients with Type 1 diabetes, yet it lacks sensitivity and specificity for early 

histological manifestations of disease. In recent years microRNAs have emerged as potential 

mediators in the pathogenesis of diabetes complications, suggesting a possible role in the 

diagnosis of early stage disease. We used quantiative polymerase chain reaction (qPCR) to 

evaluate the expression profile of 723 unique microRNAs in the normoalbuminuric urine of 

patients who did not develop nephropathy (n = 10) relative to patients who subsequently 

developed microalbuminuria (n = 17). Eighteen microRNAs were strongly associated with 

the subsequent development of microalbuminuria, while 15 microRNAs exhibited  

gender-related differences in expression. The predicted targets of these microRNAs map to 
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biological pathways known to be involved in the pathogenesis and progression of diabetic 

renal disease. A microRNA signature (miR-105-3p, miR-1972, miR-28-3p, miR-30b-3p, 

miR-363-3p, miR-424-5p, miR-486-5p, miR-495, miR-548o-3p and for women miR-192-5p, 

miR-720) achieved high internal validity (cross-validated misclassification rate of 11.1%) for 

the future development of microalbuminuria in this dataset. Weighting microRNA 

measurements by their number of kidney-relevant targets improved the prognostic 

performance of the miRNA signature (cross-validated misclassification rate of 7.4%). Future 

studies are needed to corroborate these early observations in larger cohorts. 

Keywords: microRNAs; microalbuminuria; Type 1 diabetes; gene ontology; target analysis; 

prognostic model 

 

1. Introduction 

Diabetic nephropathy is a major contributor to the heightened morbidity and mortality of patients 

with Type 1 diabetes [1]. Microalbuminuria testing is the current standard for diagnosing early renal 

involvement, yet urine albumin testing is not ideal as it is affected by many common clinical factors, 

e.g., acute febrile disease, exercise and transient loss of glycemic control [2]. Furthermore, severe  

non-Kimmelstein-Wilson structural lesions (e.g., mesangial expansion, glomerulotubular junction 

abnormalities or even tubulointerstitial lesions) [3–7] may already be evident before the development of 

microalbuminuria, highlighting the need for more sensitive, non-invasive biomarkers of early stage 

diabetic nephropathy [1,8,9]. In patients with diabetes, the risk of increased cardiovascular morbidity, 

mortality and further deterioration of their renal function varies with both the degree of renal impairment 

(estimated Glomerular Filtration Rate, eGFR) and proteinuria [10–12]. Understanding the biological 

correlates of microalbuminuria may thus shed some light on the heightened cardiac and renal risk of 

patients with diabetes. 

In recent years it has become apparent that gene expression is post-transcriptionally controlled by 

microRNAs, short (21–23 nt) non-coding RNAs which bind to the 3′-untranslated region of specific 

mRNAs. MicroRNAs appear to be a promising biomarker by virtue of their modulatory pathobiological 

role [13], high expression in urine and their stability under storage conditions [14]. Experimental work 

has implicated microRNAs in the pathogenesis of renal disease [15–17] and diabetic nephropathy [18]. 

Previous research [19–21] has highlighted associations between microRNA expression changes in 

patients with Type 1 or 2 diabetes. Using a case-control design, we reported the urinary miRNA profiles 

of Type 1 diabetics in groups matched by age, gender, duration of disease and glycated hemoglobin 

(HbA1C) without and with renal disease and intermittent and persistent microalbuminuria [22]. We have 

shown that urinary miRNA profiles vary significantly across the different stages of diabetic nephropathy 

and map to overlapping target protein pathways known to be targeted in diabetic kidney disease. 

Since the appearance of microalbuminuria is widely taken as the initial clinical manifestation of 

diabetic nephropathy, we decided to undertake a secondary analysis of our publicly available microRNA 

expression dataset [22] to explore the hypothesis that microRNAs may be useful in the early 

identification of patients who will go on to develop microalbuminuria. We thus compared the urinary 



J. Clin. Med. 2015, 4 1500 

 

 

microRNA profiles in normoalbuminuric samples from individuals who never developed signs of 

nephropathy and others who subsequently developed microalbuminuria over a period of 18 years. We 

also examined associations between microRNA expression and gender in patients with Type 1 diabetes. 

Gender has been found to be an important modifier in the risk for adverse renal outcomes in many renal 

diseases, but the protective effect of gender appears to be lost in diabetic nephropathy. Subsequently, we 

developed a urinary microRNA classification rule for the future development of microalbuminuria in 

normoalbuminuric patients with Type 1 diabetes. miRNA components of this signature were validated 

in an independent cohort of patients with variable degrees of microalbuminuria and Type 1 diabetes [20], 

but also in another study of patients with untreated hypertensive kidney disease [23]. 

2. Experimental Section 

2.1. Patients and Samples 

A full description of the methods for collection of samples and identification of participants are 

available in our previous publication [22] and only a brief summary will be given here. Urinary 

microRNAs were profiled in participants of the Pittsburgh Epidemiology of Diabetes Complications 

(EDC) study, a historical prospective cohort of patients with Type 1 diabetes [24]. In EDC, patients were 

eligible for enrollment if they were diagnosed with Type 1 diabetes from 1950–1980 at the Children’s 

Hospital of Pittsburgh. A total of 906 patients, out of 1124 eligible for participation, agreed to participate 

in the EDC. Baseline examinations of the EDC were undertaken between 1986 and 1988 and patients 

were subsequently followed with biennial determinations of (among other things) renal function and 

albuminuria status over a period of 18 years. For this report we used the last available normoalbuminuric 

samples from our previous matched case-control/repeated-measures design obtained from a subsample of 

EDC patients who never developed any evidence of nephropathy (“normals”, N), and patients who 

subsequently developed microalbuminuria (MA), either intermittent or persistent in repeated 

assessments of microalbuminuria over a period exceeding 20 years since diagnosis and 18 years under 

follow up. Urine was thus collected at the end of EDC follow-up in the first group and the two years 

before the detection of microalbuminuria in the latter group. In the latter group, microalbuminuria was 

present either on an intermittent or persistent basis in all subsequent visits (up to 18 years) for the EDC 

cohort. Microalbuminuria was defined as 20–200 μg/min in at least two of three timed urinations (24 h, 

overnight, and 4 h clinic visit). RNA was isolated from the urine using the miRNeasy kit (Qiagen, 

Germantown, MD, USA) and microRNA profiles were generated with real-time PCR as previously 

described [22]. In this analysis we do not differentiate between intermittent and persistent 

microalbuminuria as our interest lies in the clinical classification of urine samples at only a single point 

in time. The raw de-identified miRNA data for this analysis are available as supplementary information 

in our previous publication [22]. 

2.2. Associations between Gender, Microalbuminuria and microRNA Fold Changes 

Quantitative Polymerase Reaction (qPCR) quantification cycle values (Cq) were analyzed with a 

linear regression model to yield normalized gender-adjusted threshold cycle differences between the N 

and MA groups for all microRNA species generating measurable signal in >65% of the urine samples. 
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The model used replicates measurements from three microRNAs (miR-423-5p, miR-103, miR-191), 

three small RNAs (U6, SNORD38B, SNORD38A) and a spike-in control (UniSP3) to supply a panel 

specific normalization factor that adjusted the difference in threshold crossing value (ΔCq) of each 

microRNA between the two patient groups. ΔCqs were converted to relative fold changes (FC) using the 

delta-delta method [25]: Fold Change = 2−ΔΔCq, where ΔΔCq = ΔCq (microRNA) − ΔCq (UniSp3). For 

all other microRNAs we used logistic regression to analyze the gender adjusted odds ratio (OR) of a 

given species yielding a signal above the qPCR detection limit between N and MA groups. Though the 

interpretation of the output of the linear and logistic regression models differs, both yield a numerical 

summary which can indicate the relative expression of microRNAs between the two patient groups. Due 

to the exploratory nature of this report, we estimated the parameters of the regression models by adopting 

a Bayesian probabilistic viewpoint. In the Bayesian framework, one is concerned with the a posteriori 

determination of unobserved quantities e.g., the effects of microalbuminuria or gender on microRNA 

expression, by combining a priori beliefs about the magnitude of these quantities and the evidence 

provided by the experimental data. In our Bayesian analyses we supplied non-informative prior 

distributions for the ΔCq and the OR for the linear and logistic regression respectively. These 

distributions encoded the prior beliefs that for each microRNA (a) the ΔCq could be any number 

compatible with the dynamic range of our experimental setup (i.e., for 40 qPCR cycles, ΔCq could be 

between −80 and +80); and (b) the probability of detection could be any number between 0 and 1. The 

same non-informative priors were adopted for the effects of gender on each microRNA species 

considered. This Bayesian approach enabled us to rank microRNAs in decreasing order of evidence for 

differential expression. Therefore, for each microRNA we computed the posterior odds ratio (POR) of 

the hypothesis that it exhibits directional changes in expression [22,26]. For the interpretation of 

posterior odds we adopted the following discretization [27]: 1:1–3:1 (not worth more than a bare 

mention), 3:1–20:1 (positive), 20:1–150:1 (strong), >150:1 (very strong). Bayesian analyses were carried 

out in WinBUGS/JAGS (code available from the first author). 

2.3. Target and Pathway Analyses 

Target and pathway analyses were used to gain a better understanding of our miRNA biomarker 

associations. This is an acceptable bioinformatics approach to the identification of cardiovascular 

miRNA targetsomes [28], which we applied in our previous study [22]. We used the discretized posterior 

odds ratio to select microRNAs for reporting and to guide functional profiling of microRNA targets 

predicted by at least 2 of 3 algorithms (miRanda, release August 2010, TargetScan, release 6, and miRDB, 

version 4.0). To gain a better understanding of our results we used biclustering [29] to group microRNAs 

according to both the evidence for differential expression and common gene targets they may bind to. 

The latter, as well as the targets of microRNAs with very strong evidence for differential expression, 

were mapped to the REACTOME [30] manual ontology of biological pathways and analyzed for enriched 

terms. Enrichment analysis was carried out with the hypergeometric test using a false discovery rate 

cutoff of 0.05 to control the number of false positives. R version 3.0.1 and the Bioconductor package 

were used for term enrichment analyses. 
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2.4. Construction of a microRNA Prognostic Index for Microalbuminuria 

To construct the microRNA prognostic index, we set the Cq value for all microRNAs that failed to 

yield a detectable signal to 40, i.e., the highest number of qPCR cycles that we run during the 

experiments. This allowed us to use the entire set of measurements on 722 unique microRNAs as features 

for the construction of the prognostic index. Subsequently we calculated the linear feature  

F = 40 − Cq for each microRNA and each sample in the dataset. Each linear feature is thus related to the 

amount of the corresponding microRNA species, with higher feature values corresponding to higher 

urinary concentrations. We used the values of the linear features and their statistical interaction with 

gender as regressors/predictors in a logistic regression for the outcome of future development of 

microalbuminuria. Due to the large number of predictors (1445 including the 722 microRNA 

measurements, gender and the statistical interaction between gender and microRNA species) and the 

smaller number of measurements (n = 27 samples) we used elastic net (EN) regularized regression to 

select those most predictive of the outcome of interest. The elastic net is a method for automatically 

selecting features for predictive models that is robust to the presence of high correlations among  

them [31]. Such group behavior appears plausible for microRNAs with similar binding sequences which 

belong to the same family, providing the major justification for its use in this work. We used  

leave-one-out crossvalidation (LOCV) to both fit the EN and assess the predictive performance of the 

resulting prognostic index. LOCV involves fitting the model to all possible datasets obtained by holding 

back one data point and then comparing model predictions against the datum that was left out. By this 

process, the relative contribution of the different features to prediction of the outcome is determined 

leading to parsimonious prognostic models with high internal validity for the data at hand. For the 

purposes of this publication we built two prognostic models, one in which the features were equally 

weighted during EN fitting (“concentration-only model”) and a second one in which features were 

unequally weighted according to the number of kidney-relevant genes the corresponding microRNAs 

are predicted to bind to (“concentration-binding model”). Such genes were identified from the Renal 

Gene Ontology (RGO), a public manually annotated resource of genes implicated in renal disease and 

development [32]. Previous work has shown that RGO-based annotation may improve [33] the 

interpretation of gene expression data from kidney biopsies in patients with diabetic nephropathy [34], but 

to our knowledge this is the first application of the RGO to enhance microRNA analyses. LOCV was 

used to determine the optimal values of the weights in the concentration-binding model and all models 

with equal predictive performance were averaged to derive a composite one that is reported herein. All 

EN analyses were performed in R version 3.0.1 (package glmnet) with Bioconductor packages 

(UniProt.ws, org.Hs.eg.db, biomaRt) for identifying genes with kidney-relevant RGO annotation terms 

obtained by querying the UniProt-GOA database [35] using the QuickGo web interface. 

2.5. Validation of miRNA Features in Type 1 Diabetes 

We validated the miRNA features in the identified signatures using two different datasets: a study of 

24 age- and hemoglobin-A1C-matched patients with Type 1 diabetes with or without microalbuminuria [20] 

(available as dataset GSE48318 in the Gene Expression Omnibus, GEO) and a study of patients with 

hypertensive renal disease and normal controls [23] (GSE28283 and GSE28344). These datasets enabled 
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us to answer the following questions: (a) whether the miRNA changes we describe in our cohort are 

validated in another cohort of patients with T1 diabetes and (b) whether the predictive performance of 

miRNAs is more specific for diabetes rather than early non-diabetic kidney disease. 

Note that the different techniques used in these two datasets (TaqMan [20] and Affymetrix assays [23]) 

and different source material (exosomes, kidney biopsy vs. total urine) preclude a direct validation of 

the proposed model in these two external samples. Such a validation would require that one make a large 

number of unverifiable assumptions to develop a rather complex calibration strategy among 

measurements obtained with different protocols and measurement systems. Instead, we computed the 

average performance (Area Under the Receiver Operating Characteristic, AUC-ROC) of miRNAs found 

in our signatures in these two datasets relative to AUC obtained in the development cohort. 

3. Results 

We assessed 30 patients, i.e., 10 “normals” and 20 who subsequently developed MA, either intermittent 

(10) or persistent (10), and obtained good quality RNA in all except 3 samples from the MA group. 

Patients in the normal group had a longer disease duration (median 33.6 vs. 22.7) and were older (median 

age 41.8 vs. 24.8 years) relative to participants in the MA group; there was an equal percentage of men 

and women in the two groups. Characteristics and comorbidities of the individuals who were profiled 

are shown in Table 1. No patients were receiving an angiotensing converting enzyme inhibitor and only 

one in the N group was on an angiotensin receptor blocker (patient 21) or an low density lipoprotein 

(LDL)-lowering agent (patient 23). 

Table 1. Patient demographics. 

ID Group Sex Age HbA1c Duration Cycle CAD Stroke PVD Neuro Retino HTN

1 IMA F 27.4 10.4 19.2 3 - - - - - - 

2 PMA F 22.7 11.8 20.25 3 - - - - - - 

3 IMA F 29.9 11.4 18.6 5 - - - - - - 

4 PMA F 26.3 13.1 18 5 - - - - + - 

5 IMA F 24 10 21.2 2 - - - - - - 

6 IMA F 24.3 14.3 19.7 2 - - - - - - 

7 IMA F 26.9 10.4 18.5 2 - - - - - - 

8 PMA F 25.2 8.2 12.9 2 - - - - - - 

9 IMA M 30.66 11 19.97 3 - - - - + - 

10 PMA M 23.16 11.5 22.05 3 - - + - - - 

11 IMA M 41.7 6.6 30.54 6 - - - - - - 

12 PMA M 38.97 5.2 31.54 2 - - - - + - 

13 IMA M 39.08 12.4 24.52 6 - - - - - - 

14 PMA M 28.35 11.6 27.01 4 - - - - + - 

15 PMA M 27.16 13.9 24.3 2 + - - - + - 

16 IMA M 23.13 12.1 9.77 2 - - - - - - 

17 PMA M 22.8 13 12.9 3 - - - - - - 

18 N F 40.32 7.1 29.63 10 - - - + - - 

19 N F 48.93 8.3 36.73 10 - - - + + - 

20 N F 51.16 8 46.96 10 - - + + + - 
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Table 1. Cont. 

ID Group Sex Age HbA1c Duration Cycle CAD Stroke PVD Neuro Retino HTN

21 N F 39.45 7.9 29.77 10 - - - - - - 

22 N F 41.19 9.8 38.13 10 + - + + + - 

23 N M 48.72 6.6 33.76 10 - - - - - - 

24 N M 42.46 9.8 33.4 10 + - - - - + 

25 N M 42.5 8.2 36 10 - - - - - - 

26 N M 35.35 9.1 28.53 10 + - - + + - 

27 N M 38.54 7.7 27.81 10 - - - - - - 

IMA: intermittent microalbuminuria; PMA: persistent microalbuminuria; N: normal; HbA1c: glycated 

hemoglobin; PVD: peripheral vascular disease; CAD: coronary artery disease; HTN: hypertension; Neuro: 

Neuropathy; Retino: Retinopathy; Duration: time since Type 1 diabetes diagnosis; Cycle: number of biennial 

cycles since enrollment (visit 0: baseline; visit 10: the visit at the 18th year). 

Members of the let-7, miR-10, miR-23, miR-30, miR-200 families were among the microRNAs with 

the highest expression in the urine of the N-group (Figure 1a). Histograms of the unadjusted (sample) 

differences in Cq and the log-odds (log-OR) of obtaining a measurable signal between the MA and N 

groups are shown in Figure 1b. Figure 1c shows the same data for the comparison between men and 

women. We found very strong evidence for differential expression (PO > 150:1) for 18 microRNAs in the 

MA vs. the N-group comparison Figure 1e and for 15 microRNAs in women, as shown in Figure 1d (the 

analyses for all 722 microRNAs assessed are given in the Supplementary Tables). Four microRNAs 

(miR-1247-5p, miR-495, miR-548o-3p and miR-767-3p) exhibited reciprocal changes in expression in the 

MA (decreased) vs. the gender (increased) comparisons. 

Term enrichment analysis highlighted a number of distinct pathways involving growth factor 

signaling (VEGF, EGF, FGF, TGF, NGF, SMAD), insulin/IGF and PI3K signaling, apoptosis, innate 

immunity (Toll/TLR cascade), transmembrane transport and other pathways as potential targets of these 

differentially expressed microRNAs (Figure 2). Although the majority of these pathways were  

over-represented in both comparisons, they were some exceptions e.g., VEGF (only in MA) and TLR 

2–10 signaling (women). 

Biclustering of the evidence for differential expression and predicted gene targets for all  

722 microRNAs and 17,938 targets suggested a single bicluster for MA status and female gender (Figure 

3) consisting of 37 microRNAs by 360 targets and 17 microRNAs by 878 targets, respectively. These 

two biclusters shared only a few microRNAs (miR-23a/b, miR-495, miR-548c-3p/5p, miR-548o-3p, 

miR-570-3p, miR-577). 
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Figure 1. Expression levels of microRNAs in the urine of patients with Type 1 diabetes and 

associations between subsequent development of microalbuminuria and gender.  

(a) microRNAs with the highest (top 10%) expression (mean ± 1 standard deviation) in the 

urine of patients who never develop nephropathy; (b) histograms of the Delta Cq and 

empirical log odds ratios of detection between the microalbuminuric and normal groups; (c) 

histograms of the Delta Cq and empirical log odds ratios of detection between men and 

women; (d) differences in expression in women versus men; (e) differences in expression 

level between MA (microalbuminuric) and N (normal) group. In (d,e), expression changes 

(Expression) are given either as fold changes (FC), or odds ratios (OR) of exceeding the 

detection limit and associated 95% credible interval (CI95). Expression values greater than 

one and less than one indicate overexpression and underexpression, respectively.  

PO: posterior odds of the hypothesis that a given microRNA exhibits concentration changes 

are in the direction indicated by the expression value vs. the opposite direction.  

Cq: qPCR quantification cycle (threshold crossing) value. 
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Enrichment analysis of the bicluster targets (Figure 4) highlighted the majority of the pathways  

in Figure 2. Of note, the most enriched pathway (>30 fold) in patients with MA was that of  

post-transcriptional silencing by small RNAs, while TGF and SMAD signaling appeared to be  

over-represented in the bicluster of females. 

 

Figure 2. Over-representation analysis in the REACTOME ontology of putative targets of 

differentially expressed microRNAs in patients with MA and women plotted side by side. 

The fold-overrepresentation of terms in each pathway is plotted in the x-axis, while the 

statistical significance (False Discovery Rate adjusted q value) is encoded in gray scale. 
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Figure 3. Simultaneous clustering (biclustering) of the evidence for differential expression 

microRNAs and their predicted targets. Biclusters are plotted in gray scale according to the 

evidence of differential regulation (posterior odds); for microRNAs not predicted to bind to 

a given target, the lowest possible evidence for differential regulation was assigned. 



J. Clin. Med. 2015, 4 1508 

 

 

 

Figure 4. Over-representation analysis in the REACTOME ontology of putative targets of 

microRNAs in the biclusters identified in the comparisons between microalbuminuria (MA) 

vs. Normal (N) groups and women vs. men plotted side by side. The  

fold-overrepresentation of terms in each pathway is plotted in the x-axis, while the statistical 

significance (False Discovery Rate-adjusted q value) is encoded in gray scale. 

Notwithstanding these associations, only a small number of microRNAs were sufficient to predict the 

future development of microalbuminuria. In particular, a microRNA signature of 11 microRNAs (Table 1, 

concentration-only model) exhibited a high degree of predictive accuracy (cross-validated 

misclassification rate of 11%). MicroRNAs in this signature were among the most highly expressed 

species in the urine (miR-30b-3p, 122-5p, 192-5p, 200b-5p, miR-495, 548-3p, 720), had high evidence 

for differential expression in normoalbuminuric samples (miR-495, 548o-3p, 122-5p, 126-3p) or belonged 

to the same bicluster for gender (miR-30b-50, 495, 548o-3p). 

The median (Interquartile Range) number of genes belonging to the Gene Ontology and its renal 

subset targeted by the 722 microRNAs considered in this analysis were 1169 (1295.25) and 54 (63) 

respectively. Weighing the microRNA measurements according to the number of their predicted renal 

gene targets resulted in a larger microRNA signature of 13 species (Table 1, concentration-binding 

model) with slightly higher prognostic accuracy (cross-validated misclassification rate of 7.4%) for the 

future development of microalbuminuria. The two signatures exhibited a large degree of overlap with 

nine common microRNAs and similar quantitative contribution (sign and magnitude of log-odds) for the 
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classification of patient samples. Both signatures included a small number of gender-specific  

microRNA contributions. 

We considered the following miRNAs for validation: those whose expression differed significantly 

in adjusted analyses (Figure 1e, signature D) and the two signatures (C: concentration only, CB: 

Concentration-Binding miRNAs) in Table 2. The average AUC (range) for the miRNAs in the 

development cohort was 0.643 (0.622–0.806), 0.721 (0.559–0.847) and 0.692 (0.559–0.847) for the D, 

C and CB respectively. Not all miRNAs identified in our analyses were profiled in the validation cohorts 

since the relevant probes were not included in the corresponding qPCR and microarray platforms. miRNAs 

not profiled included hsa-miR-548o-3p, hsa-miR-767-3p, hsa-miR-1247-5p, hsa-miR-645, hsa-let-7b-3p, 

hsa-miR-30a-5p, hsa-miR-665, hsa-miR-640, hsa-miR-616-5p and hsa-miR-770-5p from the signature 

D and hsa-miR-105-3p, hsa-miR-122-3p, hsa-miR-1972 from signatures C and CB. In the 

microalbuminuric development cohort the average (range) of individual AUCs were 0.786 (0.50–1.0), 

0.714 (0.5–1.0) and 0.714 (0.5–1.0) for the D, C and CB signatures. In the hypertensive validation cohort 

the corresponding figures were: 0.667 (0.533–0.817), 0.676 (0.533–0.767) and 0.679 (0.533–0.767) 

respectively for the D, C and CB signatures. 

Table 2. Predictive models for the future development of microalbuminuria. 

Feature 

Log-Odds ǂ 

Concentration—Only 
Model 

Concentration—Binding 
Model 

Intercept 2.725 3.313 
hsa-miR-105-3p −0.125 −0.196 
hsa-miR-122-3p  0.022 
hsa-miR-124-3p  0.003 
hsa-miR-126-3p  0.045 
hsa-miR-1972 −0.003 −0.054 
hsa-miR-28-5p −0.316 −0.682 

hsa-miR-30b-5p −0.008  
hsa-miR-363-3p −0.141 −0.009 
hsa-miR-424-5p −0.069  
hsa-miR-486-5p 0.083 0.212 

hsa-miR-495 −0.045 −0.028 
hsa-miR-548o-3p −0.055  

hsa-miR-122-5p X Women  0.007 
hsa-miR-192-5p X Women 0.033 0.03 
hsa-miR-200c-3p X Women  0.07 
hsa-miR-548o-3p X Women −0.296 −0.498 

hsa-miR-720 X Women 0.059 0.018 
ǂ Log-Odds ratios are coefficients that multiply the features (40-Cq) for each of the microRNAs measured in 

the urine. These terms are then added together to give an overall log-odds score which when exponentiated 

yields the odds of microalbuminuria development for a given sample. These microRNA measurements carry a 

different prognostic implication for women. For these microRNAs the log-odds multiply the corresponding 

feature only for women. 
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4. Discussion 

In this study we report differences in the microRNA profiles in Type 1 diabetes patients without 

nephropathy and patients who subsequently develop microalbuminuria. These differences are apparent 

years before those patients manifest microalbuminuria, suggesting that microRNA signatures may serve 

as a useful and accurate prognostic marker for the development of incipient diabetic nephropathy or 

endothelial dysfunction. Furthermore, there appear to exist differences in the microRNA profiles 

between male and female patients, which to our knowledge is a novel observation in diabetes. Targets 

of these differentially co-expressed microRNAs map to biological pathways of known relevance to the 

development of diabetic kidney disease, providing a post hoc context for the interpretation of the 

reported changes. miRNAs identified by our analyses maintained their predictive performance and 

appear to be relatively specific for the microalbuminuria of Type 1 diabetes when validated in two cohorts 

of diabetic and hypertensive patients, respectively. 

The urine of diabetic patients without nephropathy appears to have detectable levels of microRNAs 

of known relevance to renal morphology, physiology and pathophysiology [15–17]. More specifically 

associations have been previously reported with kidney development (miR-200, miR-30a, miR-17-5p, 

let-7a, miR-23a, miR-26a, miR-24), regulation of water transport (miR-320a), osmoregulation (miR-200b) 

and sodium/potassium transport (miR-192). Other microRNAs have been implicated in disease phenotypes 

including hypertension (miR-200a/b, miR-141, miR-192, miR-205), renal fibrosis (miR-192, miR-200a/b, 

miR-21), polycystic kidney disease (miR-17), renal cancer (miR-17-5p, miR-122-5p) and even diabetic 

nephropathy (miR-192, miR-21). Some of these microRNAs (miR-21, miR-29c, miR-30d, miR-124a, 

miR-320, miR-375) have been shown to be glucose-induced in non-renal contexts (pancreas, adipocytes, 

endothelial cells) or to modulate insulin sensitivity or lipoprotein metabolism (miR-122). Thus, it 

appears that in the absence of diabetic kidney disease, the urinary microRNome harbors a number of 

microRNAs that are contextually related to renal pathophysiology and the diabetic milieu. An interesting 

hypothesis that deserves further study is that these microRNAs underlie the apparent resistance of some 

patients to the development of renal disease despite the long duration of diabetes. 

These observations suggest that perturbations from the normal urinary microRNome may open a  

non-invasive window into these processes, even before microalbuminuria becomes manifest. In that 

regard, our data provide support for differences in microRNA expression at least two years before the 

detection of microalbuminuria for the first time. Although many of the differentially expressed 

microRNAs (e.g., miR-126, miR-141-3p, miR-429, miR-373-3p) have been implicated in renal disease 

and hypertension [15–17,22], the renal or diabetes context of others (notably miR-495, miR-1247,  

miR-548o) is currently unexplored in the literature. A recent paper reported differences in urinary 

exosomal microRNAs [20] between normoalbuminuric and microalbuminuric Type 1 diabetes patients 

with incipient nephropathy. Similar to our report [22], this work studied patients with long duration of 

disease and found evidence for over-expression for miR-130a(-3p) and miR-145(-5p), while miR-155(-5p) 

and miR-424(-5p) were under-expressed. We found positive (POR of 13.6:1) and strong (POR 126:1) 

for over-expression of miR-145-5p and under-expression of miR-424-5p (Table S1) but minimal support 

for differential expression of miR-130a-3p and miR-155-5p. The lack of complete concordance between 

the findings of these studies is not surprising, though, given the different microRNA sources (exosomes 

vs. total urine), gender (all men in [20], an equal proportion of men and women in our report) and age 
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(late 50s in [20] and early 40s in our work). Notwithstanding these observations, the miRNAs identified 

in our analyses are validated against this cohort. 

We should note that the inter-individual changes in microRNA expression only partially overlap with 

our previous report of intra-individual associations during the progression from normoalbuminuria to 

intermittent or persistent microalbuminuria [22]. This pattern suggests that different microRNAs are 

involved in determining inter-individual susceptibility to the development of microalbuminuria and its 

onset among those susceptible. In the absence of experimental work that would provide a context for the 

interpretation of differential microRNA expression, it is re-assuring to note that the predicted targets of 

differentially expressed microRNAs map to pathways that are implicated in the development and 

progression of diabetic kidney disease (DKD) and renal fibrosis: the growth factor 

TGF/FGF/PDGF/VEGF, SMAD signaling, and PI3K/AKT signaling. Hence the expression changes 

reported here appear to be compatible with our current understanding of DKD, and consistent with 

recently emerging themes [36] in the field (e.g., the role of inflammation, innate immunity and toll 

receptor signaling). 

In this work we describe gender-related associations in the urine of patients with Type 1 diabetes. 

Although gender-associated changes have been described in patients with the metabolic syndrome [37] 

and estrogen dependent microRNA regulation is well established [38] we are not aware of any previous 

reports in diabetes or microalbuminuria. With a few exceptions (e.g., miR-19b, miR-21-5p, miR-223-3p, 

miR-378 [39]), many of the microRNAs identified as having a gender-related expression level have not 

been adequately studied so as to provide an adequate context for the interpretation of such changes. 

Thus, it is interesting to note that the predicted targets of these microRNAs largely map to the same 

pathways as the microRNAs associated with subsequent development of microalbuminuria. Whether this 

observation relates to the weakening or even loss of the protective effect of female gender on the 

progression of DKD [40], seen in almost all primary renal diseases [41–43], cannot be established from 

this work and requires further study. 

Early treatment of patients with Type 1 diabetes with inhibitors of the renin angiotensin aldosterone 

system is thought to confer some advantage in delaying the onset of diabetic renal complications in those 

with microalbuminuria but not those with normoalbuminuria [44]. Hence, non-albumin biomarkers that 

identify patients prior to the development microalbuminuria may offer a unique approach towards 

individualizing treatment by targeting renin-angiotensin-aldosterone blockers to those who are 

progressing towards microalbuminuria. However, this is a hypothesis that should be tested in prospective 

clinical trials before being adopted as a therapeutic strategy in the clinic. 

In this work we used urinary measurements of miRNAs,their binding patterns, the recently described 

Renal Gene Ontology annotation [32] and longitudinal follow-up to develop miRNA biomarkers with 

some specificity for the microalbuminuric phenotype of Type 1 diabetes. Of note, only a small number 

of the differentially expressed microRNAs between non-progressing normoalbuminuric patients and 

those who progressed to microalbuminuria were identified as prognostically significant. This apparent 

discrepancy is explained by considering the qualifications of a predictive marker: it should not only be 

expressed at different levels between patient groups but its expression should also have a small  

inter-individual variability and thus measurement noise. On the other hand, including all miRNAs with 

the same directional expression changes in the signature is a wasteful strategy. Techniques such as the 

elastic net take into account the correlations between individual biomarkers and allow the development 
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of more parsimonious composite signatures. In particular, the biomarkers derived by the elastic net are 

composed of miRNAs that represent two different quantitative behaviours: those that are highly expressed 

in the urine and those that exhibit large differential changes between the two patient groups. The resulting 

miRNA signatures were thus shorter (fewer miRNAs) and had a marginally higher predictive 

performance in the diabetic validation dataset compared to the signature obtained by miRNAs with the 

highest directional changes. Consideration of target binding patterns in the elastic net algorithm 

identified miRNAs with the same average AUC in the hypertensive kidney disease validation cohort. 

A number of limitations have to be kept in mind in interpreting the results of this study. First, this is 

a cross-sectional secondary analysis of a previous matched case-control study which explored 

microRNA changes between stages of diabetic nephropathy. As matching was not preserved in this 

report, some patient characteristics (e.g., age and duration of disease at urine sampling) differed between 

patient groups and their effects are confounded in our analysis. Nevertheless, none of the miRNAs 

identified in a study of older vs. younger individuals [45] (e.g., miR-151a-3p, 1248 or 181a-5p) exhibited 

significant expression changes in our study. To the extent that the aging renal phenotype shares common 

pathways with diabetic nephropathy [46,47], one should expect our study to have decreased sensitivity 

in terms of identifying microRNA associated with DKD. Second, the relative small number of patients 

makes the precise quantification of changes in expression rather challenging, which is reflected in the 

large credible intervals for some of the microRNAs and their apparent lack of prognostic significance. 

For these microRNAs the present study should be regarded as providing evidence about the general 

direction in the change expression (up or down), not its actual magnitude. Third, our patients have never 

had renal biopsies that would allow us to correlate the urine microRNome with specific tissue signatures 

or even determine their cellular source. In the absence of such data we had to heavily rely on 

bioinformatic tools to provide a post hoc context for the interpretation of expression changes. Fourth, 

our study used microalbuminuria as evidence for renal involvement in the patients we examined [48]. 

Nevertheless, microalbuminuria is also a risk factor for cardiovascular disease in patients with or without 

diabetes and currently there exist no tests that can differentiate between these two potential causes [49]. 

Hence, the associations and prognostic models we develop may not be specific for diabetic renal disease, 

but rather identify patients with microalbuminuria-manifesting endothelial dysfunction [50]. However, 

only one patient in our study had hypertension, while individual miRNA signatures had a higher predictive 

performance in the validation dataset of diabetes compared to that of hypertensive kidney disease. Future 

studies should examine differential miRNA expression in cohorts of patients with diabetes (with or 

without hypertension) and hypertensive non-diabetic kidney disease to further characterize the 

specificity of miRNAs for different microalbuminuric clinical phenotypes. 

Due to these limitations, our findings should be regarded principally as hypothesis generating. 

Nevertheless, subsequent investigations may consider additional background information and ultimately 

corroborate findings more weakly supported by our data or even refute others that appear to be strongly 

associated. In particular, validation of our microRNA signature prognostic models against clinical 

outcomes of either cardiovascular or progressive renal disease may provide a novel way to differentiate 

between the sources of micro-albuminuria or even target therapies in patients with Type 1 diabetes. 
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5. Conclusions 

In summary, we characterized the urinary microRNome in normoalbuminuric patients with Type 1 

diabetes and found specific microRNAs mapping to pathways of known pathophysiological significance 

for DKD, to be differentially expressed. As both intermittent and persistent MA carry a heightened risk 

for disease progression [51,52] early identification of patients likely to have defined nephropathy may 

allow for earlier institution of renoprotective therapies [44]. Further longitudinal studies are needed to 

clarify the potential utility of urinary microRNome in the early diagnosis of nephropathy and treatment 

selection or monitoring. 

Acknowledgments 

We thank Yue Yuan for RNA isolation as well as Sara McClarty and David Huang for performing 

the original experiments. 

Author Contributions 

Christos Argyropoulos: researched data, carried out the statistical analyses, generated the figures, 

wrote the manuscript; Kai Wang: researched the data, reviewed/edited the manuscript, contributed to the 

discussion; Jose Bernardo: reviewed/edited the manuscript, contributed to the discussion; Demetrius 

Ellis: reviewed/edited the manuscript, contributed to the discussion; Trevor Orchard: designed data 

collection, reviewed/edited the manuscript, contributed to the discussion; David Galas: researched data, 

reviewed/edited the manuscript, contributed to the discussion; John P. Johnson: researched data, 

reviewed/edited the manuscript, contributed to the discussion. 

Conflicts of Interest 

The authors have no relevant conflicts of interest, financial or otherwise, to disclose. 

References 

1. Gross, J.L.; de Azevedo, M.J.; Silveiro, S.P.; Canani, L.H.; Caramori, M.L.; Zelmanovitz, T. 

Diabetic Nephropathy: Diagnosis, Prevention, and Treatment. Diabetes Care 2005, 28, 164–176. 

2. Sacks, D.B.; Arnold, M.; Bakris, G.L.; Bruns, D.E.; Horvath, A.R.; Kirkman, M.S.; Lernmark, A.; 

Metzger, B.E.; Nathan, D.M. Guidelines and Recommendations for Laboratory Analysis in the 

Diagnosis and Management of Diabetes Mellitus. Clin. Chem. 2011, 57, e1–e47. 

3. Fioretto, P.; Mauer, M. Histopathology of diabetic nephropathy. Semin. Nephrol. 2007, 27, 195–207. 

4. Bader, R.; Bader, H.; Grund, K.E.; Mackensen-Haen, S.; Christ, H.; Bohle, A. Structure and 

function of the kidney in diabetic glomerulosclerosis. Correlations between morphological and 

functional parameters. Pathol. Res. Pract. 1980, 167, 204–216. 

5. Caramori, M.L.; Kim, Y.; Huang, C.; Fish, A.J.; Rich, S.S.; Miller, M.E.; Russell, G.; Mauer, M. 

Cellular Basis of Diabetic Nephropathy 1. Study Design and Renal Structural-Functional 

Relationships in Patients with Long-Standing Type 1. Diabetes 2002, 51, 506–513. 



J. Clin. Med. 2015, 4 1514 

 

 

6. Najafian, B.; Kim, Y.; Crosson, J.T.; Mauer, M. Atubular Glomeruli and Glomerulotubular Junction 

Abnormalities in Diabetic Nephropathy. J. Am. Soc. Nephrol. 2003, 14, 908–917. 

7. Najafian, B.; Crosson, J.T.; Kim, Y.; Mauer, M. Glomerulotubular Junction Abnormalities are 

Associated with Proteinuria in Type 1 Diabetes. J. Am. Soc. Nephrol. 2006, 17, S53–S60. 

8. Gonzalez Suarez, M.L.; Thomas, D.B.; Barisoni, L.; Fornoni, A. Diabetic nephropathy: Is it time 

yet for routine kidney biopsy? World J. Diabetes 2013, 4, 245–255. 

9. Alter, M.L.; Kretschmer, A.; von Websky, K.; Tsuprykov, O.; Reichetzeder, C.; Simon, A.; Stasch, 

J.-P.; Hocher, B. Early urinary and plasma biomarkers for experimental diabetic nephropathy. Clin. 

Lab. 2012, 58, 659–671. 

10. Astor, B.C.; Matsushita, K.; Gansevoort, R.T.; van der Velde, M.; Woodward, M.; Levey, A.S.;  

de Jong, P.E.; Coresh, J.; el-Nahas, M.; Eckardt, K.-U.; et al. Lower estimated glomerular filtration 

rate and higher albuminuria are associated with mortality and end-stage renal disease.  

A collaborative meta-analysis of kidney disease population cohorts. Kidney Int. 2011, 79,  

1331–1340. 

11. Gansevoort, R.T.; Matsushita, K.; van der Velde, M.; Astor, B.C.; Woodward, M.; Levey, A.S.;  

de Jong, P.E.; Coresh, J.; el-Nahas, M.; Eckardt, K.-U.; et al. Lower estimated GFR and higher 

albuminuria are associated with adverse kidney outcomes. A collaborative meta-analysis of general 

and high-risk population cohorts. Kidney Int. 2011, 80, 93–104. 

12. Matsushita, K.; van der Velde, M.; Astor, B.C.; Woodward, M.; Levey, A.S.; de Jong, P.E.; Coresh, J.; 

Gansevoort, R.T. Association of estimated glomerular filtration rate and albuminuria with all-cause 

and cardiovascular mortality: A collaborative meta-analysis of general population cohorts. Lancet 

2010, 375, 2073–2081. 

13. Van Roosbroeck, K.; Pollet, J.; Calin, G.A. miRNAs and long noncoding RNAs as biomarkers in 

human diseases. Expert Rev. Mol. Diagn. 2013, 13, 183–204. 

14. Mraz, M.; Malinova, K.; Mayer, J.; Pospisilova, S. MicroRNA isolation and stability in stored RNA 

samples. Biochem. Biophys. Res. Commun. 2009, 390, 1–4. 

15. Khella, H.W.Z.; Bakhet, M.; Lichner, Z.; Romaschin, A.D.; Jewett, M.A.S.; Yousef, G.M. 

MicroRNAs in kidney disease: An emerging understanding. Am. J. Kidney Dis. 2013, 61, 798–808. 

16. Schena, F.P.; Serino, G.; Sallustio, F. MicroRNAs in kidney diseases: New promising biomarkers 

for diagnosis and monitoring. Nephrol. Dial. Transplant. 2014, 29, 755–763. 

17. Chandrasekaran, K.; Karolina, D.S.; Sepramaniam, S.; Armugam, A.; Wintour, E.M.; Bertram, J.F.; 

Jeyaseelan, K. Role of microRNAs in kidney homeostasis and disease. Kidney Int. 2012, 81,  

617–627. 

18. Alvarez, M.L.; Distefano, J.K. The role of non-coding RNAs in diabetic nephropathy: Potential 

applications as biomarkers for disease development and progression. Diabetes Res. Clin. Pract. 

2013, 99, 1–11. 

19. Yang, Y.; Xiao, L.; Li, J.; Kanwar, Y.S.; Liu, F.; Sun, L. Urine miRNAs: Potential biomarkers for 

monitoring progression of early stages of diabetic nephropathy. Med. Hypotheses 2013, 81,  

274–278. 

20. Barutta, F.; Tricarico, M.; Corbelli, A.; Annaratone, L.; Pinach, S.; Grimaldi, S.; Bruno, G.; Cimino, D.; 

Taverna, D.; Deregibus, M.C.; et al. Urinary Exosomal MicroRNAs in Incipient Diabetic 

Nephropathy. PLoS ONE 2013, 8, e73798. 



J. Clin. Med. 2015, 4 1515 

 

 

21. Osipova, J.; Fischer, D.-C.; Dangwal, S.; Volkmann, I.; Widera, C.; Schwarz, K.; Lorenzen, J.M.; 

Schreiver, C.; Jacoby, U.; Heimhalt, M.; et al. Diabetes-associated microRNAs in paediatric patients 

with Type 1 diabetes mellitus: A cross-sectional cohort study. J. Clin. Endocrinol. Metab. 2014, 99, 

doi:10.1210/jc.2013-3868. 

22. Argyropoulos, C.; Wang, K.; McClarty, S.; Huang, D.; Bernardo, J.; Ellis, D.; Orchard, T.; Galas, D.; 

Johnson, J. Urinary microRNA profiling in the nephropathy of Type 1 diabetes. PLoS ONE 2013, 

8, e54662. 

23. Marques, F.Z.; Campain, A.E.; Tomaszewski, M.; Zukowska-Szczechowska, E.; Yang, Y.H.J.; 

Charchar, F.J.; Morris, B.J. Gene Expression Profiling Reveals Renin mRNA Overexpression in 

Human Hypertensive Kidneys and a Role for MicroRNAs. Hypertension 2011, 58, 1093–1098. 

24. Miller, R.G.; Secrest, A.M.; Ellis, D.; Becker, D.J.; Orchard, T.J. Changing Impact of Modifiable 

Risk Factors on the Incidence of Major Outcomes of Type 1 Diabetes: The Pittsburgh Epidemiology 

of Diabetes Complications Study. Diabetes Care 2013, 36, 3999–4006. 

25. Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR.  

Nucleic Acids Res. 2001, 29, doi:10.1093/nar/29.9.e45. 

26. Argyropoulos, C.; Nikiforidis, G.C.; Theodoropoulou, M.; Adamopoulos, P.; Boubali, S.; 

Georgakopoulos, T.N.; Paliogianni, F.; Papavassiliou, A.G.; Mouzaki, A. Mining microarray data 

to identify transcription factors expressed in naïve resting but not activated T lymphocytes.  

Genes Immun. 2004, 5, 16–25. 

27. Kass, R.E.; Raftery, A.E. Bayes Factors. J. Am. Stat. Assoc. 1995, 90, 773–795. 

28. Fiedler, J.; Gupta, S.K.; Thum, T. Identification of cardiovascular microRNA targetomes. J. Mol. 

Cell. Cardiol. 2011, 51, 674–681. 

29. Turner, H.; Bailey, T.; Krzanowski, W. Improved biclustering of microarray data demonstrated 

through systematic performance tests. Comput. Stat. Data Anal. 2005, 48, 235–254. 

30. Matthews, L.; Gopinath, G.; Gillespie, M.; Caudy, M.; Croft, D.; de Bono, B.; Garapati, P.; Hemish, 

J.; Hermjakob, H.; Jassal, B.; et al. REACTOME knowledgebase of human biological pathways 

and processes. Nucleic Acids Res. 2009, 37, D619–D622. 

31. Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B 

Stat. Methodol. 2005, 67, 301–320. 

32. Alam-Faruque, Y.; Dimmer, E.C.; Huntley, R.P.; O’Donovan, C.; Scambler, P.; Apweiler, R.  

The renal gene ontology annotation initiative. Organogenesis 2010, 6, 71–75. 

33. Alam-Faruque, Y.; Hill, D.P.; Dimmer, E.C.; Harris, M.A.; Foulger, R.E.; Tweedie, S.; Attrill, H.; 

Howe, D.G.; Thomas, S.R.; Davidson, D.; et al. Representing Kidney Development Using the Gene 

Ontology. PLoS ONE 2014, 9, e99864. 

34. Baelde, H.J.; Eikmans, M.; Doran, P.P.; Lappin, D.W.P.; de Heer, E.; Bruijn, J.A. Gene expression 

profiling in glomeruli from human kidneys with diabetic nephropathy. Am. J. Kidney Dis. 2004, 43, 

636–650. 

35. Barrell, D.; Dimmer, E.; Huntley, R.P.; Binns, D.; O’Donovan, C.; Apweiler, R. The GOA database 

in 2009—An integrated Gene Ontology Annotation resource. Nucleic Acids Res. 2009, 37,  

D396–D403. 

36. Wada, J.; Makino, H. Inflammation and the pathogenesis of diabetic nephropathy. Clin. Sci. 2013, 

124, 139–152. 



J. Clin. Med. 2015, 4 1516 

 

 

37. Wang, Y.-T.; Tsai, P.-C.; Liao, Y.-C.; Hsu, C.-Y.; Juo, S.-H.H. Circulating microRNAs have a  

sex-specific association with metabolic syndrome. J. Biomed. Sci. 2013, 20, doi:10.1186/1423-

0127-20-72. 

38. Klinge, C.M. Estrogen Regulation of MicroRNA Expression. Curr. Genomics 2009, 10, 169–183. 

39. Ganesan, J.; Ramanujam, D.; Sassi, Y.; Ahles, A.; Jentzsch, C.; Werfel, S.; Leierseder, S.;  

Loyer, X.; Giacca, M.; Zentilin, L.; et al. MiR-378 controls cardiac hypertrophy by combined 

repression of mitogen-activated protein kinase pathway factors. Circulation 2013, 127, 2097–2106. 

40. Costacou, T.; Fried, L.; Ellis, D.; Orchard, T.J. Sex Differences in the Development of Kidney 

Disease in Individuals with Type 1 Diabetes Mellitus: A Contemporary Analysis. Am. J. Kidney Dis. 

2011, 58, 565–573. 

41. Neugarten, J.; Acharya, A.; Silbiger, S.R. Effect of gender on the progression of nondiabetic renal 

disease: A meta-analysis. J. Am. Soc. Nephrol. 2000, 11, 319–329. 

42. Neugarten, J.; Golestaneh, L. Gender and the prevalence and progression of renal disease.  

Adv. Chronic Kidney Dis. 2013, 20, 390–395. 

43. Cattran, D.C.; Reich, H.N.; Beanlands, H.J.; Miller, J.A.; Scholey, J.W.; Troyanov, S.;  

Genes, Gender and Glomerulonephritis Group. The impact of sex in primary glomerulonephritis. 

Nephrol. Dial. Transplant. 2008, 23, 2247–2253. 

44. Hirst, J.A.; Taylor, K.S.; Stevens, R.J.; Blacklock, C.L.; Roberts, N.W.; Pugh, C.W.; Farmer, A.J. 

The impact of renin-angiotensin-aldosterone system inhibitors on Type 1 and Type 2 diabetic 

patients with and without early diabetic nephropathy. Kidney Int. 2012, 81, 674–683. 

45. Hooten, N.N.; Fitzpatrick, M.; Wood, W.H.; De, S.; Ejiogu, N.; Zhang, Y.; Mattison, J.A.;  

Becker, K.G.; Zonderman, A.B.; Evans, M.K.; et al. Age-related changes in microRNA levels in 

serum. Aging 2013, 5, 725–740. 

46. Verzola, D.; Gandolfo, M.T.; Gaetani, G.; Ferraris, A.; Mangerini, R.; Ferrario, F.; Villaggio, B.; 

Gianiorio, F.; Tosetti, F.; Weiss, U.; et al. Accelerated senescence in the kidneys of patients with 

type 2 diabetic nephropathy. Am. J. Physiol. Ren. Physiol. 2008, 295, F1563–F1573. 

47. Wu, J.; Zhang, R.; Torreggiani, M.; Ting, A.; Xiong, H.; Striker, G.E.; Vlassara, H.; Zheng, F. 

Induction of diabetes in aged C57B6 mice results in severe nephropathy: An association with 

oxidative stress, endoplasmic reticulum stress, and inflammation. Am. J. Pathol. 2010, 176,  

2163–2176. 

48. Roscioni, S.S.; Lambers Heerspink, H.J.; de Zeeuw, D. Microalbuminuria: Target for renoprotective 

therapy PRO. Kidney Int. 2014, 86, 40–49. 

49. MacIsaac, R.J.; Ekinci, E.I.; Jerums, G. Progressive diabetic nephropathy. How useful is 

microalbuminuria?: Contra′. Kidney Int. 2014, 86, 50–57. 

50. Glassock, R.J. Is the presence of microalbuminuria a relevant marker of kidney disease?  

Curr. Hypertens. Rep. 2010, 12, 364–368. 

51. Galler, A.; Haberland, H.; Näke, A.; Hofer, S.; Holder, M.; Raile, K.; Holl, R.W. Natural course of 

untreated microalbuminuria in children and adolescents with Type 1 diabetes and the importance of 

diabetes duration and immigrant status: Longitudinal analysis from the prospective nationwide 

German and Austrian diabetes survey DPV. Eur. J. Endocrinol. 2012, 166, 493–501. 



J. Clin. Med. 2015, 4 1517 

 

 

52. Amin, R.; Widmer, B.; Prevost, A.T.; Schwarze, P.; Cooper, J.; Edge, J.; Marcovecchio, L.;  

Neil, A.; Dalton, R.N.; Dunger, D.B.; et al. Risk of microalbuminuria and progression to 

macroalbuminuria in a cohort with childhood onset Type 1 diabetes: Prospective observational 

study. BMJ 2008, 336, 697–701. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


