Risk Factors for Recurrent Fractures in Hip Fracture Patients: A Big Data Analysis of Demographic, Clinical, and Functional Characteristics
Abstract
1. Introduction
2. Methods
2.1. Study Design
2.2. Participants
2.3. Procedure
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CHS | Clalit Health Services |
| SES | Socioeconomic status |
| FIM | Functional Independence Measure |
| ADL | Activities of daily living |
| mFIM | Motor FIM |
| LTC | Long-Term Care |
| AIC | Akaike Information Criterion |
| VIF | Variance inflation factor |
| BH | Benjamini–Hochberg |
| CVA | Cerebrovascular disease |
References
- Melton, L.J. Adverse outcomes of osteoporotic fractures in the general population. J. Bone Miner. Res. 2003, 18, 1139–1141. [Google Scholar] [CrossRef]
- Johnell, O.; Kanis, J.A. An estimate of the worldwide prevalence, mortality and disability associated with hip fracture. Osteoporos. Int. 2004, 15, 897–902. [Google Scholar] [CrossRef]
- Li, L.; Bennett-Brown, K.; Morgan, C.; Dattani, R. Hip fractures. Br. J. Hosp. Med. 2020, 81, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lauritzen, J.B.; McNair, P.A.; Lund, B. Risk factors for hip fractures. A review. Dan. Med. Bull. 1993, 40, 479–485. [Google Scholar] [PubMed]
- Xiao, P.L.; Cui, A.Y.; Hsu, C.J.; Peng, R.; Jiang, N.; Xu, X.H.; Ma, Y.G.; Liu, D.; Lu, H.D. Global, regional prevalence, and risk factors of osteoporosis according to the World Health Organization diagnostic criteria: A systematic review and meta-analysis. Osteoporo. Int. 2022, 33, 2137–2153. [Google Scholar] [CrossRef]
- Perna, A.; Rovere, G.; Passiatore, M.; Franchini, A.; Macchiarola, L.; Maruccia, F.; Vitiello, R.; Gorgoglione, F.L. Crystal ball in a blood’s drop: Unlocking hidden prognostic power in the neutrophil-to-lymphocyte ratio (NLR) and the platelet-to-lymphocyte ratio (PLR) for elderly hip fracture patients. J. Clin. Med. 2025, 14, 3584. [Google Scholar] [CrossRef]
- Ryg, J.; Rejnmark, L.; Overgaard, S.; Brixen, K.; Vestergarrd, P. Hip fracture patients at risk of second hip fracture: A nationwide population-based cohort study of 169,145 cases during 1977–2001. J. Bone Miner. Res. 2009, 24, 1299–1307. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Chen, W.; Sun, T.; Zhang, Q.; Cheng, J.; Zhang, Y. Meta-analysis of risk factors for the second hip fracture (SHF) in elderly patients. Arch. Gerontol. Geriatr. 2014, 59, 1–6. [Google Scholar] [CrossRef]
- Berry, S.D.; Samelson, E.J.; Hannan, M.T.; McLean, R.R.; Lu, M.; Cupples, L.A.; Shaffer, M.L.; Beiser, A.L.; Kelly-Hayes, M.; Kiel, D.P. Second hip fracture in older men and women: The Framingham Study. Arch. Intern. Med. 2007, 167, 1971–1976. [Google Scholar] [CrossRef]
- Colon-Emeric, C.; Kuchibhatla, M.; Pieper, C.; Hawkes, W.; Fredman, L.; Magaziner, J.; Zimmerman, S.; Lyles, K.W.; Zimmerman, S.; Lyles, K.W. The contribution of hip fracture to risk of subsequent fractures: Data from two longitudinal studies. Osteoporos. Int. 2003, 14, 879–883. [Google Scholar] [CrossRef]
- Mitani, S.; Shimizu, M.; Abo, M.; Hagino, H.; Kurozawa, Y. Risk factors for second hip fractures among elderly patients. J. Orthop. Sci. 2010, 15, 192–197. [Google Scholar] [CrossRef]
- Schroder, H.M.; Petersen, K.K.; Erlandsen, M. Occurrence and incidence of the second hip fracture. Clin. Orthop. Rel. Res. 1993, 289, 166–169. [Google Scholar] [CrossRef]
- Egan, M.; Jaglal, S.; Byrne, K.; Wells, J.; Stolee, P. Factors associated with a second hip fracture: A systematic review. Clin. Rehabil. 2008, 22, 272–282. [Google Scholar] [CrossRef]
- Yamanashi, A.; Yamazaki, K.; Kanamori, M.; Mochizuki, K.; Okamoto, S.; Koide, Y.; Kin, K.; Nagano, N. Assessment of risk factors for second hip fractures in Japanese elderly. Osteoporos. Int. 2005, 16, 1239–1246. [Google Scholar] [CrossRef]
- Fu, T.S.; Huang, T.S.; Sun, C.C.; Shyu, Y.-C.; Chen, F.-P. Impact of bisphosphonates and comorbidities on initial hip fracture prognosis. Bone 2022, 154, 116239. [Google Scholar] [CrossRef]
- Chen, Y.J.; Kung, P.T.; Chou, W.Y.; Tsai, W.C. Alendronate medication possession ratio and the risk of second hip fracture: An 11-year population-based cohort study in Taiwan. Osteoporos. Int. 2020, 31, 1555–1563. [Google Scholar] [CrossRef] [PubMed]
- Colón-Emeric, C.S.; Lyles, K.W.; Su, G.; Pieper, C.F.; Magaziner, J.S.; Adachi, J.D.; Bucci-Rechtweg, C.M.; Haentjens, P.; Boonen, S.; HORIZON Recurrent Fracture Trial. Clinical risk factors for recurrent fracture after hip fracture: A prospective study. Calcif. Tissue Int. 2011, 88, 425–441. [Google Scholar] [CrossRef]
- Downey, C.; Flannery, S.; Murphy, B.; Daly, T.; Conway, S.; Gaffar, M.; Dawson, P.; O’Kelly, P.; Collins, D.; Kenny, P.; et al. A multi-site review of second hip fractures across 6 Dublin teaching hospitals. Ir. J. Med. Sci. 2022, 191, 759–764. [Google Scholar] [CrossRef] [PubMed]
- Guy, P.; Sobolev, B.; Sheehan, K.J.; Kuramoto, L.; Lefaivre, K.A. The burden of second hip fractures: Provincial surgical hospitalizations over 15 years. Can. J. Surg. 2017, 60, 101–107. [Google Scholar] [CrossRef]
- Sobolev, B.; Sheehan, K.J.; Kuramoto, L.; Guy, P. Excess mortality associated with second hip fracture. Osteoporos. Int. 2015, 26, 1903–1910. [Google Scholar] [CrossRef] [PubMed]
- Holt, G.; Smith, R.; Duncan, K.; Hutchison, J.D.; Gregori, A.; Reid, D. Outcome after sequential hip fracture in the elderly. J. Bone Joint Surg. Am. 2012, 94, 1801–1808. [Google Scholar] [CrossRef]
- Ottenbacher, K.J.; Mann, W.C.; Granger, C.V.; Tomita, M.; Hurren, D.; Charvat, B. Inter-rater agreement and stability of functional assessment in the community-based elderly. Arch. Phys. Med. Rehabil. 1994, 75, 1297–1301. [Google Scholar] [CrossRef]
- Hamilton, B.B.; Granger, C.V.; Sherwin, F.S.; Zielezny, M.; Tashman, J.S. A uniform national data system for medical rehabilitation. In Rehabilitation Outcomes: Analysis and Measurement; Fuhrer, M.J., Ed.; Paul H Brooks Publishing Co.: Baltimore, MD, USA, 1987; pp. 137–147. [Google Scholar]
- Granger, C.V.; Hamilton, B.B. The Uniform Data System for Medical Rehabilitation report of first admissions for 1992. Am. J. Phys. Med. Rehabil. 1994, 73, 51–55. [Google Scholar] [CrossRef]
- Kronthaler, F.; Zöllner, S. Data Analysis with RStudio. An Easygoing Introduction, 1st ed.; Springer Spectrum: Heidelberg, Germany, 2021. [Google Scholar]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Kutner, M.H.; Nachtsheim, C.J.; Neter, J.; Li, W. Applied Linear Statistical Models, 5th ed.; McGraw-Hill: New York, NY, USA, 2005. [Google Scholar]
- Casella, G.; Berger, R. Statistical Inference, 2nd ed.; CRC Press: New York, NY, USA, 2024. [Google Scholar]
- Dontas, I.A.; Yiannakopoulos, C.K. Risk factors and prevention of osteoporosis-related fractures. J. Musculoskelet. Neuronal. Interact. 2007, 7, 268–272. [Google Scholar]
- Beaupre, L.A.; Jones, C.A.; Saunders, L.D.; Johnston, D.W.C.; Buckingham, J.; Majumdar, S.R. Best practices for elderly hip fracture patients. J. Gen. Intern. Med. 2005, 20, 1019–1025. [Google Scholar] [CrossRef]
- Yuan, Z.C.; Mo, H.; Guan, J.; He, J.-L.; Wu, Z.-J. Risk of hip fracture following stroke, a meta-analysis of 13 cohort studies. Osteoporos. Int. 2016, 27, 2673–2679. [Google Scholar] [CrossRef]
- Ramnemark, A.; Nyberg, L.; Borssén, B.; Olsson, T.; Gustafson, Y. Fractures after stroke. Osteoporos. Int. 1998, 8, 92–95. [Google Scholar] [CrossRef]
- Yeh, H.F.; Shao, J.H.; Li, C.-L.; Wu, C.-C.; Shyu, Y.-I.L. Predictors of postoperative falls in the first and second postoperative years among older hip fracture patients. J. Clin. Nurs. 2017, 26, 3710–3723. [Google Scholar] [CrossRef] [PubMed]
- Kvelde, T.; Lord, S.R.; Close, J.C.; Reppermund, S.; Kochan, N.A.; Sachdev, P.; Brodaty, H.; Delbaere, K. Depressive symptoms increase fall risk in older people, independent of antidepressant use, and reduced executive and physical functioning. Arch. Gerontol. Geriatr. 2015, 60, 190–195. [Google Scholar] [CrossRef]
- Shtar, G.; Rokach, L.; Shapira, B.; Nissan, R.; Hershkovitz, A. Using machine learning to predict rehabilitation outcomes in postacute hip fracture patients. Arch. Phys. Med. Rehabil. 2021, 102, 386–394. [Google Scholar] [CrossRef]
- Chen, M.; Du, Y.; Tang, W.; Yu, W.; Li, H.; Zheng, S.; Cheng, Q. Risk factors of mortality and second fracture after elderly hip fracture surgery in Shanghai, China. J. Bone Miner. Metab. 2022, 40, 951–959. [Google Scholar] [CrossRef]
- Pioli, G.; Barone, A.; Giusti, A.; Oliveri, M.; Pizzonia, M.; Razzano, M.; Palummeri, E. Predictors of mortality after hip fracture: Results from 1-year follow-up. Aging Clin. Exp. Res. 2006, 18, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Hershkovitz, A.; Kalandariov, Z.; Hermush, V.; Weiss, R.; Brill, S. Factors affecting short-term rehabilitation outcomes of disabled elderly patients with proximal hip fracture. Arch. Phys. Med. Rehabil. 2007, 88, 916–921. [Google Scholar] [CrossRef] [PubMed]
- Ioannidis, I.; Mohammad Ismail, A.; Forssten, M.P.; Ahl, R.; Cao, Y.; Borg, T.; Mohseni, S. The mortality burden in patients with hip fractures and dementia. Eur. J. Trauma Emerg. Surg. 2022, 48, 2919–2925. [Google Scholar] [CrossRef] [PubMed]
- Jorissen, R.N.; Inacio, M.C.; Cations, M.; Lang, C.; Caughey Crotty, M. effect of dementia on outcomes after surgically treated hip fracture in older adults. J. Arthroplast. 2021, 36, 3181–3186.e4. [Google Scholar] [CrossRef]
| Characteristics | Patients with a Single Hip Fracture (n = 23,027) | Patients with a Recurrent Fracture Following an Initial Hip Fracture (n = 17,364) | *,§ p-Value |
|---|---|---|---|
| Demographic characteristics | |||
| Age at first fracture (Mean, SD) | 83.0 ± 8.2 | 80.3 ± 7.9 | <0.001 |
| Males (n, %) | 8491 (36.9%) | 5079 (29.3%) | <0.001 |
| Socio-economic 5-score (Mean, SD) | 2.5 ± 1.34 | 2.6 ± 0.87 | 0.978 |
| Clinical characteristics | |||
| BMI at first fracture (Mean, SD) µ | 26.1 ± 5.2 | 26.5 ± 5.2 | <0.001 |
| Albumin level at first fracture (Mean gr%, SD) µ | 3.4 ± 0.5 | 3.5 ± 0.5 | <0.001 |
| Osteoporosis diagnosis after the first fracture (n, %) | 10,450 (45.4) | 12,398 (71.4) | <0.001 |
| Ischemic heart disease (n, %) | 6214 (27.0) | 4244 (24.4) | <0.001 |
| Congestive heart failure (n, %) | 6653 (28.9) | 4874 (28.1) | 0.072 |
| Diabetes mellitus (n, %) | 8619 (37.4) | 6558 (37.8) | 0.518 |
| Hypertension (n, %) | 16,155 (69.1) | 12,006 (70.2) | 0.029 |
| Cerebrovascular disease (n, %) | 3325 (14.4) | 3152 (18.2) | <0.001 |
| Respiratory disease (n, %) | 3815 (16.6) | 2977 (17.1) | 0.128 |
| Dementia (n, %) | 2355 (10.2) | 1637 (9.4) | 0.008 |
| Depression (n, %) | 8295 (36.0) | 7217 (41.6) | <0.001 |
| Medication dispensation amount | |||
| Anti-depressants (M, SD) | 2.8 ± 5.4 | 3.7 ± 6.1 | <0.001 |
| Anti-psychotics (M, SD) | 0.7 ± 2.8 | 0.5 ± 2.6 | <0.001 |
| Hypnotics and sedatives (M, SD) | 2.4 ± 4.6 | 3.1 ± 5.2 | <0.001 |
| Osteoporosis medications (M, SD) | 0.5 ± 2.0 | 1.2 ± 2.7 | <0.001 |
| Functional characteristics | |||
| FIM score at first fracture (M, SD) µ | 57.2 ± 26.5 | 63.6 ± 27.0 | <0.001 |
| Deceased (n, %) | 14,054 (61.0) | 6666 (38.9) | <0.001 |
| Mean age at death (M, SD) µ | 86.5 ± 7.9 | 86.4 ± 8.2 | 0.514 |
| Insurance aid scores (M, SD) µ | 7.5 ± 2.8 | 6.9 ± 2.7 | <0.001 |
| Anatomic Region of Recurrent Fractures\Characteristics | Pelvis | Vertebrae | Hip | Other µ | * p-Value |
|---|---|---|---|---|---|
| Demographic characteristics | |||||
| Frequency (n, % of total) | 4312 (17.1) | 2558 (10.1) | 11,234 (44.5) | 7134 (28.3) | <0.001 |
| Male (n, % of group type) | 1129 (26.2) | 621 (24.3) | 3436 (30.6) | 1747 (24.5) | <0.001 |
| Mean age (SD) § | 80.8 ± 7.7 | 80.5 ± 7.5 | 79 ± 7.6 | 80.1 ± 8.0 | <0.001 |
| Socio-economic score | 2.5 (1.3) | 2.5 (1.3) | 2.6 (1.3) | 2.5 (1.3) | 0.219 |
| Clinical characteristics | |||||
| BMI (kg/ht2, SD) §,β | 26.1 ± 4.9 | 26.1 ± 4.9 | 26.5 ± 5.1 | 26.8 ± 5.4 | <0.001 |
| Albumin level (gr%, SD) §,β | 3.5 ± 0.5 | 3.5 ± 0.5 | 3.6 ± 0.5 | 3.5 ± 0.5 | <0.001 |
| Osteoporosis diagnosis (n, %) § | 3169 (73.5) | 2022 (79.0) | 8655 (77.0) | 4857 (68.1) | <0.001 |
| Ischemic heart disease (n, %) | 1331 (30.9) | 787 (30.8) | 3099 (27.6) | 2015 (28.2) | 0.898 |
| Congestive heart failure (n, %) | 204 (4.7) | 114 (4.5) | 533 (4.7) | 361 (5.1) | <0.001 |
| Diabetes mellitus (n, %) | 71 (1.6) | 29 (1.1) | 163 (1.5) | 116 (1.6) | 0.273 |
| Hypertension (n, %) | 1600 (37.1) | 934 (36.5) | 4220 (37.6) | 2748 (38.5) | 0.039 |
| Cerebrovascular disease (n, %) | 841 (19.5) | 496 (19.4) | 2080 (18.5) | 1301 (18.2) | 0.271 |
| Respiratory disease (n, %) | 3033 (70.3) | 1776 (69.4) | 7675 (68.3) | 4985 (69.9) | <0.001 |
| Dementia (n, %) | 410 (9.5) | 241 (9.4) | 1011 (9.0) | 707 (9.9) | 0.225 |
| Depression (n, %) | 2008 (46.6) | 1225 (47.9) | 4687 (41.7) | 3026 (42.4) | <0.001 |
Medication | |||||
| Anti-depressants (M, SD) | 4.2 ± 6.4 | 4.3 ± 6.4 | 3.7 ± 6.1 | 3.7 ± 3.7 | <0.001 |
| Anti-psychotics (M, SD) | 0.46 ± 2.4 | 0.52 ± 2.7 | 0.46 ± 2.4 | 0.5 ± 2.5 | 0.387 |
| Hypnotics and sedatives (M, SD) | 3.52 ± 5.5 | 3.59 ± 5.5 | 3.1 ± 5.2 | 3.1 ± 5.1 | <0.001 |
| Osteoporosis medications (M, SD) | 1.4 ± 3 | 1.5 ± 3 | 1.3 ± 1.4 | 1.2 ± 2.8 | <0.001 |
| Functional characteristics | |||||
| FIM score at first fracture β | 65.15 ± 25.1 | 64.24 ± 24.7 | 65.09 ± 27.4 | 64.13 ± 27 | 0.074 |
| Deceased (n, %) | 1649 (38.2) | 964 (37.7) | 3891 (34.6) | 2873 (40.3) | <0.001 |
| Mean age at death (M, SD) β | 86.47 ± 7.4 | 86.12 ± 7.3 | 86.42 ± 7.5 | 86.21 ± 7.8 | 0.417 |
| Insurance aid scores (M, SD) β | 7.07 ± 2.6 | 7.07 ± 2.6 | 6.8 ± 2.7 | 7.01 ± 2.7 | 0.004 |
| Predictors | Odds Ratio | Β | z-Value [95% CI] | p-Value |
|---|---|---|---|---|
| (Intercept) | 6.326 | 1.845 | 4.21 | <0.001 |
| Age * | 0.960 | −0.040 | −9.71 | <0.001 |
| Gender (Male) | 0.861 | −0.149 | −2.206 | 0.027 |
| Albumin Level * | 1.132 | 0.124 | 1.96 | 0.051 |
| Cerebrovascular Disease | 1.163 | 0.151 | 2.07 | 0.038 |
| Osteoporosis * | 2.144 | 0.763 | 10.10 | <0.001 |
| Depression | 1.232 | 0.209 | 0.33 | <0.001 |
| Dementia | 0.870 | −0.140 | −1.63 | 0.102 |
| FIM scores | 1.01 | 0.007 | 6.20 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hershkovitz, A.; Maydan, G.; Kornyukov, N.; Itzhaky, Y. Risk Factors for Recurrent Fractures in Hip Fracture Patients: A Big Data Analysis of Demographic, Clinical, and Functional Characteristics. J. Clin. Med. 2025, 14, 8495. https://doi.org/10.3390/jcm14238495
Hershkovitz A, Maydan G, Kornyukov N, Itzhaky Y. Risk Factors for Recurrent Fractures in Hip Fracture Patients: A Big Data Analysis of Demographic, Clinical, and Functional Characteristics. Journal of Clinical Medicine. 2025; 14(23):8495. https://doi.org/10.3390/jcm14238495
Chicago/Turabian StyleHershkovitz, Avital, Gal Maydan, Natalia Kornyukov, and Yarden Itzhaky. 2025. "Risk Factors for Recurrent Fractures in Hip Fracture Patients: A Big Data Analysis of Demographic, Clinical, and Functional Characteristics" Journal of Clinical Medicine 14, no. 23: 8495. https://doi.org/10.3390/jcm14238495
APA StyleHershkovitz, A., Maydan, G., Kornyukov, N., & Itzhaky, Y. (2025). Risk Factors for Recurrent Fractures in Hip Fracture Patients: A Big Data Analysis of Demographic, Clinical, and Functional Characteristics. Journal of Clinical Medicine, 14(23), 8495. https://doi.org/10.3390/jcm14238495
