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Abstract

Background: Deep learning (DL) models using Holter-ECG may enhance risk stratifi-
cation after heart failure (HF) or myocardial infarction (MI). Objective: To evaluate the
prognostic performance of a Holter-based DL model for predicting major adverse cardiac
events (MACE), compared with conventional noninvasive markers. Methods: In the K-
REDEFINE study, 1108 patients with acute MI or HF underwent 24 h Holter monitoring. A
DL model was trained using raw Holter-ECG data and tested for predicting a composite
of cardiac death and ventricular arrhythmias. Its performance was compared with heart
rate turbulence (HRT), T-wave alternans (TWA), and ejection fraction (EF). Results: Dur-
ing follow-up, 56 adjudicated cardiac deaths (1.18%/yr) and 21 ventricular arrhythmias
(0.44% /yr) occurred. The DL model showed an area under the receiver operating charac-
teristic curve (AUROC) of 0.74 (95% CI, 0.70-0.77) for the composite outcome, improving
to 0.77 (0.74-0.81) when combined with EF. In comparison, HRT and TWA showed lower
AUROC:s of 0.62 and 0.55, respectively. For cardiac death alone, the AUROC reached 0.79,
further improving to 0.82 with EF. Model-derived risk stratification revealed a seven-fold
increase in cardiac death risk in the high-risk group compared to the low-risk group (HR
7.47,95% CI 2.24-24.96, p < 0.001). This stratification remained particularly effective in pa-
tients with EF > 40%. Conclusions: A DL algorithm trained on single-lead Holter-ECG data
effectively predicted cardiac death and ventricular arrhythmia. Its performance surpassed
conventional markers and was further enhanced when integrated with EF, supporting its
potential for noninvasive, scalable risk stratification.

Keywords: heart failure; myocardial infarction; cardiac death; ventricular arrhythmia; deep
learning; ejection fraction; heart rate turbulence; T-wave alternans

1. Introduction

Heart failure (HF) and myocardial infarction (MI) are leading causes of major ad-
verse cardiac events (MACE), including ventricular arrhythmias and cardiac death [1,2].
Although severe left ventricular (LV) dysfunction remains the primary indication for pro-
phylactic implantable cardioverter-defibrillator (ICD) therapy, many sudden cardiac deaths
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(SCD) still occur in patients with preserved or mildly reduced LV systolic function [3]. This
highlights the need for improved, noninvasive risk stratification tools beyond conventional
ejection fraction (EF)-based criteria.

Recent advances in machine learning (ML) have shown promise in various aspects
of HF management, including diagnosis, phenomapping, and prognostication. Artificial
intelligence (Al)-driven risk prediction models based on heart rate variability and electro-
cardiogram (ECG) data have been proposed for prognostic use in HF populations [4]. In
acute HF (AHF) patients, the deep learning (DL)-based Al algorithm integrates echocar-
diographic, laboratory, and ECG data to estimate both in-hospital and long-term mortality
more accurately than the existing risk scores [5]. Similarly, the MARKER-HF risk score,
developed from various clinical and laboratory variables, has demonstrated utility in
stratifying mortality risk among HF patients [6].

However, the clinical applicability and performance of many existing models are
limited by their dependence on a large number of input features, retrospective data sources,
and associated challenges such as lots of missing values and heterogeneity (e.g., lots
of outliers).

The K-REDEFINE (Korean noninvasive Risk Evaluation study for sudden cardiac
DEath From INfarction or heart failurE) is a prospective, nationwide multicenter registry
study designed to assess the predictive value of Holter-based noninvasive variables, such
as heart rate turbulence (HRT) and T-wave alternans (TWA) in patients with HF or ML
Building on our previous findings that abnormal HRT predicts adverse outcomes, including
cardiac outcomes [7], the present study aimed to investigate whether a DL algorithm trained
on 24 h Holter-ECG data could predict MACE, and to compare its performance against
conventional noninvasive markers in a well-characterized prospective cohort.

2. Methods
2.1. Study Population

This study used data from the K-REDEFINE study cohort, which is a prospective,
multi-center, observational registry conducted at 25 tertiary cardiovascular centers across
South Korea. The study’s design and specific details, including acquisition and analysis
of ambulatory ECG data, have been previously described [7,8]. Eligible participants were
adult patients (>19 years) hospitalized for acute MI or acute HF between September
2015 to December 2019. Individuals with persistent or permanent atrial fibrillation, those
dependent on ventricular pacing, patients with an estimated survival of less than one year,
or those diagnosed with end-stage renal disease were not considered eligible for inclusion
in this study. Additionally, patients were excluded if their Holter-ECG raw data could not
be successfully extracted in MIT format for DL-based analysis. All patients underwent 24 h
ambulatory ECG monitoring within 3 months of hospitalization and were in sinus rhythm
at the time of enrollment. Holter recordings were obtained using a 2 or 3-lead SEER Light
Digital Holter monitor (GE Healthcare Inc., Milwaukee, WI, USA) with a sampling rate
of 125 Hz. Raw wave signals were exported in MIT format using the MARS 8000 Holter
analysis system (GE Healthcare Inc., Milwaukee, WI, USA) for further analysis. This study
protocol was approved by the Institutional Review Board (IRB) of Samsung Medical Center
in the Republic of Korea (IRB number: 2015-08-086), and written informed consent was
obtained from all participants.

2.2. Data Collection

Data collection was prospectively performed by attending physicians using a web-
based electronic case report form at each participating center. Raw Holter data were
transferred to the core laboratory (Samsung Medical Center), where they underwent
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standardized analysis protocols as previously described [7,8]. For the present deep learning
analysis, an additional data conversion pipeline into MIT format was implemented to
ensure uniform data structure across centers and to minimize noise-related variability.

2.3. Overview of the AI Model

The intrinsic characteristics of Holter recordings pose unique challenges for deep
learning applications. In particular, the extensive duration of ECG recordings from Holter
monitors often makes them impractical for deep learning processing, as most existing
neural network architectures are not designed to handle such lengthy data. Additionally,
the limited availability of data samples, due to the challenges of Holter monitoring, further
complicates the training of deep neural networks, which typically require large datasets to
learn effectively. To address these limitations, we utilized a pretrained Transformer model
trained on an internal dataset at VUNO Inc [9,10]. With the pretrained Transformer, ex-
tremely lengthy Holter-ECG signals were encoded into latent vectors with greatly reduced
dimension, suitable for downstream analysis. Specifically, the pretraining was performed
in two steps. First, we pretrained the Masked Autoencoder (MAE) using standard 12-lead,
10 s ECGs, with random masks applied to ECG waveforms [11]. Subsequently, the MAE
was fine-tuned using supervised learning with left ventricular ejection fraction (LVEF)
as a surrogate label, based on its utility as an indicator of global cardiac function. From
the dataset used for the MAE pretraining (a standard 12-lead, 10 s ECGs), the middle 9 s
window ECG signals were taken for pretraining. In addition, to enhance generalizabil-
ity, we trained a single-lead model by randomly selecting the input lead during training,
considering that the lead positions of the Holter monitor slightly differ from the standard
12-lead ECG. With this encoder, we divided 24 h Holter-ECG into 9600 non-overlapping 9 s
segments, with each segment encoded into a single latent value, obtaining size 9600 latent
vectors per patient. For the cases where the Holter-ECG recording is longer or shorter than
24 h, we encode them as is, obtaining a latent vector that slightly differs in size. During
training, the latent vectors are zero-padded to the longest vector for efficient batching. We
utilized only the V1 (mV1) lead because the V1 lead was always used for Holter recording
in all participating centers.

After we encoded all the Holter-ECGs, we trained a downstream classifier with our
aimed outcomes as labels. The downstream classifier was a compact 1-D ResNet operating
on the feature sequence output by the pretrained Transformer [12]. The network employed
an initial 7 x 1 convolutional layer, followed by BatchNorm, ReLU, a 3 x 1 max-pooling
layer, and four residual stages, each consisting of one BasicBlock with channel widths of
[64, 128, 256, 512]. Each BasicBlock comprised two 3 x 1 convolutions with BatchNorm
followed by ReLU. After the residual blocks, global average pooling and dropout (p = 0.2)
are applied before feeding the output into a fully connected layer for prediction. The
ResNet was trained using the Adam optimizer with a learning rate of 0.002 and a batch
size of 8, with a separate validation set used to determine convergence. Additionally,
Holter signals were converted from MIT format and band-pass filtered (0.67-40 Hz) before
Transformer encoding.

Model performance was evaluated using five-fold cross-validation due to the limited
dataset size. To mitigate overfitting, given the modest number of labeled outcome events,
outcome-supervised training was restricted to a lightweight classifier operating on low-
dimensional latent vectors, with all parameters of the pretrained encoder fixed, and patient-
wise five-fold cross-validation employed to ensure stability.

LVEF values were also used during prediction when available. When combining
LVEEF values with the probability scores predicted by the neural network, we categorized
patients into three LVEF bins: HFrEF (<40%, a normalized risk score = 1), HFmrEF (41-49%,
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score = 0.1), and HFpEF (>50% or missing, score = 0). The final risk score is then computed
as the average of the probability score from the deep neural network and the normalized
risk score value computed from the LVEF values.

2.4. Study Outcomes

The primary outcome of the study was the composite of cardiac death and ventricular
arrhythmias occurring during a 3-year follow-up period. All deaths were considered to be
noncardiac unless a definitive cardiac cause could be identified. Ventricular tachyarrhyth-
mia included documented cases of ventricular fibrillation and ventricular tachycardia that
resulted in SCD or aborted SCD. In patients with an ICD, it also encompassed appropriate
ICD shocks or antitachycardia therapy. SCD was defined as unexpected death due to
cardiac causes that occurs within a short time period (within 1 h of symptom onset or
unwitnessed death during sleep) [7,8]. The predictive performance of the DL model was
evaluated with respect to this composite outcome and compared against conventional non-
invasive parameters, including HRT, TWA, and LVEF. We also assessed the performance of
the DL model in combination with LVEF.

Pre-specified subgroup analyses were conducted according to baseline LV systolic
function, categorized as preserved or mid-range EF (>40%) versus reduced EF (<40%), as
well as by underlying condition (HF versus MI).

2.5. Statistical Analysis

Continuous variables are presented as mean values with corresponding 95% confi-
dence intervals (Cls), while categorical variables are expressed as counts and percentages.
Group comparisons were performed using the Mann-Whitney U test for continuous vari-
ables and Fisher’s exact test for categorical variables, as appropriate.

The discriminative performance of the DL model and comparator variables was
evaluated by calculating the area under the curve (AUC) using the receiver operating
characteristic (ROC) curve. All statistical analyses were conducted using SPSS software,
version 27.0 (SPSS Inc., Chicago, IL, USA).

3. Results
3.1. Clinical Characteristics

A total of 1108 patients were included in the analysis. This number was slightly lower
than in our previous report of the K-REDEFINE cohort (n = 1116), because Holter-ECG
raw data from 8 patients could not be successfully extracted into the MIT format required
for the deep learning analysis [7]. The mean age was 60.8 &+ 12.9 years, and 844 patients
(76.2%) were male. Among the cohort, 223 patients (20.1%) were enrolled for acute HF, and
885 (79.9%) for acute MI. The mean interval between the index event (HF or MI) and 24 h
ambulatory ECG recording was 6.8 & 16.5 days. The average duration of Holter monitoring
was 1860.9 min, yielding a total of 13,746,135 ECG segments for the analysis.

The mean LVEF was 48.2 £ 16.7%. Based on the pre-specified categories, 529 patients
(47.7%) had preserved EF (>50%), 291 (26.3%) had mid-range EF (41-49%), and 258 (23.3%)
had reduced EF (<40%). Additional baseline characteristics are summarized in Table 1 and
have been reported previously [7].

Table 1. Clinical characteristics of the study population.

Total (n = 1108)

Age [years], mean(SD) 60.8 £12.9
Gender, male (%) 844 (76.2)
Body weight [kg], mean (SD) 67.2+13.5
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A. All patients

Table 1. Cont.

Total (n =1108)

BMI, mean (SD) 24.8 +13.8
Medical history, n (%)
Hypertension 606 (54.7)
Stroke 69 (6.2)
Diabetes 327 (29.5)
Vascular disease 128 (11.6)
CKD 74 (6.7)
EF [%], mean (SD) 482 +16.7
HFpEF 529 (47.7%)
HFmrEF 291 (26.3%)
HFrEF 258 (23.3%)

SD: standard deviation, BMI: body mass index, CKD: chronic kidney disease, EF: ejection fraction, HFpEF: heart
failure preserved ejection fraction, HFmrEF: heart failure mildly reduced ejection fraction, HFrEF: heart failure
reduced ejection fraction.

3.2. Clinical Events and Predictive Performance

During follow-up, 56 cardiac deaths (1.18%/yr) and 21 ventricular arrhythmias
(0.44%/yr) occurred, with a total of 70 patients (1.48%/yr) experiencing the composite end-
point. Of the 56 cardiac deaths observed, 19 were classified as SCD. In addition, 12 patients
experienced aborted SCD events—9 due to ventricular fibrillation and 3 due to ventricular
tachycardia—that were successfully resuscitated by cardiopulmonary resuscitation. A total
of 25 patients underwent defibrillator implantation, including 17 with an ICD and 8 with a
cardiac resynchronization therapy-defibrillator. Among these, 4 patients received a total
of 9 appropriate ICD shock therapies. Notably, the number of patients with ventricular
tachyarrhythmias in the present analysis (n = 21) was slightly lower compared with our
previous report (n = 23), owing to the exclusion of two patients whose Holter-ECG data
could not be processed in MIT format [7].

For predicting the composite outcome at 3 years, the DL model achieved an AUROC
of 0.74 (95% CI, 0.70-0.77), with high specificity (0.96) but modest sensitivity (0.27). The
corresponding positive likelihood ratio was 6.8, and the negative likelihood ratio was
0.76. When combined with LVEF, performance improved further (AUROC 0.77, 95% CI,
0.74-0.81). In contrast, traditional Holter-based markers showed lower discriminative
ability (HRT with 0.62 [0.59-0.64] and TWA with 0.55 [0.47-0.63]), while LVEF alone
performed at 0.75 (0.67-0.82) (Figure 1A, Table 2).

C. Patients with HF

= TWA (AUC = 0.55 (0.47 - 0.63])) 024

~— LVEF (AUC = 0.75 [0.67 - 0.82])
— DL (AUC = 0,74 [0.70- 0,77))
—— DL + LVEF (AUC = 0.77 (0.74 - 0.81])

B. Patients with Ml

10

// 084

1.0 4

— TWA (AUC = 0.58[0.42 - 0.75]) 024
HRT (AUC = 052 (0.41 - 0.63])

—— LVEF (AUC = 0.72 [0.62 - 0.82))

== DL (AUC = 0.65 [0.57 - 0.73])

—— DL + LVEF (AUC = 0,75 [0.67 - 0.84])

= TWA (AUC = 0.41 [0.36 - 0.46])
HRT (AUC = 0.60 [0.52 - 0.68])

= LVEF (AUC = 0.55 [0.45 - 0.65])

—— DL (AUC = 0.60 [0.53 - 0.68])

—— DL + LVEF (AUC = 0.58 [0.56 - 0.60])}

HRT (AUC = 0.62 [0.59 - 0.64])
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Figure 1. Receiver operating characteristic curves for the performance of the Al model and other
variables for the composite of cardiac death and ventricular arrhythmia. (A) Total population (B) MI
population (C) HF population.
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Table 2. Performance evaluation of our artificial intelligence model for composite of cardiac death
and ventricular arrhythmias.

Sensitivity ~ Specificity PPV NPV F1 Score
DL model 0.27 0.96 0.30 0.96 0.23
(0.09-0.46)  (0.93-0.99)  (0.20-0.40)  (0.95-0.97)  (0.16-0.31)
. 0.36 0.92 0.19 0.97 0.25
DLWthEF 07 046)  (091-094)  (0.15-024)  (0.96-0.97)  (0.19-0.31)
- 0.26 0.94 0.16 0.96 0.20

(0.11-042)  (0.91-097)  (0.06-026)  (0.96-0.97)  (0.08-0.31)

DL, deep learning; EF, ejection fraction; PPV, positive predictive value; NPV, negative predictive value.

Subgroup analyses revealed consistent trends. In patients with MI, the DL model
alone reached an AUROC of 0.65 (0.57-0.73), which improved to 0.75 (0.67-0.84) with EF.
HRT and TWA were inferior (0.52 [0.41-0.63] and 0.58 [0.42-0.75], respectively), while LVEF
alone performed at 0.72 (0.62-0.82) (Figure 1B). In the HF subgroup, DL yielded an AUROC
of 0.60 (0.53-0.68), similar to HRT (0.60 [0.52-0.68]), and better than TWA (0.41 [0.36-0.46])
or LVEF (0.55 [0.45-0.65]); however, the combination of DL and LVEF showed minimal
additive value (0.58 [0.56-0.60]) (Figure 1C).

When focusing on cardiac death alone, the DL model demonstrated stronger predictive
power (AUROC 0.79 [0.74-0.84], specificity 0.95, sensitivity 0.38), further increasing to 0.82
(0.74-0.90) with LVEF (Figure 2A, Table 3). Again, DL outperformed HRT (0.61 [0.52-0.69]),
TWA (0.59 [0.52-0.66]), and LVEF (0.73 [0.60-0.85]). This pattern was similar across MI
and HF subpopulations, with DL combined with LVEF consistently showing the best
performance (Figure 2B,C).

A. All patients B. Patients with Ml C. Patients with HF

10

; AR =Vi|N

—— TWA (AUG = 0.59 [0.52 - 0.66])
HRT (AUC = 061 [0.52 - 0.69))
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— DL (AUC=0.79 [0.74 - 0.84])

= DL + LVEF (AUC = 0.82[0.74 - 0.90])

—— TWA (AUC = 0.46 [0.35 - 0.57))
HRT (AUC = 0.58 [0.47 - 0.70])
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—— DL + LVEF (AUC = 0.63 [0.49 - 0.77])
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Figure 2. Receiver operating characteristic curves for the performance of the Al model and other
variables for cardiac death. (A) Total population (B) MI population (C) HF population.

Table 3. Performance evaluation of our artificial intelligence model for cardiac death.

Sensitivity ~ Specificity PPV NPV F1 Score
DL model 0.38 0.95 0.24 0.98 0.27
(0.25-0.51) (0.93-0.97) (0.19-0.29) (0.97-0.98) (0.21-0.32)
. 0.44 0.96 0.31 0.98 0.32
DL with EF (0.28-0.61) (0.94-0.98) (0.22-0.40) (0.97-0.99) (0.26-0.38)
EF 0.30 0.93 0.12 0.97 0.17

(0.17-0.44)  (0.91-0.94)  (0.08-0.15)  (0.97-0.98)  (0.11-0.22)

DL, deep learning; EF, ejection fraction; PPV, positive predictive value; NPV, negative predictive value.
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Importantly, subgroup analysis by baseline LVEF revealed superior performance of the
DL model in patients with preserved or mid-range EF [AUROC 0.68 (0.58-0.78)] compared
to those with severely reduced EF [AUROC 0.60 (0.54-0.66)], highlighting its particular
value in less advanced systolic dysfunction (Figure 3).

[v) 0
A. LVEF £40% B. LVEF > 40%
1.0 | 1.0
0.8 0.8
0.6 0.6
z F
z z
Z ]
] g
0 N
0.4 4 0.4 L
0.2 4 TWA (AUC = 0.53 [0.45 - 0.60]) 0.2 o — TWA (AUC = 0.56 [0.32 - 0.80])
HRT (AUC = 0.60 [0.57 - 0.62]) HRT (AUC = 0.55 [0.43 - 0.67])
— LVEF {AUC = 0.53 [0.39 - 0.66]) '.” — |WVEF {AUC = 0.65 [0.48 - 0.83])
= DL (AUC = 0.60 [0.54 - 0.66]) e = DL (AUC = 0.68 [0.58 - 0.78])
— DL + LVEF (AUC = 0.58 [0.51 - 0.64]) 4 = DL + LVEF (AUC = 0.69 [0.60 - 0.78])
D 0 T T T T T T D O 1 T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
1 - Specificity 1 - Specificity

Figure 3. Receiver operating characteristic curves for the performance of the Al model and other
variables for composite of cardiac death and ventricular arrhythmia. (A) severely reduced left
ventricular ejection fraction (B) preserved or mid-range reduced left ventricular ejection fraction.

In an exploratory analysis, the presence of NSVT during 24 h Holter monitoring was
also evaluated as a conventional marker alongside HRT and TWA. NSVT was observed in
56 patients (4.8%) and demonstrated low predictive performance for composite outcomes
(sensitivity 0.06, specificity 0.95) and was not significantly associated with cardiac death
(adjusted HR 1.47, 95% CI 0.53-4.08) (Supplementary Tables S1 and S2). By contrast,
abnormal HRT was strongly associated with cardiac death (adjusted HR 3.27, 95% CI
1.81-5.90), whereas abnormal TWA showed a weaker, non-significant trend (adjusted HR
1.60, We changed the figure. 95% CI 0.94-2.73). Notably, patients classified as high risk by
the DL-based score had a markedly increased risk (adjusted HR 7.31, 95% CI 2.19-24.47).

3.3. Hazard Across Model Probability Risks

In our cohort, patients were stratified into three groups according to the model-derived
probability of cardiac death: low-risk (<0.3), intermediate-risk (0.3-0.6), and high-risk
(>0.6). As shown in Figure 4, Kaplan—-Meier analysis revealed significant differences in
survival among the groups (log-rank p < 0.001). Patients in the high-risk group had a
substantially increased risk of cardiac death compared to those in the low-risk group
(hazard ratio [HR] 7.47, 95% confidence interval [CI] 2.24-24.96).

Subgroup analysis by baseline LVEF showed a significant difference in survival be-
tween risk groups in patients with LVEF > 40% (log-rank p = 0.039), but not in those with
LVEF < 40% (log-rank p = 0.552).
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Figure 4. Kaplan-Meier curve according to the risk group for cardiac death (A) Total popula-
tion (B) preserved or mid-range reduced left ventricular ejection fraction (C) severely reduced left
ventricular ejection fraction (Blue indicates low-risk, green indicates intermediate-risk, and yellow
indicates high-risk group).

4. Discussion

In this study, we investigated the prognostic performance of a DL-based Al algorithm
trained on 24 h Holter-ECG data to predict cardiac death and ventricular arrhythmia leading
to aborted SCD. The DL model outperformed conventional Holter-based markers such as
TWA and HRT, and its predictive performance was further enhanced when combined with
LVEF. These findings are particularly notable given the prospective design of the cohort
and the rigorous adjudication of clinical outcomes.

The model’s predictive power was most evident for cardiac death, with an AUROC of
0.79 (increasing to 0.82 with LVEF), suggesting its potential clinical utility. Risk stratification
based on model-derived probabilities revealed a seven-fold increase in cardiac death risk
in the high-risk group compared to the low-risk group. Importantly, this stratification
remained consistent across etiologies of HF, showing improved discrimination particularly
in patients with ischemic HF, and in those with preserved or mid-range EF, where traditional
EF-based assessment alone is known to perform suboptimally.

4.1. Challenges in Risk Stratification for Sudden Cardiac Death

SCD is one of the leading causes of death in both ischemic and non-ischemic cardiomy-
opathy. However, effective risk stratification remains limited [13]. Current guidelines
recommend ICD therapy primarily in patients with ischemic HF and reduced EF [14],
based on evidence of mortality reduction [15]. Nevertheless, a recent study using pooled
cohort analysis involving over 140,000 post-MI patients showed that LVEF alone had poor
predictive power for SCD. Moreover, incorporating additional clinical variables such as
demographics, medical history, biomarkers, ECG, echocardiography, or cardiac magnetic
resonance imaging did not meaningfully improve the predictive performance [16]. In this
context, the PRESERVE-EF study proposed a two-step strategy in which noninvasive risk
factors are used to guide programmed ventricular stimulation (PES) for arrhythmic risk
stratification in post-MI patients with preserved EF, representing an important benchmark
in primary prevention SCD research [17]. However, this approach remains invasive, re-
quires specialized facilities and expertise, and is not easily repeatable for longitudinal
monitoring. Patient acceptance may also be limited, and its predictive performance in
certain subgroups—such as those with non-ischemic cardiomyopathy—remains uncertain.
In contrast, our DL-based algorithm offers potential complementary value, although our
study did not include PES data and thus could not directly compare our approach with this
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strategy. Specifically, it enables fully noninvasive, repeatable risk assessment by analyzing
continuous 24 h Holter-ECG data, allowing large-scale screening without procedural risk.
This noninvasive nature may facilitate broader clinical application, particularly in settings
where PES is not readily available or feasible. Further prospective studies directly compar-
ing DL-based risk stratification with PES-guided approaches are warranted to clarify their
relative and combined value in clinical practice.

In non-ischemic cardiomyopathy, the role of ICD for primary prevention is even more
controversial [18,19]. Risk stratification in this population is complicated by heterogeneity
of pathophysiologic mechanisms and clinical phenotype, such as gene mutation (e.g.,
LMNA) or infiltrative disorders (e.g., sarcoidosis) [20], which challenge the development
of universal management strategies, as demonstrated by limitations of relying upon EF for
risk assessment [19,21]. This challenge is further compounded by the fact that the absolute
number of SCD cases is higher in patients with mildly reduced or preserved EF than in
those with severely reduced EF.

4.2. Personalized Risk Prediction Using Deep Learning

Given these limitations of conventional risk stratification, there is an unmet need
for more individualized approaches to risk stratification, particularly in patients with
non-ischemic HF and those with preserved or mid-range EF. In response to this growing
demand, Al research has been increasing in this patient group. Building on this momen-
tum, recent advances in ML and Al have enabled the extraction of predictive patterns
from complex cardiovascular datasets, often surpassing conventional statistical models in
accuracy. For example, an ML-based approach utilizing P, QRS, and T wave features from
high-risk treadmill exercise tests has been shown to predict obstructive coronary artery
disease with high precision [22]. Likewise, a deep learning model using multimodal data
was successfully applied to predict short-term mortality in patients with acute pulmonary
embolism [23]. These studies illustrate the versatility of Al-based tools across different
cardiovascular conditions, supporting their potential to enhance current risk stratification
strategies. While prior DL studies have illustrated the feasibility of ECG-based risk predic-
tion, producing tools with robust individual-level performance remains scarce [16]. Our
study, leveraging a prospective national cohort with adjudicated cardiac deaths, demon-
strated that a DL-based Holter-ECG model may offer a noninvasive and repeatable method
that could complement existing clinical workflows and facilitate large-scale screening
for arrhythmic risk. At the same time, the model showed only modest sensitivity (27%),
underscoring its limitations as a stand-alone screening tool. However, its positive likeli-
hood ratio was high (6.8), indicating that patients classified as high risk truly carried a
markedly increased probability of adverse events. This suggests that the model may be
most valuable not as a general screening tool but as a complementary means of pinpointing
a subset of particularly high-risk individuals who warrant intensified surveillance and
proactive management.

A further strength of our approach lies in its technical implementation. By em-
ploying pretrained encoders to capture latent information embedded within continuous
ECG signals, the model was able to identify hidden features relevant to risk prediction
while overcoming the analytic challenges posed by lengthy 24 h Holter recordings. This
methodological advance enabled efficient large-scale application without compromising
predictive performance.

Importantly, our cohort included patients with both ischemic and non-ischemic HF.
Among these patients, those classified as high-risk by the DL model had a seven-fold
increase in cardiac death risk compared to the low-risk group. Subgroup analyses further
revealed that the incremental predictive value of the model was most pronounced in
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patients with preserved or mildly reduced EF (>40%). This finding likely reflects that
in patients with EF < 40%, the high baseline risk already provides strong prognostic
information, leaving limited room for improvement, whereas in patients with EF > 40%,
conventional EF thresholds fail to adequately identify vulnerable individuals. In this
context, a DL-based Holter approach could complement current ICD implantation criteria,
which are largely EF-driven, by identifying high-risk individuals with EF > 40% who are
not captured by conventional thresholds. For such patients, intensified surveillance and
proactive management may be particularly warranted.

Another strength of our approach lies in its focus on cardiac-specific outcomes, such
as cardiac death (including SCD) and ventricular arrhythmia. This outcome specificity may
enhance clinical relevance and aid in developing personalized management strategies.

Finally, the DL model operates on continuous single-lead ECG data without requiring a
standard 12-lead ECG or additional clinical variables. This feature is especially meaningful
in the current landscape of expanding use of wearable and patch-based ECG monitors,
which predominantly record single-lead signals. When integrated into existing clinical
workflows, such approaches could serve as a complementary tool alongside conventional
risk factors, imaging modalities, biomarkers, and electrophysiological testing, thereby
contributing to a more comprehensive and individualized strategy for SCD prevention.

4.3. Limitation

This study has several limitations. First, due to the low incidence of ventricular
arrhythmia events, we primarily analyzed a composite outcome comprising ventricular
arrhythmia and cardiac death. This approach ensured adequate statistical power but may
have obscured potential differences in predictive performance between arrhythmic and
mortality outcomes. Separate analyses confirmed robust performance for cardiac death
alone, whereas ventricular arrhythmia—specific prediction was underpowered. Moreover,
the modest total number of outcome events (70 among 1108 patients) inevitably widened
confidence intervals and increased the risk of model instability, despite safeguards such
as dimensionality reduction, pretraining, and patient-wise cross-validation. Second, the
model was developed and evaluated entirely within a single national cohort, without exter-
nal validation in independent datasets. This limitation restricts the ability to generalize the
findings to other populations, healthcare systems, and device configurations, and raises the
possibility that the observed performance may, in part, reflect cohort-specific characteristics
rather than true universal applicability. To address this, multicenter validation studies are
currently under discussion within the K-REDEFINE consortium. These efforts are expected
to further establish the robustness and broader clinical applicability of the proposed model.
Third, the current DL model functions as a “black box,” offering limited interpretability
into the specific ECG features driving its predictions. This limitation should be recognized
as a major barrier to clinical adoption, since the lack of interpretability may reduce clinician
confidence in applying the model to high-stakes decisions such as SCD risk stratification.
Future iterations will incorporate explainability techniques, such as attention map-based
explainability methods, saliency mapping, and Shapley Additive Explanations (SHAP), to
highlight temporal and morphological ECG patterns most influential to the model’s predic-
tions, thereby improving transparency, fostering clinician trust, and potentially uncovering
novel mechanistic insights [24-26]. Fourth, our results were based on outcomes observed
during a three-year follow-up period after enrollment. Since the study specifically aimed
to evaluate whether Holter recordings obtained at the time of hospitalization for MI or
HF—representing the acute phase—could predict long-term prognosis, we believe that the
presented findings provide meaningful insights into early risk stratification. Nevertheless,
cardiac risk is inherently dynamic and evolves with disease progression, therapeutic inter-
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ventions, and changes in clinical status. Because we did not perform serial analyses using
follow-up Holter recordings, we are unable to determine whether model performance
remains stable over time or establish evidence regarding the appropriate frequency of
repeated assessments. Future longitudinal studies with periodic Holter monitoring will
be required to address this important question. Fifth, the incorporation of LVEF into the
final risk score was based on coarse categorical stratification rather than continuous values,
which may have limited the precision of risk integration. Therefore, more sophisticated
strategies such as continuous EF modeling, data-driven cutpoints, and ensemble/meta-
learning integration will be required in future work. Finally, the present study did not
address practical considerations for real-world implementation of the algorithm, such as
computational infrastructure, workflow integration with existing Holter analysis systems,
cost-effectiveness, or regulatory pathways. While these issues were beyond the scope of
our current investigation, they represent essential steps for clinical translation and should
be systematically evaluated in future research.

5. Conclusions

In this prospective multicenter cohort, our DL-based Al algorithm, trained on con-
tinuous single-lead Holter-ECG data, effectively predicted cardiac death and ventricular
arrhythmias leading to aborted SCD. The model outperformed conventional Holter-based
markers, such as TWA and HRT. Notably, predictive performance was superior in patients
with preserved or mid-range EF (>40%) compared to those with reduced EF. These findings
highlight the potential of Al-driven ECG analysis as a novel, noninvasive approach to
identify high-risk subgroups among patients with HFmrEF or HFpEF—populations for
whom current risk stratification tools remain inadequate.
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