Declining Myocarditis Mortality in the United States and the Impact of the COVID-19 Pandemic
Abstract
1. Introduction
2. Methods
2.1. Study Design and Database
2.2. Study Groups
2.3. Statistical Analysis
3. Results
3.1. Impact of the Pandemic, Excess Mortality, and Recovery from 2020 to 2023
3.2. Demographic Differences
3.2.1. Sex Stratification
3.2.2. Race/Ethnicity Stratified
3.2.3. Age Group Stratification
3.3. Regional Differences
3.3.1. Census Region Stratification
3.3.2. State-Level Differences
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cristina Basso, M.D. Myocarditis. N. Engl. J. Med. 2022, 387, 1488–1500. Available online: https://www.nejm.org/doi/full/10.1056/NEJMra2114478 (accessed on 4 February 2025). [CrossRef] [PubMed]
- Writing Committee; Drazner, M.H.; Bozkurt, B.; Cooper, L.T.; Aggarwal, N.R.; Basso, C.; Bhave, N.M.; Caforio, A.L.P.; Ferreira, V.M.; Heidecker, B.; et al. 2024 ACC Expert Consensus Decision Pathway on Strategies and Criteria for the Diagnosis and Management of Myocarditis: A Report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 2025, 85, 391–431. [Google Scholar] [CrossRef]
- Li, L.; Ding, L.; Wu, L.; Hu, Z.; Liu, L.; Zhao, M.; Zhang, T.; Zheng, L.; Yao, Y. The global, regional, and national burden of myocarditis in 204 countries and territories, 1990–2021: Results from the Global Burden of Disease Study 2021. Eur. J. Heart Fail. 2024. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Pahuja, M.; Adegbala, O.; Mishra, T.; Akintoye, E.; Chehab, O.; Mony, S.; Singh, M.; Ando, T.; Abubaker, H.; Yassin, A.; et al. Trends in the Incidence of In-Hospital Mortality, Cardiogenic Shock, and Utilization of Mechanical Circulatory Support Devices in Myocarditis (Analysis of National Inpatient Sample Data, 2005–2014). J. Card. Fail. 2019, 25, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Boehmer, T.K.; Kompaniyets, L.; Lavery, A.M.; Hsu, J.; Ko, J.Y.; Yusuf, H.; Romano, S.D.; Gundlapalli, A.V.; Oster, M.E.; Harris, A.M. Association Between COVID-19 and Myocarditis Using Hospital-Based Administrative Data—United States, March 2020-January 2021. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 1228–1232. [Google Scholar] [CrossRef] [PubMed]
- Multiple Cause of Death, 1999–2020 About. Available online: https://wonder.cdc.gov/controller/datarequest/D77;jsessionid=7B74EE091E215854B39B989B2995 (accessed on 8 November 2024).
- Abdul Jabbar, A.B.; Klisares, M.; Gilkeson, K.; Aboeata, A. Acute Myocardial Infarction Mortality in the Older Population of the United States: An Analysis of Demographic and Regional Trends and Disparities from 1999 to 2022. J. Clin. Med. 2025, 14, 2190. [Google Scholar] [CrossRef] [PubMed]
- Abdul Jabbar, A.B.; May, M.T.; Deisz, M.; Tauseef, A. Trends in heart failure-related mortality among middle-aged adults in the United States from 1999-2022. Curr. Probl. Cardiol. 2025, 50, 102973. [Google Scholar] [CrossRef] [PubMed]
- Al-Salahat, A.; Abdul Jabbar, A.B.; Sharma, R.; Chen, Y.-T.; Bernitsas, E. Demographic and Geographic Trends in Myasthenia Gravis-Related Mortality in the United States, 1999-2022. Neurology 2025, 104, e213505. [Google Scholar] [CrossRef] [PubMed]
- Abdul Jabbar, A.B.; Khan, D.A.; Li-Jedras, M.; Kabach, A.; Aboeata, A. Trends of infective endocarditis mortality in young adult population of US: A concerning rise and its association with substance abuse. Int. J. Cardiol. Cardiovasc. Risk Prev. 2025, 25, 200404. [Google Scholar] [CrossRef]
- Morrissey, R.; Lee, J.; Baral, N.; Tauseef, A.; Sood, A.; Mirza, M.; Jabbar, A.B.A. Demographic and regional trends of sepsis mortality in the United States, 1999–2022. BMC Infect. Dis. 2025, 25, 504. [Google Scholar] [CrossRef] [PubMed]
- ICD-10: International Statistical Classification of Diseases and Related Health Problems: Tenth Revision. Available online: https://iris.who.int/handle/10665/42980 (accessed on 5 January 2025).
- Anderson, R.N.; Rosenberg, H.M. Age standardization of death rates: Implementation of the year 2000 standard. Natl. Vital. Stat. Rep. 1998, 47, 1–16+20. [Google Scholar] [PubMed]
- Joinpoint Regression Program. Available online: https://surveillance.cancer.gov/joinpoint/ (accessed on 5 January 2025).
- Faust, J.S.; Du, C.; Liang, C.; Mayes, K.D.; Renton, B.; Panthagani, K.; Krumholz, H.M. Excess Mortality in Massachusetts During the Delta and Omicron Waves of COVID-19. JAMA 2022, 328, 74–76. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.; Patel, P.; Dahiya, D.S.; Gangwani, M.K.; Basuli, D.; Mohan, B.P. Prediction of early-onset colorectal cancer mortality rates in the United States using machine learning. Cancer Med. 2024, 13, e6880. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Wu, X.; An, W.; Yao, B.; Liu, Y. The systematic analysis and 10-year prediction on disease burden of childhood cancer in China. Front. Public Health 2022, 10, 908955. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Shi, L.; Zhang, J.; Zhang, J.; Zhang, C. Epidemiological characteristics and forecasting incidence for patients with breast cancer in Shantou, Southern China: 2006–2017. Cancer Med. 2021, 10, 2904–2913. [Google Scholar] [CrossRef] [PubMed]
- Watson, L.; Qi, S.; DeIure, A.; Link, C.; Chmielewski, L.; Hildebrand, A.; Rawson, K.; Ruether, D. Using Autoregressive Integrated Moving Average (ARIMA) Modelling to Forecast Symptom Complexity in an Ambulatory Oncology Clinic: Harnessing Predictive Analytics and Patient-Reported Outcomes. Int. J. Environ. Res. Public Health 2021, 18, 8365. [Google Scholar] [CrossRef] [PubMed]
- Heymans, S.; Eriksson, U.; Lehtonen, J.; Cooper, L.T. The Quest for New Approaches in Myocarditis and Inflammatory Cardiomyopathy. J. Am. Coll. Cardiol. 2016, 68, 2348–2364. [Google Scholar] [CrossRef] [PubMed]
- Steitieh, D.; Klahr, R.; Greenfest, A.; Xu, S.; Cheung, J.W.; Feldman, D.N.; Singh, H.S.; Minutello, R.M.; Wong, S.C.; Wang, J.; et al. Trends in the Incidence of Cardiogenic Shock, and Utilization of Mechanical Circulatory Support in Myocarditis: Insights from the National Inpatient Sample 2016 to 2019. Am. J. Cardiol. 2023, 205, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Writing Committee; Gluckman, T.J.; Bhave, N.M.; Allen, L.A.; Chung, E.H.; Spatz, E.S.; Ammirati, E.; Baggish, A.L.; Bozkurt, B.; Cornwell, W.K.; et al. 2022 ACC Expert Consensus Decision Pathway on Cardiovascular Sequelae of COVID-19 in Adults: Myocarditis and Other Myocardial Involvement, Post-Acute Sequelae of SARS-CoV-2 Infection, and Return to Play: A Report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 2022, 79, 1717–1756. [Google Scholar] [CrossRef] [PubMed]
- Rubens, M.; Ramamoorthy, V.; Saxena, A.; Zevallos, J.C.; Ruiz-Pelaez, J.G.; Ahmed, M.A.; Zhang, Z.; McGranaghan, P.; Veledar, E.; Jimenez, J.; et al. Hospital Outcomes Among COVID-19 Hospitalizations With Myocarditis from the California State Inpatient Database. Am. J. Cardiol. 2022, 183, 109–114. [Google Scholar] [CrossRef]
- Keller, K.; Sagoschen, I.; Konstantinides, S.; Gori, T.; Münzel, T.; Hobohm, L. Incidence and risk factors of myocarditis in hospitalized patients with COVID-19. J. Med. Virol. 2023, 95, e28646. [Google Scholar] [CrossRef] [PubMed]
- Ammirati, E.; Lupi, L.; Palazzini, M.; Hendren, N.S.; Grodin, J.L.; Cannistraci, C.V.; Schmidt, M.; Hekimian, G.; Peretto, G.; Bochaton, T.; et al. Prevalence, Characteristics, and Outcomes of COVID-19-Associated Acute Myocarditis. Circulation 2022, 145, 1123–1139. [Google Scholar] [CrossRef]
- Yasuhara, J.; Masuda, K.; Aikawa, T.; Shirasu, T.; Takagi, H.; Lee, S.; Kuno, T. Myopericarditis After COVID-19 mRNA Vaccination Among Adolescents and Young Adults: A Systematic Review and Meta-analysis. JAMA Pediatr. 2023, 177, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Chou, O.H.I.; Zhou, J.; Lee, T.T.L.; Kot, T.; Lee, S.; Wai, A.K.C.; Wong, W.T.; Zhang, Q.; Cheng, S.H.; Liu, T.; et al. Comparisons of the risk of myopericarditis between COVID-19 patients and individuals receiving COVID-19 vaccines: A population-based study. Clin. Res. Cardiol. 2022, 111, 1098–1103. [Google Scholar] [CrossRef] [PubMed]
- Naveed, Z.; Chu, C.; Tadrous, M.; Veroniki, A.-A.; Li, J.; Rouleau, I.; Febriani, Y.; Calzavara, A.; Buchan, S.A.; Nasreen, S.; et al. A multiprovincial retrospective analysis of the incidence of myocarditis or pericarditis after mRNA vaccination compared to the incidence after SARS-CoV-2 infection. Heliyon 2024, 10, e26551. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, P.S.; Siegler, A.J.; Shioda, K.; Hall, E.W.; Bradley, H.; Sanchez, T.; Luisi, N.; Valentine-Graves, M.; Nelson, K.N.; Fahimi, M.; et al. Severe Acute Respiratory Syndrome Coronavirus 2 Cumulative Incidence, United States, August 2020–December 2020. Clin. Infect. Dis. 2021, 74, 1141–1150. [Google Scholar] [CrossRef] [PubMed]
- Clarke, K.E.N.; Jones, J.M.; Deng, Y.; Nycz, E.; Lee, A.; Iachan, R.; Gundlapalli, A.V.; Hall, A.J.; MacNeil, A. Seroprevalence of Infection-Induced SARS-CoV-2 Antibodies—United States, September 2021–February 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 606–608. [Google Scholar] [CrossRef] [PubMed]
- Klaassen, F.; Chitwood, M.H.; Cohen, T.; Pitzer, V.E.; Russi, M.; Swartwood, N.A.; Salomon, J.A.; Menzies, N.A. Changes in Population Immunity Against Infection and Severe Disease From Severe Acute Respiratory Syndrome Coronavirus 2 Omicron Variants in the United States Between December 2021 and November 2022. Clin. Infect. Dis. 2023, 77, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Kytö, V.; Saraste, A.; Voipio-Pulkki, L.-M.; Saukko, P. Incidence of fatal myocarditis: A population-based study in Finland. Am. J. Epidemiol. 2007, 165, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Lau, E.S.; McNeill, J.N.; Paniagua, S.M.; Liu, E.E.; Wang, J.K.; Bassett, I.V.; Selvaggi, C.A.; Lubitz, S.A.; Foulkes, A.S.; Ho, J.E. Sex differences in inflammatory markers in patients hospitalized with COVID-19 infection: Insights from the MGH COVID-19 patient registry. PLoS ONE 2021, 16, e0250774. [Google Scholar] [CrossRef] [PubMed]
- Carnethon, M.R.; Pu, J.; Howard, G.; Albert, M.A.; Anderson, C.A.M.; Bertoni, A.G.; Mujahid, M.S.; Palaniappan, L.; Taylor, H.A.; Willis, M.; et al. Cardiovascular Health in African Americans: A Scientific Statement From the American Heart Association. Circulation 2017, 136, e393–e423. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Bundy, J.D.; Geng, S.; Tian, L.; He, H.; Li, X.; Ferdinand, K.C.; Anderson, A.H.; Dorans, K.S.; Vasan, R.S.; et al. Social, Behavioral, and Metabolic Risk Factors and Racial Disparities in Cardiovascular Disease Mortality in U.S. Adults: An Observational Study. Ann. Intern. Med. 2023, 176, 1200–1208. [Google Scholar] [CrossRef] [PubMed]
- Tjoeng, Y.L.; Olsen, J.; Friedland-Little, J.M.; Chan, T. Association Between Race/Ethnicity and Severity of Illness in Pediatric Cardiomyopathy and Myocarditis. Pediatr. Cardiol. 2023, 44, 1788–1799. [Google Scholar] [CrossRef]
- Samman Tahhan, A.; Hammadah, M.; Kelli, H.M.; Kim, J.H.; Sandesara, P.B.; Alkhoder, A.; Kaseer, B.; Gafeer, M.M.; Topel, M.; Hayek, S.S.; et al. Circulating Progenitor Cells and Racial Differences. Circ. Res. 2018, 123, 467–476. [Google Scholar] [CrossRef]
- Rizzuto, D.; Melis, R.J.F.; Angleman, S.; Qiu, C.; Marengoni, A. Effect of Chronic Diseases and Multimorbidity on Survival and Functioning in Elderly Adults. J. Am. Geriatr. Soc. 2017, 65, 1056–1060. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.; Kontogeorgos, S.; Thunström, E.; Zverkova Sandström, T.; Kroon, C.; Bollano, E.; Schaufelberger, M.; Rosengren, A. Trends in myocarditis incidence, complications and mortality in Sweden from 2000 to 2014. Sci. Rep. 2022, 12, 1810. [Google Scholar] [CrossRef] [PubMed]
- Bergquist, S.; Otten, T.; Sarich, N. COVID-19 pandemic in the United States. Health Policy Technol. 2020, 9, 623–638. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdul Jabbar, A.B.; Khan, D.A.; Osborne, J.; Thomson, W.; Chinawalkar, A.; Klisares, M.; Gilkeson, K.; Aboeata, A. Declining Myocarditis Mortality in the United States and the Impact of the COVID-19 Pandemic. J. Clin. Med. 2025, 14, 5116. https://doi.org/10.3390/jcm14145116
Abdul Jabbar AB, Khan DA, Osborne J, Thomson W, Chinawalkar A, Klisares M, Gilkeson K, Aboeata A. Declining Myocarditis Mortality in the United States and the Impact of the COVID-19 Pandemic. Journal of Clinical Medicine. 2025; 14(14):5116. https://doi.org/10.3390/jcm14145116
Chicago/Turabian StyleAbdul Jabbar, Ali Bin, Daniyal Ali Khan, John Osborne, William Thomson, Ameya Chinawalkar, Mason Klisares, Kyle Gilkeson, and Ahmed Aboeata. 2025. "Declining Myocarditis Mortality in the United States and the Impact of the COVID-19 Pandemic" Journal of Clinical Medicine 14, no. 14: 5116. https://doi.org/10.3390/jcm14145116
APA StyleAbdul Jabbar, A. B., Khan, D. A., Osborne, J., Thomson, W., Chinawalkar, A., Klisares, M., Gilkeson, K., & Aboeata, A. (2025). Declining Myocarditis Mortality in the United States and the Impact of the COVID-19 Pandemic. Journal of Clinical Medicine, 14(14), 5116. https://doi.org/10.3390/jcm14145116