Association Between ST-Segment Deviation in Electrocardiography and 30-Day Mortality in Non-Cardiac Critically Ill Patients: A Retrospective Single-Center Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection and Study Endpoint
2.2. Statistical Analysis
3. Results
3.1. Clinical Characteristics of Study Subjects
3.2. Prognostic Significance of ECG Abnormalities on Admission to ICU in Relation to 30-Day Mortality
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AUC | area under the curve |
BE | base excess |
BMI | body mass index |
BNP | B-type natriuretic peptide |
CI | confidence interval |
COPD | chronic obstructive pulmonary disease |
ECG | electrocardiogram |
HR | hazard ratio |
ICU | intensive care unit |
IQR | interquartile range |
MI | myocardial infarction |
NT | N-terminal |
ROC | receiver operating characteristic |
SD | standard deviation |
SOFA | sequential organ failure assessment |
STD | ST-segment deviation |
References
- Moreno, R.; Rhodes, A.; Piquilloud, L.; Hernandez, G.; Takala, J.; Gershengorn, H.B.; Tavares, M.; Coopersmith, C.M.; Myatra, S.N.; Singer, M.; et al. The Sequential Organ Failure Assessment (SOFA) Score: Has the time come for an update? Crit. Care 2023, 27, 15. [Google Scholar] [CrossRef] [PubMed]
- Arts, D.G.; de Keizer, N.F.; Vroom, M.B.; de Jonge, E. Reliability and accuracy of Sequential Organ Failure Assessment (SOFA) scoring. Crit. Care Med. 2005, 33, 1988–1993. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatte, S.; Mendonça, A.D.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.A. Vasopressor therapy in critically ill patients with shock. Intensive Care Med. 2019, 45, 1503–1517. [Google Scholar] [CrossRef]
- Kouz, K.; Thiele, R.H.; Michard, F.; Saugel, B. Haemodynamic monitoring during noncardiac surgery: Past, present, and future. J. Clin. Monit. Comput. 2024, 38, 565–580. [Google Scholar] [CrossRef]
- Tan, S.Y.; Sungar, G.W.; Myers, J.; Sandri, M.; Froelicher, V. A simplified clinical electrocardiogram score for the prediction of cardiovascular mortality. Clin. Cardiol. 2009, 32, 82–86. [Google Scholar] [CrossRef]
- Auer, R.; Bauer, D.C.; Marques-Vidal, P.; Butler, J.; Min, L.J.; Cornuz, J.; Satterfield, S.; Newman, A.B.; Vittinghoff, E.; Rodondi, N. Association of major and minor ECG abnormalities with coronary heart disease events. JAMA 2012, 307, 1497–1505. [Google Scholar]
- Guest, T.M.; Ramanathan, A.V.; Tuteur, P.G.; Schechtman, K.B.; Ladenson, J.H.; Jaffe, A.S. Myocardial injury in critically ill patients. A frequently unrecognized complication. JAMA 1995, 28, 1945–1949. [Google Scholar] [CrossRef]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D.; Executive Group on behalf of the Joint ESC/ACCF/AHA/WHF Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardial Infarction (2018). Eur. Heart J. 2019, 40, 237–269. [Google Scholar] [CrossRef]
- Fox, K.A.; Dabbous, O.H.; Goldberg, R.J.; Pieper, K.S.; Eagle, K.A.; Van de Werf, F.; Avezum, Á.; Goodman, S.G.; Flather, M.D.; Anderson, F.A.; et al. Prediction of risk of death and myocardial infarction in the six months after presentation with acute coronary syndrome: Prospective multinational observational study (GRACE). BMJ 2006, 333, 1091. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, M.; Nakano, H.; Kuwahara, K.; Masuda, I.; Okawa, Y.; Miyazaki, H.; Okoshi, H.; Kaji, M.; Noguchi, Y.; Asukata, I. Prognostic and clinical significance of newly acquired complete right bundle branch block in Japan Airline pilots. Intern. Med. 2003, 42, 21–24. [Google Scholar] [CrossRef]
- Fox, K.A.; Fitzgerald, G.; Puymirat, E.; Huang, W.; Carruthers, K.; Simon, T.; Coste, P.; Monsegu, J.; Steg, P.G.; Danchin, N.; et al. Should patients with acute coronary disease be stratified for management according to their risk? Derivation, external validation and outcomes using the updated GRACE risk score. BMJ Open 2014, 4, e004425. [Google Scholar] [CrossRef] [PubMed]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Rosén, J.; Noreland, M.; Stattin, K.; Lipcsey, M.; Frithiof, R.; Malinovschi, A.; Hultström, M.; on behalf of the Uppsala Intensive Care COVID-19 Research Group; Savastano, S. ECG pathology and its association with death in critically ill COVID-19 patients, a cohort study. PLoS ONE 2021, 16, e0261315. [Google Scholar] [CrossRef]
- Bilginer, H.A.; Sogut, O.; Az, A.; Ergenc, H. Electrocardiographic abnormalities are prognostic of the clinical outcomes and mortality of patients with subarachnoid hemorrhages. Am. J. Emerg. Med. 2024, 81, 140–145. [Google Scholar] [CrossRef]
- Pölkki, A.; Pekkarinen, P.T.; Takala, J.; Selander, T.; Reinikainen, M. Association of Sequential Organ Failure Assessment (SOFA) components with mortality. Acta Anaesthesiol. Scand. 2022, 66, 731–741. [Google Scholar] [CrossRef]
- Erdem, K.; Duman, I.; Ergün, R.; Ergün, D. The correlation between electrocardiographic parameters and mortality in non-cardiac ICU patients. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 6662–6670. [Google Scholar]
- Russo, V.; Bottino, R.; Rago, A.; Papa, A.A.; Golino, P.; Nigro, G. Electrocardiographic Abnormalities in Critically Ill Patients: Insights from the Intensive Care Unit. J. Clin. Med. 2023, 14, 4006. [Google Scholar]
- Mehta, S.; Granton, J.; Gordon, A.C.; Cook, D.J.; Lapinsky, S.; Newton, G.; Bandayrel, K.; Little, A.; Siau, C.; Ayers, D.; et al. Cardiac ischemia in patients with septic shock randomized to vasopressin or norepinephrine. Crit. Care 2013, 17, R117. [Google Scholar] [CrossRef]
- Persson, E.; Pettersson, J.; Ringborn, M.; Sörnmo, L.; Warren, S.G.; Wagner, G.S.; Maynard, C.; Pahlm, O. Comparison of ST-segment deviation to scintigraphically quantified myocardial ischemia during acute coronary occlusion induced by percutaneous transluminal coronary angioplasty. Am. J. Cardiol. 2006, 97, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Smit, M.; Coetzee, A.R.; Lochner, A. The pathophysiology of myocardial ischemia and perioperative myocardial infarction. J. Cardiothorac. Vasc. Anesth. 2020, 34, 2501–2512. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.; Whitlock, R.; Khera, V.; Devereaux, P.J.; Tkaczyk, A.; Heels-Ansdell, D.; Jacka, M.; Cook, D. Etiology of troponin elevation in critically ill patients. J. Crit. Care 2010, 25, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Newby, L.K.; Goldmann, B.U.; Ohman, E.M. Troponin: An important prognostic marker and risk-stratification tool in non-ST-segment elevation acute coronary syndromes. J. Am. Coll Cardiol. 2003, 41, 31S–36S. [Google Scholar] [CrossRef]
- Chapman, A.R.; Adamson, P.D.; Mills, N.L. Assessment and classification of patients with myocardial injury and infarction in clinical practice. Heart 2017, 103, 10–18. [Google Scholar] [CrossRef]
- Lim, W.; Qushmaq, I.; Cook, D.J.; A Crowther, M.; Heels-Ansdell, D.; Devereaux, P. Elevated troponin and myocardial infarction in the intensive care unit: A prospective study. Crit. Care 2005, 9, R636–R644. [Google Scholar] [CrossRef]
- Perkins, G.D.; McAuley, D.F.; Davies, S.; Gao, F. Discrepancies between clinical and postmortem diagnoses in critically ill patients: An observational study. Crit. Care 2003, 7, R129–R132. [Google Scholar] [CrossRef]
- Li, J.; Sun, W.; Guo, Y.; Ren, Y.; Li, Y.; Yang, Z. Prognosis of β-adrenergic blockade therapy on septic shock and sepsis: A systematic review and meta-analysis of randomized controlled studies. Cytokine 2020, 126, 154916. [Google Scholar] [CrossRef]
Parameter | Survivors (n = 181; 59.0%) | Non-Survivors (n = 126; 41.0%) | p Value |
---|---|---|---|
Age [years], median, (IQR) | 63.0 (47.0–69.5) | 67.0 (55.0–73.0) | 0.040 |
Male, n, (%) | 118 (65.2) | 83 (65.9) | 0.500 |
BMI a [kg/m2], mean, (SD) | 27.61 (6.53) | 28.31 (6.23) | 0.351 |
Diabetes mellitus, n (%) | 38 (21.0) | 32 (25.4) | 0.221 |
Arterial hypertension, n (%) | 83 (45.9) | 67 (53.2) | 0.126 |
COPD, n (%) | 12 (6.6) | 12 (9.5) | 0.237 |
Ischemic heart disease, n (%) | 18 (9.9) | 30 (23.8) | 0.001 |
Chronic kidney disease, n (%) | 16 (8.8) | 18 (14.3) | 0.096 |
History of myocardial infarction, n (%) | 12 (6.6) | 18 (14.3) | 0.022 |
Chronic hepatic failure, n (%) | 2 (1.1) | 14 (11.1) | <0.001 |
Heart failure, n (%) | 22 (12.2) | 23 (18.3) | 0.094 |
Active malignancy, n (%) | 17 (9.4) | 11 (8.7) | 0.505 |
History of acute ischemic stroke, n (%) | 6 (3.3) | 7 (5.6) | 0.249 |
Admission category | |||
Medical, n (%) | 92 (50.8) | 41 (32.5) | 0.001 |
Surgical, n (%) | 89 (49.2) | 85 (67.5) | 0.001 |
Parameter | Survivors (n = 181; 59.0%) | Non-Survivors (n = 126; 41.0%) | p Value |
---|---|---|---|
SOFA, median (IQR) | 10.0 (7.0–12.0) | 11.0 (8.0–14.0) | <0.001 |
Sinus rhythm in ECG on admission, n (%) | 154 (85.1) | 99 (78.6) | 0.094 |
Atrial fibrillation in ECG on admission, n (IQR) | 21 (11.6) | 17 (13.5) | 0.373 |
ST-segment deviation, n (IQR) | 66 (36.5) | 60 (47.6) | 0.033 |
Amplitude of ST-segment deviation [mm], median (IQR) | 0.0 (0.0–2.5) | 0.0 (0.0–3.0) | 0.120 |
Hospital length of stay [days], median (IQR) | 29.0 (17.0–45.0) | 10.0 (4.0–16.0) | <0.001 |
ICU length of stay[days], median (IQR) | 14.0 (5.5–32.0) | 7.0 (2.0–14.3) | <0.001 |
Troponin[ng/mL], median (IQR) | 55.9 (20.9–143.9) | 82.6 (22.6–536.3) | 0.025 |
NT-pro-BNP a [pg/mL], median (IQR) | 1337.5 (386.5–3473.0) | 2365.0 (553.5–8861.0) | 0.011 |
K + [mmol/L], median (IQR) | 4.1 (3.7–4.5) | 4.20 (3.80–5.0) | 0.039 |
Na + [mmol/L], median (IQR) | 139.0 (136.0–141.0) | 138.0 (135.0–141.0 | 0.727 |
Anion gap a on admission [mmol/L], median (IQR) | 10.7 (7.95–13.2) | 12.0 (8.5–16.9) | 0.007 |
Base excess on admission [mmol/L], median (IQR) | −3.8 (−6.9–−0.5) | −6.4 (−12.6–−1.3) | <0.001 |
pH on admission, median (IQR) | 7.309 (7.236–7.367) | 7.295 (7.117–7.365) | 0.005 |
Lactates on admission [mmol/L], median (IQR) | 1.9 (1.1–3.2) | 3.2 (1.5–8.5) | <0.001 |
Mean arterial pressure on admission [mmHg], mean (SD) | 78.2 (21.6) | 72.1 (22.9) | 0.018 |
Heart rate on admission [bpm], mean (SD) | 89.8 (24.9) | 93.2 (24.9) | 0.239 |
Mean noradrenaline dose on admission [ucg/kg/min], median (IQR) | 0.1 (0.02–0.20) | 0.10 (0.04–0.40) | 0.040 |
Mechanical ventilation on admission, n (%) | 160 (58.4) | 114 (41.6) | 0.351 |
Variable | Univariable Analysis | Multivariable Analysis | ||||
---|---|---|---|---|---|---|
HR (95% CI) | p Value | HR (95% CI) | p Value | Bootstrap 95% CI (BCa) | Bootstrap p Value | |
ST-segment deviation | 1.512 (1.065–2.145) | 0.021 | 1.534 (1.081–2.177) | 0.017 | 1.013–2.342 | 0.020 |
SOFA score | 1.137 (1.082–1.194) | <0.001 | 1.139 (1.083–1.197) | <0.001 | 1.083–1.239 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Świstek, R.; Dadański, E.; Kurzyca, A.; Droś, J.; Kasongo, P.; Konieczyński, J.; Jóźwik, J.; Drygalski, T.; Terlecki, M. Association Between ST-Segment Deviation in Electrocardiography and 30-Day Mortality in Non-Cardiac Critically Ill Patients: A Retrospective Single-Center Study. J. Clin. Med. 2025, 14, 4911. https://doi.org/10.3390/jcm14144911
Świstek R, Dadański E, Kurzyca A, Droś J, Kasongo P, Konieczyński J, Jóźwik J, Drygalski T, Terlecki M. Association Between ST-Segment Deviation in Electrocardiography and 30-Day Mortality in Non-Cardiac Critically Ill Patients: A Retrospective Single-Center Study. Journal of Clinical Medicine. 2025; 14(14):4911. https://doi.org/10.3390/jcm14144911
Chicago/Turabian StyleŚwistek, Rafał, Emil Dadański, Aleksandra Kurzyca, Jakub Droś, Patryk Kasongo, Jakub Konieczyński, Joanna Jóźwik, Tomasz Drygalski, and Michał Terlecki. 2025. "Association Between ST-Segment Deviation in Electrocardiography and 30-Day Mortality in Non-Cardiac Critically Ill Patients: A Retrospective Single-Center Study" Journal of Clinical Medicine 14, no. 14: 4911. https://doi.org/10.3390/jcm14144911
APA StyleŚwistek, R., Dadański, E., Kurzyca, A., Droś, J., Kasongo, P., Konieczyński, J., Jóźwik, J., Drygalski, T., & Terlecki, M. (2025). Association Between ST-Segment Deviation in Electrocardiography and 30-Day Mortality in Non-Cardiac Critically Ill Patients: A Retrospective Single-Center Study. Journal of Clinical Medicine, 14(14), 4911. https://doi.org/10.3390/jcm14144911