
Citation: T, ichil, I.; Mitre, I.;

Zdrenghea, M.T.; Bojan, A.S.;

Tomuleasa, C.I.; Cenariu, D. A Review

of Key Regulators of Steady-State and

Ineffective Erythropoiesis. J. Clin.

Med. 2024, 13, 2585. https://doi.org/

10.3390/jcm13092585

Academic Editor: Carlo Finelli

Received: 13 March 2024

Revised: 24 April 2024

Accepted: 25 April 2024

Published: 27 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Clinical Medicine

Review

A Review of Key Regulators of Steady-State and
Ineffective Erythropoiesis
Ioana T, ichil 1,2,* , Ileana Mitre 1, Mihnea Tudor Zdrenghea 1,2 , Anca Simona Bojan 1,2,
Ciprian Ionut, Tomuleasa 1,2,3 and Diana Cenariu 1,3

1 Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu”, 8 Victor Babes Street,
400012 Cluj-Napoca, Romania; ilmitre@yahoo.com (I.M.); mzdrenghea@umfcluj.ro (M.T.Z.);
simona.bojan@umfcluj.ro (A.S.B.); ciprian.tomuleasa@gmail.com (C.I.T.); diacenariu@gmail.com (D.C.)

2 Department of Haematology, “Ion Chiricuta” Institute of Oncology, 34–36 Republicii Street,
400015 Cluj-Napoca, Romania

3 MEDFUTURE—Research Centre for Advanced Medicine, 8 Louis Pasteur Street,
400347 Cluj-Napoca, Romania

* Correspondence: tichil.ioana@gmail.com; Tel.: +40-729121935

Abstract: Erythropoiesis is initiated with the transformation of multipotent hematopoietic stem cells
into committed erythroid progenitor cells in the erythroblastic islands of the bone marrow in adults.
These cells undergo several stages of differentiation, including erythroblast formation, normoblast
formation, and finally, the expulsion of the nucleus to form mature red blood cells. The erythropoietin
(EPO) pathway, which is activated by hypoxia, induces stimulation of the erythroid progenitor cells
and the promotion of their proliferation and survival as well as maturation and hemoglobin synthesis.
The regulation of erythropoiesis is a complex and dynamic interaction of a myriad of factors, such
as transcription factors (GATA-1, STAT5), cytokines (IL-3, IL-6, IL-11), iron metabolism and cell
cycle regulators. Multiple microRNAs are involved in erythropoiesis, mediating cell growth and
development, regulating oxidative stress, erythrocyte maturation and differentiation, hemoglobin
synthesis, transferrin function and iron homeostasis. This review aims to explore the physiology
of steady-state erythropoiesis and to outline key mechanisms involved in ineffective erythropoiesis
linked to anemia, chronic inflammation, stress, and hematological malignancies. Studying aberrations
in erythropoiesis in various diseases allows a more in-depth understanding of the heterogeneity
within erythroid populations and the development of gene therapies to treat hematological disorders.

Keywords: erythropoietin; gene expression; iron metabolism; anemia; inflammation; stress
erythropoiesis; gene therapy; microRNAs

1. Introduction

Hematopoiesis is the formation of mature blood cells; red blood cells, white blood
cells and platelets from a common progenitor called a hematopoietic stem cell (HSC).
Hematopoiesis is an active and continuous process throughout a person’s lifetime. The
blood cells differentiation hierarchy starts from HSC, each cell type being derived from
their own progenitor cell (red blood cells from committed erythroid progenitors, T-cells,
B-cells, and natural killer cells from lymphoid progenitors and granulocytes, megakary-
ocytes, monocytes, and macrophages from common myeloid progenitors). The process
of hematopoiesis is characterized by five branches of hematopoiesis: erythropoiesis, lym-
phopoiesis, granulopoiesis, monopoiesis, and thrombopoiesis. Initially, two major pro-
genitor pathways originate from HSC: the common myeloid progenitor (CMP) and the
common lymphoid progenitor (CLP). Committed erythroid progenitors support the pro-
duction of 2 million erythrocytes per second in human adults via a synchronized regulation
of iron-heme biosynthesis through hormones hepcidin and erythroferrone, amino acid-
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induced mTOR signaling and glucose metabolism, indispensable for de novo nucleotide
biosynthesis [1,2].

2. Steady-State Erythropoiesis

Normal erythropoiesis takes place in the bone marrow of healthy adults by full matu-
ration of erythrocytes from proerythroblasts. During this process, the cells undergo many
stages of differentiation; the CMP subsequently divides into a granulocyte-monocyte pro-
genitor (GMP) or a megakaryocyte-erythroid progenitor (MEP). The burst-forming unit
erythroid (BFU-E) and colony-forming unit erythroid (CFU-E) cells are the committed
erythroid progenitors traditionally defined by their ability to form colonies. The proery-
throblast (ProE) is the earliest morphologically recognizable stage of an erythroid precursor
and can be isolated by surface staining of the transferrin receptor (CD71). Further on, the
ProE undergoes sequential differentiation into the basophilic, polychromatophilic, and
orthochromatic erythroblast stages, ultimately leading to enucleation and the formation
of a reticulocyte [3,4]. Upon entering the bloodstream, the reticulocyte undergoes matura-
tion through the remodeling of its plasma membrane, the loss of internal organelles, and
ultimately transforms into a red blood cell (Figure 1).
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2.1. Erythroblastic Islands

The natural progression and maturation of red blood cells within the bone marrow are
controlled by the supportive microenvironment, comprised of macrophages and erythrob-
lasts, within structures known as erythroblastic islands (EBI). These functional units can be
identified through conventional and specific immunological stains in bone marrow biopsies.
First observed by Marcel Bessis in 1958, the erythroblastic island serves as the primary
location for terminal erythropoiesis in mammals [5]. While these islands are primarily
located in the bone marrow during regular erythropoiesis, they extend to the fetal liver
and adult spleen during stress erythropoiesis. This expansion occurs when there is a rapid
generation of erythrocytes in response to inflammation and anemia [5,6].

The central macrophage within the erythroblastic island plays a crucial role in a highly
specialized process, which involves the ingestion of the enucleated nucleus and the subse-
quent recycling of nucleotides following nuclei degradation [7]. Macrophages have been
found to promote proliferation and survival of erythroblasts in in vitro [8] and in vivo [9,10]
conditions, particularly in a stressful environment, i.e., during immune challenge.

Within the erythroblastic islands of the bone marrow, late-stage erythroid precursor
cells express FAS ligand. This ligand has the potential to interact with early erythroid
precursors leading to caspase activation, subsequently inducing apoptosis and halting
maturation. When there is a significant demand to generate new erythroid cells due to
blood loss from bleeding or hemolysis, erythropoietin opposes this process, enabling the
cells to survive and mature, even in the presence of numerous late erythroid precursors [7].
During erythropoiesis, activated caspases cleave their primary natural targets within the
nucleus, including GATA-1, which amplifies cell death and impedes the process of erythroid
differentiation [11–13].

BioRender.com
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Studying the mechanisms in the erythroblastic island niche during normal and stress-
induced erythropoiesis has been performed through in vivo experiments in mice, with
complexities further analyzed using straightforward in vitro systems. Advancements in
stem cell technologies and gene editing have allowed for a more comprehensive examina-
tion of the human niche [5].

2.2. Regulation of Steady-State Erythropoiesis

Kidneys respond to low levels of oxygen by releasing the hormone erythropoietin
(EPO), which triggers erythropoiesis [14]. During maturation, the proerythroblast becomes
smaller in size, organelles are lost, and the nucleus is expelled from the cell. Immature
reticulocytes are discharged into the circulation from the bone marrow. The quantity of
reticulocytes present in the peripheral blood serves as an indicator of the erythropoiesis
rate in the bone marrow.

The generation of red blood cells is an intricate system that relies on oxygen sensors,
cytokines (EPO), and various factors, including regulators of iron metabolism. These compo-
nents collectively regulate both steady-state and stress-induced erythropoiesis, ensuring the
adequate supply of oxygen to peripheral tissues and stable hemoglobin concentrations [11].

An intricate system of physiological communication pathways and networks is ac-
countable for the generation, distribution, and replacement of red blood cells in people
with good health [11,15–17]. These networks maintain hemoglobin concentrations at a
consistently stable level throughout a person’s life. The process of erythropoiesis initiates
in the bone marrow through the commitment of pluripotent myeloid progenitor cells.
The subsequent differentiation into immature erythroid progenitors preserves the specific
proliferative capacity. In turn, the progenitor cells go through additional differentiation
and maturity. The action is controlled by a complex system of transcription factors and
epigenetic regulators [18,19]

Erythropoietin serves as the primary cytokine regulator for red cell production, oper-
ating at the late erythroid progenitor level through a homodimeric receptor. This receptor
initiates JAK2 kinase activity, leading to subsequent STAT5 activation [20–22]. In vivo and
in vitro models show that erythropoietin leads to STAT5 phosphorylation in early erythrob-
lasts, which is a key mechanism in steady-state erythropoiesis and in stress conditions such
as hypoxia [23]. Erythroid precursors in the bone marrow with lower sensitivity undergo
apoptosis upon caspase activation when erythropoietin levels are low, whereas at higher ery-
thropoietin concentrations, most cells manage to survive and undergo differentiation [24,25].

In healthy individuals, early-stage erythropoiesis is represented by the erythroid differ-
entiation pathway from MEP to Eps (erythroid progenitors), and late–stage erythropoiesis as
the final maturation stage into enucleated RBCs, which do not proliferate anymore [26]. Late-
stage definitive erythroid cells rely on both erythropoietin (EPO) and its receptor (EPO-R)
for survival, proliferation, and terminal maturation of primitive erythroid precursors.

GATA-1 has a crucial role in determining the lineage commitment, differentiation,
and survival of erythroid progenitors. Specifically, GATA-1 initiates erythropoiesis by
controlling the transcription of various genes related to erythroid differentiation. These
include genes associated with heme and globin synthesis, glycophorins, BH-3 anti-apoptotic
genes, genes regulating the cell cycle, and the gene encoding the erythropoietin receptor
(EPOR) [27–29]. Erythropoietin primarily affects myeloid precursor cells to promote their
survival, facilitating the erythroid differentiation process mostly driven by GATA-1.

Key molecular participants in these networks encompass iron, regulators of iron
metabolism like transferrin receptors-1 and -2, as well as early acting hematopoietic growth
factors including stem cell factor and interleukin-3. Additionally, classical hormones like
thyroid hormones, androgens, corticosteroids, activin/inhibin, and others are integral
components [30–34].

Numerous kinase-signaling cascades have been thoroughly studied, encompassing
pathways such as Janus kinase/signal transducer and activator of transcription (JAK/STATs),
PI3K/Akt, and mitogen-activated protein kinases (MAPKs). These signaling pathways are
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involved in the differentiation of hematopoietic stem and progenitor cells (HSPCs) into
mature red blood cells, by phosphorylating multiple substrates, such as extracellular signal
related kinases (ERK), p38 kinase-dependent pathways and phosphoinositide 3-kinase
(PI3K) [35]. Coulon et al. enhanced cellular responsiveness to EPO through pIgA1 and
TfR1 (also known as CD71), two regulators involved in the activation of MAPK and PI3K
signaling pathways, with the well-defined role of stimulating erythropoiesis [36].

With aging, there is a decline in the quantity of erythroid islands within the bone
marrow, accompanied by an enlargement in their size. The reduction in the numbers of
stem cells and erythroid progenitors during the aging process might be counteracted by an
enhanced proliferation of local erythroid progenitors [1,37,38].

The generation of new erythrocytes within the bone marrow niche is a dynamic process
that involves the stimulation of several components, including vascular endothelial cells,
osteoblasts, hematopoietic cells, stromal cells, and the extracellular matrix [39]. There is a
constant interaction in the bone marrow microenvironment between the hematopoietic cells
and cell adhesion molecules, growth factors, and cytokines including insulin-like growth
factor 1 (IGF-1), interleukin-3 (IL-3), granulocyte-macrophage CSF (GM-CSF), along with
EPO and stem cell factor, in order for the erythroid cells to develop and differentiate.

Different cellular and molecular pathways associated with the production and matu-
ration of red blood cells have been identified and characterized: Stem Cell Factor (SCF),
c-KIT receptors, MAPK family members, IL-3 stimulates PI3K, RAS/MAPK, interleukin-6
(IL-6)—IL-6, IL-11, LIF, and OSM, erythropoietin (EPO) [35]. We can only leverage our
comprehension of kinase signaling in normal erythropoiesis to achieve clinical benefits in
various types of anemias once we have a more profound understanding of the process.

These in vivo models [40–42] could be employed to simulate red blood cell diseases
and identify novel drug targets, offering significant advantages for patients resistant to
existing treatments. Moreover, these models might contribute to research on the in vitro
production of red blood cells, offering a potential alternative to the prevalent practice of
donor blood transfusions in treating blood disorders.

2.3. MicroRNAs Involved in Steady-State Erythropoiesis

MicroRNAs are small non-coding, single-stranded RNAs (19–24 nucleotides long),
that negatively regulate gene expression through mRNA degradation at the translational
level [43]. MicroRNAs are generally considered key regulators of cell proliferation, dif-
ferentiation, development and apoptosis [44]. There are several microRNAs involved in
steady state erythropoiesis mediating the growth and development of normal erythroid
cells (miR-126), regulating oxidative stress, erythrocyte maturation and differentiation
(miR-210, miR-362, miR-188), hemoglobin synthesis (miR-144/451, miR-486-3p, miR326),
transferrin function (miR-320) and iron homeostasis (miR-122). miR-144 and miR-451 are
involved in maintaining erythroid homeostasis while the down-regulation of miR-221,
miR-222 and miR-223 is required for terminal differentiation and proliferation [45,46].

2.3.1. Erythroid Differentiation

In vivo and in vitro models show that increased expression of miR-486-5p stimulates
differentiation and survival of normal CD34(+) erythroid cells by targeting FOXO1 and
PTEN genes, significant up-regulation has been observed in chronic myeloid leukemia
(CML) [47]. MiR-23a and miR-27a induce GATA1 depended erythroid differentiation in
human hematopoietic CD34(+) progenitors as well as mice and zebrafish experimental
models [48,49]. Andolfo et al. show in an experiment on CD34(+), K562 and HEL cells
that miR-Let-7d targets the DMT1-IRE gene and impairs erythroid differentiation through
the disruption of the iron metabolism [50]. MiR-181 promotes erythroid differentiation in
experimental models of CD34(+) cells by repressing Lin28 expression and disrupting the
Lin28-let-7 [51]. Down-regulation of miR-150, miR-155, miR-221, miR-222 has been demon-
strated as necessary for both early and late erythroid proliferation, while up-regulation of
miR-451, miR-24, and miR-16 has been observed [44]. Wang et al. show that overexpres-
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sion of miR-376a detected in K562 cells silences CDK2 and Ago2 and inhibits erythroid
differentiation [52].

2.3.2. Erythroid Maturation

MiR-144/451 is up-regulated after erythroid differentiation, it targets the FOXO3,
GATA2 and KLFD genes and in addition to erythroid maturation it regulates oxidative
stress and hemoglobin synthesis [44,53–55]. During the maturation of erythroid cells,
overexpression of miR-191 blocks enucleation by targeting Riok3 and Mxi1 genes [56].
Choong et al. in an experiment on CD34(+) and K562 cells derived from human umbilical
cord blood concluded that miR-22, miR-28, miR-185 correlate with CD71, CD36, and
CD235a expression and act in erythroid maturation by targeting TLK, H3F3B, MAP3K3,
BCL9L and TYRO3 genes [57]. Additionally, their work associated the miR-181 family, miR-
221 and miR-154 with common myeloid/erythroid progenitor commitment and miR-32,
miR-136, miR-137 with early erythroid commitment [57]. Rivkin et al. demonstrated in
an in vivo experiment using a mouse loss-of-function allele model that miR-142 plays a
critical role in erythrocyte maturity along with the regulation of erythrocyte size, function
and survival. Furthermore, its control on the ACTIV network helps regulate membrane
skeleton organization [58].

3. Ineffective Erythropoiesis

In certain pathological states, this regulatory network becomes overburdened or dys-
functional, leading to either polycythemia or anemia. Over a billion and a half people
around the globe are affected by anemia, bringing the total worldwide disease burden at
around 9% of patients with poor numbers of healthy RBCs and low blood hemoglobin [59].
Disorders affecting red blood cells encompass a wide range of conditions, from hereditary
disorders like thalassemia and sickle cell anemia to acquired disorders such as polycythemia
vera and paroxysmal nocturnal hemoglobinuria (PNH), which can result in clinical out-
comes varying from mild to fatal.

3.1. Anemia

The World Health Organization (WHO) established specific criteria, nearly a half
century ago, to define anemia based on hemoglobin (Hb) levels in the blood, less than
12.0 g per deciliter (g/dL) for women and less than 13.0 g/dL for men [60]. In recent years,
anemia is categorized into subtypes based on mean cellular volume (MCV) and by the
reticulocyte index (RI), accounting for the bone marrow’s responsiveness to anemia. A low
RI suggests inadequate compensation, while a high RI indicates active efforts to address
the underlying cause of anemia, whether by increased destruction of red blood cells or
recovery from a previous episode of anemia [61]. There are four major types of anemia,
classified by MCV, as presented in Table 1 [62].

Often, anemia manifests as a complication in patients battling cancer and more specifi-
cally hematologic malignancies originating from diverse factors like neoplastic cell infil-
tration in the bone marrow, hemolysis, poor nourishment, and ineffective erythropoiesis
caused by diseases like chronic lymphocytic leukemia, multiple myeloma, myelodysplas-
tic syndromes, thalassemia, chronic kidney disease, hemorrhage or cytotoxic therapies,
chemotherapy agents, CAR T-cell and other immune-based therapies. Anemia can be
regarded as a prognostic tool in some hematological malignancies or a result of the dis-
ease outcome [63] in others. One such example is clonal hematopoiesis of indeterminate
potential (CHIP), a hematological condition marked by the expansion of hematopoietic
clones triggered by somatic mutations in stem and progenitor cells, common in older adults,
without evident bone marrow disorders [64].
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Table 1. Classification of anemia by MCV.

Type of Anemia MCV Etiology

Hypoproliferative Microcytic Anemia MCV < 80 fL
iron-deficiency anemia sideroblastic anemia
thalassemia
lead toxicity

Hypoproliferative Normocytic Anemia MCV 80–100 fL

anemia of chronic disease hemolytic anemia
aplastic anemia
myelofibrosis
leukemia
cancer metastases

Hypoproliferative Macrocytic Anemia MCV > 100 fL

megaloblastic anemia
pernicious anemia
nonmegaloblastic anemia MDS
hereditary spherocytosis
liver disease
hypothyroidism
folate and vitamin B12 deficiency

Hemolytic anemia extravascular hemolysis
intravascular hemolysis

3.1.1. Thalassemias

Thalassemia syndromes are severe health-threatening conditions. The mutations can
be expressed in the α (HBA1/HBA2) and β globin (HBB) genes, inherited in an autosomal
recessive manner [65]. α thalassemia is an inherited disorder characterized by reduced
or absent synthesis of alpha-globin chains caused by somatic mutations of the ATRX
gene that may result in neoplastic transformation of the bone-marrow progenitors [66].
β-Thalassemia is a genetic disorder with decreased synthesis of beta-globin chains, caused
by point mutations in the HBB gene, which are essential components of hemoglobin. This
mutation along with the arrest of maturation mediated by the TGF β superfamily leads
to ineffective erythropoiesis, a high rate of proliferation and apoptosis, extramedullary
hematopoiesis, and severe anemia [67].

3.1.2. Congenital Dyserythropoietic Anemia (CDA)

Another group of rare inherited disorders produced by an ineffective erythropoiesis
are congenital dyserythropoietic anemias (CDAs). CDAs are caused by mutations in genes
involved in the process of erythropoiesis. For example, CDA type I is associated with
mutations in the CDAN1 gene, CDA type II with mutations in the SEC23B gene, CDA type
III with mutations in the KLF1 gene and CDA type IV is caused by a unique heterozygous
variant c.973G>A (p.E325K) in the KLF1 gene. The main symptoms of CDAs are hemolytic
anemia, iron overload, aplastic crisis, splenomegaly, cirrhosis, gallstones, and skeletal
abnormalities [68].

3.1.3. Anemia of Inflammation and Chronic Disease

Anemia linked to chronic inflammatory diseases induces tissue hypoxia, irrespective of
its source. This condition triggers increased erythropoietin (EPO) production by the kidneys,
subsequently stimulating erythropoiesis in the bone marrow. Conversely, under instances
of intense anemic stress, an alternative stress erythropoiesis pathway is activated to ensure
the delivery of oxygen to the tissues. Inherited forms of anemia, like thalassemia, and
acquired types like MDS—due to inefficient production of red blood cell precursors—are
connected to abnormalities in the later stages of erythropoiesis [13].

Chronic inflammatory conditions, prolonged infections, autoimmune diseases, and
cancer lead to an increased production of pro-inflammatory cytokines that will negatively
influence physiological erythropoiesis, and on top of that, they will generate the synthesis
of myeloid cells. In these conditions, acute anemia occurs, and the stress erythropoiesis
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pathway is activated through the appearance and mobilization of stress erythroid progeni-
tors (SEPs).

SEPs originate directly from short-term reconstituting hematopoietic stem cells (ST-HSCs),
in the adult spleen and liver of mice and were identified by CD34+Kit+Sca1+Lin− murine
markers. These HSCs migrate from the bone marrow to the spleen, where they are identified
by hedgehog (HH) and bone morphogenetic protein 4 (BMP4) signaling as SEPs. Three
distinct populations of prematurely SEPs are identified in vitro as stress erythroid progeni-
tors by the cell-surface markers that indicate increasing maturity: CD34+CD133+Kit+Sca1+,
CD34−CD133+Kit+Sca1+, and CD34−CD133−Kit+Sca1+ [69]. Each of these groups is capa-
ble of transplantation and self-renewal. However, despite the presence of stem cell markers,
they are constrained to erythroid differentiation [70]. Xiang and team were able to validate
that cells within the human BM, as the ones in C57BL murine models used, have the capacity
to produce BMP4-dependent stress erythroid burst-forming units when subjected in culture
to conditions that mimic stress erythropoiesis. Erythroid progenitors constitute a diverse
group of cells. In the future, it will be essential to comprehend the regulatory mechanisms
that contribute to this diversity. Erythroid progenitors play a distinctive role as a vital bridge
between hematopoietic stem cells and terminal erythroblasts which are predominantly pre-
programmed. As cells undergo terminal erythroid differentiation, they exhibit minimal to no
capacity for proliferation and self-renewal [71].

Inflammatory signals play a significant role in enhancing NF-κB activity and promote
the synthesis of pro-inflammatory cytokines, interferons type I (IFNα and IFNβ), type II
(IFNγ) and tumor necrosis factor α (TNFα) with a direct impact on early differentiation
and maturation of HSCs [72]. A crucial role in boosting self-renewal and differentiation
properties of HSCs is attributed to mesenchymal stem cells (MSCs) by IL-6 and IL-1
cytokines release as a response to infection and inflammation [73,74]. Human granulocyte
colony stimulating factor (G-CSF), is a protein consisting of 175 amino acids, produced by
diverse cell types, including monocytes, fibroblasts, macrophages, and stromal cells [75]. It
is an important player in the regulation of hematopoiesis and immunity, as it stimulates the
BM to produce neutrophils and stem cells and release them into the bloodstream [76,77].
HSPCs mobilization in response to G-CSF was demonstrated in mice with homozygous
deletion of the C3 gene [78,79].

Other inflammatory cytokines, including IL-6, IL-3, IL-12, and GM-CSF join G-CSF
in its mobilizing activity of hematopoietic stem/progenitor cells (HSPCs) into the blood.
However, the expansion HSCs is not linked to increased HSC activity. Mice treated with G-
CSF exhibit notably lower repopulating activity in the bone marrow compared to untreated
mice [80,81].

IL-1 (together with IL-1α and IL-1β genes) is the first interleukin identified from
the IL-1 family (11 cytokines) engaged in the host immediate response to infections or
inflammation [82]. IL-1 manifests many pleiotropic functions throughout the body as
a lymphocyte-activating factor, in hemopoietin-1, osteoclast activation and secretion of
metalloproteases, in fever development, and in maintaining homeostasis of the neuro-
immuno-endocrine system. To prove this concept, Horai et al. [83] obtained and operated
on KO mice carrying a null mutation in one of the IL-1α, IL-1β, or IL-1ra genes. The
scientists concluded that all these forms of Il-1 work together in a regulatory milieu that
controls fever development and glucocorticoid synthesis in normal physiology and under
stress conditions. During acute need, interleukin 1 (IL-1) triggers rapid myeloid recovery
in vitro and in vivo and increases HSC differentiation towards MMP by activation of PU.1
transcription factor, together with its target genes GM-CSF and M−CSF. In vitro IL-1β-
induced stimulation of HSCs produced an increase in c-Kit + progenitors and mature
myeloid cells [84]. In chronic exposure to injury and inflammation, HSCs lose part of
their self-renewal capacity, with fewer colonies formed as a result of reduced clonogenic
capacity of the progenitor cells in the presence of IL-1 due to a higher degree of HSCs
maturation [84]. It can be concluded that IL-1 plays a double-edged sword influence in the
BM microenvironment, in the process of myeloid differentiation of HSPCs.
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Tumor necrosis factor-α (TNF-α) is an important member of the TNF family and
a potent pro-inflammatory cytokine. Tumor necrosis factor alpha (TNFα) was initially
obtained from serum and being predominantly expressed by primitive neutrophils and to
a smaller extent by lymphocytes, NK cells, and endothelial cells [85]. HSCs maintenance,
growth and differentiation in the BM niche is inhibited by tumor necrosis factor-α (TNF-α)
and interferon-γ (IFN-γ) as well as their influence in shortening the life cycle of mature
circulating erythrocytes [70].

PU.1 is an important regulator of myeloid differentiation in normal HSPC homeostasis.
Transcription factor PU.1 (purine-rich DNA binding, SPI1) can be induced by TNF, via
improved mRNA transcription and translation. This transcription is directly adjusted
by NF-κB signaling and post-transcriptional degradation via microRNA-155 (miR-155).
Long-term expression of PU.1 transcription factor results in myeloid commitment [86].

3.2. Hematological Neoplasms

Hematological neoplasms can be arranged by WHO5 Classification 2017 [87] into
myeloid, lymphoid and myeloid/lymphoid neoplasms. Myeloid neoplasms originate
from progenitor cells within the bone marrow that have the capacity to differentiate into
various mature blood cell types, including erythrocytes, granulocytes, monocytes, and
megakaryocytes. These progenitor cells undergo genetic alterations that drive abnor-
mal proliferation and differentiation, leading to the development of myeloid neoplasms,
namely: Myeloproliferative neoplasms (MPNs), Chronic myeloid leukemia (CML), Acute
myeloid leukemia (AML), and Myelodysplastic neoplasms/syndromes (MDS). Lymphoid
neoplasms include acute lymphoblastic leukemia, mature B cell neoplasms, mature T
cell neoplasms and Hodgkin lymphoma. Myeloid/lymphoid neoplasms encompass
eosinophilia and tyrosine kinase gene fusions, mastocytosis, dendritic neoplasms, mixed
myeloid and lymphoid neoplasms.

MPNs are a group of hematological disorders characterized by the abnormal pro-
duction of myeloid cells within the peripheral blood during hematopoiesis in the bone
marrow environment, genetic mutations, growth factors and transcription factor dysregu-
lation [88]. The four major types of myeloproliferative neoplasms according to the WHO
classification are Chronic Myeloid Leukemia (CML), Polycythemia Vera (PV), Essential
Thrombocythemia (ET), and Primary Myelofibrosis (PMF).

3.2.1. Chronic Myeloid Leukemia (CML)

CML is a myeloproliferative neoplasm mostly composed of proliferating granulo-
cytes and Philadelphia chromosome t(9;22)(q34;q11) translocation (PMID: 32239758) that
manifests in 15% of newly diagnosed cases of leukemia in adults. Patients can be asymp-
tomatic or present rare manifestations like bleeding, thrombosis, gouty arthritis, retinal
hemorrhages, and upper gastrointestinal ulceration [59].

3.2.2. Acute Myeloid Leukemia (AML)

AML is a malignancy of the bone marrow, a disorder of hematopoietic stem cells of the
myeloid lineage, characterized by clonal overexpansion [89]. It represents one of the most
commonly diagnosed types of leukemia in adults and accounts for 1% of all cancers [59].

3.2.3. Acute Erythroid Leukemia (AEL)

AEL is a rare subtype (2–5%) of acute myeloid leukemia characterized by a predom-
inant proliferation of erythroid precursors in the bone marrow, leading to bone marrow
failure and a poor prognosis compared to other subtypes of AML. AEL is a representative
case of dyserythropoiesis, as it can cause up to 80% of immature erythroid precursors in
the bone marrow. In 2001, the WHO presented two categories of AEL: the first subtype
M6a (50% or more of erythroid precursor and 30% or more of blasts), and the second
M6b (80% are immature erythroid precursors). This classification raised much debate and



J. Clin. Med. 2024, 13, 2585 9 of 17

subsequently the 2016 WHO report reassigned type M6a to MSD leaving type M6b the only
remaining subtype of AML [90].

3.2.4. Polycythemia Vera (PV)

PV is a chronic myeloproliferative blood disorder where there is an overproduction
of red blood cells (erythrocytosis) along with increased numbers of white blood cells and
platelets. This results in thickened blood and reduced blood flow through small vessels,
leading to complications such as blood clotting, increased risk of stroke or heart attack, and
splenomegaly. The JAK2 mutation plays a central role in the pathogenesis of PV, driving
the uncontrolled proliferation of blood cells [91].

3.2.5. Myelodysplastic Syndromes (MDS)

MDS are clonal bone-marrow diseases of the elderly characterized by chronic cytope-
nias and morphologic dysplasia of hematopoietic cells with a high risk of progression to
acute myeloid leukemia (AML) [92]. An ineffective erythropoiesis in MDS is a result of an
inflammatory environment that induces malignant clonal alterations due to: chromosomal
abnormalities induced by del(5q), del(7q) deletions/additions, specific mutations of the
spliceosome (SF3B1, SRSF2), transcription factors (RUNX1, ETV6) [93], NLRP3 inflam-
masome activation, overexpressed SMAD2/3 downstream mediators, TGF-b signaling,
epigenetic modifiers (TET2, DNMT3A 5, IDH1/2, ASXL1), RNA splicing factors, all drivers
of MDS pathogenesis by promoting an inhibitory activity on RBCs maturation [92,94].

Ineffective erythropoiesis is one hallmark of MDS. ARC (Absolute reticulocyte count)
in peripheral blood was found to be a biomarker (when ARC < 20× 109/L) together with
a shorter overall survival in the evaluation of the severity of ineffective erythropoiesis in
776 MDS patients. Huang et al. concluded that the inadequate production of red blood
cells in MDS may be partly due to premature ageing and apoptosis during erythroid differ-
entiation as well as high-risk molecular genetic aberrations due to the altered expression of
the ERCC1 gene [95].

3.3. MicroRNAs Involved in Ineffective Erythropoiesis

Mir-155 up-regulates the production of inflammatory cytokines G-CSF and TNFα by
bone marrow stromal cells through the activation of NF-kB [96]. L. Wang et al. concluded
that the Notch/miR-155/κB-Ras1/NF-κB pathway controls the inflammatory condition
of the bone marrow environment and influences the progression of myeloproliferative
diseases. Bašová P. et al. succeeded to induce increased levels of PU.1 in an AML (Acute
myeloid leukemia) mouse model by administrating a combination of three therapeutic
agents: AZA (5-Azacytidine), CEL (Celastrol), and AM155 (anti-miR-155), which inhibited
the growth of myeloid malignant cells and prolonged the survival of mice with AML [86].
PU.1 directly controls the expression of miR-155 and other miRs as well, namely miR-146a,
miR-342 and miR-338. In a CLL (Chronic lymphocytic leukemia) Eµ-TCL1 transgenic
mouse model, the suppression of miR-155 (or miR-26A or miR-130a) leads to the induction
of apoptosis [97]. TNFα, on the other hand, triggers apoptosis by the overexpression
of Fas in bone marrow CD34 + cells. The administration of an anti-TNFα monoclonal
antibody lowers anemia levels in human TNFα transgenic mice, by reducing the apoptotic
erythroblasts [98].

The following miRNAs inhibit erythroid differentiation in K562 cells (miR-124, miR-
200, miR-223, miR-224), in TF-1 cells (miR-200A, miR-221/222), in polycythemia vera
(miR-16-2) and in other diseases, see Table 2.
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Table 2. MicroRNAs and their role in ineffective erythropoiesis.

mRNA Target Models References

miR-150 c-Myb Stimulates MEP differentiation in
megakaryocytes, inhibiting erythropoiesis [99]

miR-124 c-MYB TAL1 Inhibits erythroid differentiation K562 cells [100]

miR-17/92 cluster MAPK signaling HbF (fetal hemoglobin regulation) regulation [101]

miR-221/222 c-Kit Inhibits erythropoiesis TF-1 cells, [102]

miR-223 LMO2 Inhibits erythroid differentiation, K562 cells [103,104]

miR-24 ALK4 Inhibits terminal differentiation K562 cells [100]

miR-155

PU-1
ETS-1
CEBP β

SHIP 1

Inhibits erythropoiesis
Mouse and K562 cells [44,105]

miR-150 Riok-3
Mxi-1

↓miR-150 pathophysiology of PV
↑miR-150
Chronic lymphocytic leukemia

[106,107]

miR-143↓
miR-145↓

ERK
MAPK B-cell malignancies [108]

miR-16-2 c-MYB Abnormal expansion of erythroid cells in
polycythemia vera [109]

miR-146b NF-kB Suppresses NF-κB activation [110]

miR-146a γ globin Inhibits γ globin expression
β-thalassemia [111]

miR15a c-Myb Inhibits BFU-E transition to CFU-E [49,112]

miR-16-1 c-Myb Inhibits BFU-E transition to CFU-E
K562 cells [49,111]

miR-96 γ globin Inhibits γ globin expression [111,113]

miR-9 FOXO3 Inhibits erythrocyte differentiation in mice [114]

miR-125b-1
TP53
MCL1
BAK1

Transcriptional activation of miR-125b-1 led to
lymphoid precursor transformation,
myelodysplasia and other types of leukemias

[115]

miR-125b-2 DICER1,
ST18

↑DS-AMKL,
↑DS-TL,
↑non-DS-AMKL
Pathogenesis of megakaryoblastic leukemia

[46]

miR-145 TIRAP
Fli-1

Loss of miR-145 contributes to the pathogenesis
of 5q- syndrome [46]

↑miRs-126/126 PTPN9 Inhibition of erythropoiesis [116]

↑miR-669m
Akap7,
Slc22a4
Xk genes

Inhibited erythroid differentiation in mice [117]

miR-200A PDCD4 and THRB ↑miR200A in K562 and TF-1 cells, inhibited
erythroid differentiation [118]

↑miR-2355-5p KLF6

↑miR-2355-5p in HUDEP-2 and CD34+ cells
increases γ-globin synthesis by suppressing
expression of KLF6 (important transcription
factor in erythropoiesis)

[119]
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Table 2. Cont.

mRNA Target Models References

miR-101-3p
Rac1,
SUB1,
TET2, and TRIM44

High proliferation in β-thalassemia/HbE
erythroblasts [120]

miR-24 ALK4 (activin type I receptor) Inhibition of erythropoiesis [101]

miR-320a SMAR1, TFRC Inhibits erythrocyte differentiation and apoptosis
K562 cells [121]

miR-451 GATA1, GATA 2, RAB14 K562 cells, mice erythroid cells
Inhibits mitochondrial respiration [122]

miR15a c-Myb Inhibits BFU-E transition to CFU-E [49,112]

4. Therapeutic Approaches

There are some approved drugs that stimulate erythropoiesis; one such drug is Epo-
etin Alfa (human erythropoietin), which is routinely used in the treatment of anemias
associated with chronic kidney disease and cancer. Following these treatments, only 20% of
patients reach normal hemoglobin values while 40% remain anemic [5]. The main signaling
mechanisms essential for erythroid progenitor survival, proliferation and differentiation
attributed to EPO/EPO-R interaction have been demonstrated to be JAK2/STAT5 path-
way activation and phosphorylation [20,123]. Currently, several clinical trials are ongoing
which aim to explore the treatment of anemia in patients with chronic kidney disease
and cancer patients receiving chemotherapy using Peginesatide, a functional analog of
erythropoietin [59].

In the case of thalassemia, most common treatments include blood transfusions,
allogeneic stem cell transplantation, luspatercept, 5-azacytidine, decytabine and butyrate
derivatives. In 2024, the FDA approved exagamglogene autotemcel (exa-cel), depending on
the severity [67]. CDA treatment options include blood transfusions, hematopoietic stem
cell transplantation (HSCT), interferon-α and drugs (luspatercept, sotatercept) that target
ineffective erythropoiesis, new approaches on drugs that target both the anemia and the
iron overload [68].

Several therapeutic options are being explored to regulate miRNA biogenesis such
as CRISPR/Cas9-base genome editing, antagomirs, miRNA sponges and Small Molecules
Inhibitors of miRNAs (SMIRs). Oligonucleotide analogs may be used to correct miRNA loss-
of-function and anti-miRNAs oligonucleotides (AMOs or antagomiRs) as well as artificial
miRNAs which are designed to silence specific target genes. These approaches have
successfully been integrated into cancer research and hold promise for the development of
erythropoietic stimulating agents [124–126].

Gene therapies that aim to stimulate erythropoiesis and to correct genetic defects that
cause inherited forms of anemia, such as β-thalassemia and sickle cell disease, aim at repair-
ing or replacing defective genes in hematopoietic stem cells (HSCs). CRISPR/Cas editing
of the ß-globin gene has been explored. Histone deacetylases inhibitors like vorinostat and
hypomethylating agents help regulate gene expression through chromatin modulation.
DNA-methyl transferases such as DNMT1, BCL11A and decitabine stabilize DNA methy-
lation marks during cell division. Small molecule drugs targeting pathways involved in
erythropoiesis have been explored for the treatment of anemia. Erythroferrone (ERFE) is
involved in the regulation of hepcidin expression and could potentially be considered as a
target marker in ineffective erythropoiesis. SLN124, conjugated 19-mer short interfering
RNA that targets the TMPRSS6 gene that has been recently associated with increased
hepcidin levels in healthy adults [127]. Currently, JAK inhibitors like ruxolitinib have FDA
approval for use in myelofibrosis [128–130].

Certain red blood cell disorders, such as paroxysmal nocturnal hemoglobinuria (PNH)
and acquired aplastic anemia, can be successfully treated through bone marrow trans-
plantation [131,132]. However, this intervention is linked to notable morbidity and mor-
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tality rates due to the necessity for preconditioning, a process that eliminates the host’s
own hematopoiesis.

Efficient therapeutic options in MDS are few: erythropoietin and hypomethylating
agents (Azacitidine and Decitabine), immunomodulating agents (Lenalidomide) and re-
cently, luspatercept (a TGFb-pathway activin receptor trap) [93]. In the clinical trials (PACE-
MDS phase 2) and (MEDALIST phase 3) approved by FDA in 2020, luspatercept exhibited
encouraging results in the treatment of anemia in patients with transfusion-dependent
lower-risk myelodysplastic syndrome (MDS) with ring sideroblasts, by promoting ery-
throid maturation [26].

5. Conclusions

The study of the complex interaction of signaling pathways, genetic, and epigenetic
factors that regulate erythropoiesis is essential for understanding how erythropoiesis
becomes disrupted in different hematological disorders and provides novel approaches for
treatment. Ongoing research is revealing new aspects of these factors and their functions in
maintaining erythroid homeostasis.
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