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Abstract: Background/Objectives: Several studies have shown a relation between obesity and cogni-
tive decline, highlighting a significant global health challenge. In recent years, artificial intelligence
(AI) and machine learning (ML) have been integrated into clinical practice for analyzing datasets to
identify new risk factors, build predictive models, and develop personalized interventions, thereby
providing useful information to healthcare professionals. This systematic review aims to evaluate
the potential of AI and ML techniques in addressing the relationship between obesity, its associ-
ated health consequences, and cognitive decline. Methods: Systematic searches were performed
in PubMed, Cochrane, Web of Science, Scopus, Embase, and PsycInfo databases, which yielded
eight studies. After reading the full text of the selected studies and applying predefined inclusion
criteria, eight studies were included based on pertinence and relevance to the topic. Results: The
findings underscore the utility of AI and ML in assessing risk and predicting cognitive decline in
obese patients. Furthermore, these new technology models identified key risk factors and predictive
biomarkers, paving the way for tailored prevention strategies and treatment plans. Conclusions:
The early detection, prevention, and personalized interventions facilitated by these technologies can
significantly reduce costs and time. Future research should assess ethical considerations, data privacy,
and equitable access for all.
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1. Introduction

Obesity is a condition characterized by the excessive accumulation of body fat and a
body mass index (BMI) of 30 or higher, in relation to lean mass [1]. In 2022, over 2.5 billion
adults aged 18 and above worldwide were overweight, with 890 million of them having
obesity, making it a global public health crisis [2]. In Italy, the picture is equally concerning,
with 35.5% of the adult population overweight and 10.8% obese [1]. The economic conse-
quences of the obesity epidemic are also significant. Without intervention, it is estimated
that the global costs of overweight and obesity could reach USD 3 trillion annually by 2030
and over USD 18 trillion by 2060 [3]. This alarming trend carries significant health implica-
tions, as obesity is a major risk factor for numerous chronic diseases, namely heart disease
due to high blood pressure and high cholesterol levels, type 2 diabetes, and breathing
problems such as asthma and sleep apnea [4]. In 2019, an estimated 5 million deaths from
noncommunicable diseases (NCDs) were caused by higher-than-optimal BMI, including
neurological disorders [5]. The societal impact of obesity extends beyond healthcare costs
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and individual health outcomes. Obese individuals may face discrimination in employ-
ment, social settings, and even the healthcare system. This can lead to feelings of isolation,
depression, and decreased quality of life [6]. Additionally, the rise in obesity places a strain
on public health infrastructure and resources, diverting funds from other preventative and
treatment programs [7]. Addressing the obesity epidemic requires a multi-pronged ap-
proach, including public health initiatives to promote healthy eating and physical activity,
improved access to affordable and nutritious food options, and addressing the social and
environmental factors that contribute to weight gain [8]. Furthermore, recent research has
shown a concerning link between obesity and cognitive decline, adding another layer of
complexity to this multifaceted public health challenge [9].

Cognitive decline occurs when an individual’s cognitive abilities, such as memory,
attention, and reasoning, deteriorate faster than what is considered normal for their age and
condition. It can arise from various factors, such as aging, neurodegenerative diseases, and
brain injuries [10]. Dementia, which is also referred to as a “major neurocognitive disorder”,
affects cognitive, behavioral, mood, and personality functions [11]. As a result, there is
a significant change in the patient’s functional state, which impacts their independence
and relationships with others [12]. The global burden of cognitive decline mirrors that of
obesity. Over 55 million individuals worldwide are estimated to be living with dementia,
with this number projected to double every 20 years [13]. In Italy alone, there are over 1
million patients with dementia (of which about 600,000 have Alzheimer’s dementia) and
about 3 million people involved in their care. This has consequences on the economic and
organizational plan [14]. The estimated worldwide cost of dementia was USD 818 billion
in 2015, which represented 1.09% of the global gross domestic product (GDP) at that time.
The annual global cost of dementia is now above USD 1.3 trillion and is expected to rise to
USD 2.8 trillion by 2030 [13].

The link between obesity and cognitive decline is particularly concerning. Obesity
doubles the risk of Alzheimer’s disease (AD) and is linked to a higher likelihood of de-
mentia [15,16]. A recent study has shown that individuals who are overweight or obese
have a higher risk of developing dementia compared to those within a normal weight
range [17]. For those with a BMI between 25 and 29.9, the risk of developing dementia is
increased by 27%, while those with a BMI of 30 or higher have a 31% increased risk [18].
Postmortem studies show that specific proteins associated with AD (β-amyloid and tau
proteins) were higher in elderly people with severe obesity [19]. Higher BMI predicts
temporal lobe atrophy, and there is evidence that obesity also increases the risk of mild
cognitive impairment (MCI), a precursor to dementia [19–22]. The reasons for this connec-
tion are many and complex. Research suggests that obesity can accelerate brain aging by
up to 16 years, shrink brain volume, and weaken the brain’s resilience to damage, leading
to worse symptoms and faster disease progression [23–26]. Metabolic syndrome (MetS)
involves a cluster of medical conditions such as insulin resistance, type 2 diabetes, dyslipi-
demia, and AD, sometimes dubbed as type 3 diabetes [27]. Exposure to environmental
estrogens and anti-androgens can interfere with normal pancreatic function, insulin signal-
ing pathways, brain insulin resistance, and dyslipidemia, increasing the risk of developing
diabetes and related dementia [28]. This connection hinges on a key molecule: insulin.
Insulin regulates blood sugar levels and plays a vital role in brain function and memory.
If the body becomes resistant to insulin, a key feature of type 2 diabetes, it can disrupt
the brain as well, possibly leading to cognitive impairment and increasing the likelihood
of Alzheimer’s and other neurodegenerative diseases [29]. Dyslipidemia and elevated
levels of triglyceride-rich lipoproteins (TRLs) in type 2 diabetes can combine and bind
to amyloid-β peptide (TRL-Aβ), which can damage cerebral capillary integrity, leading
to neurovascular inflammation, neuronal damage, and premature cognitive decline [30].
People can reduce their risk of cognitive decline and dementia by being physically active;
not smoking; avoiding the harmful use of alcohol; controlling their weight; eating a healthy
diet; and maintaining healthy blood pressure, cholesterol, and blood sugar levels [12]. By
adopting these healthy lifestyle habits, individuals can not only improve their physical



J. Clin. Med. 2024, 13, 2307 3 of 15

health but also potentially protect their cognitive function and reduce their risk of dementia
later in life.

Given the immense societal and personal costs associated with both obesity and cog-
nitive decline, the need for innovative strategies to prevent and treat these conditions is
paramount. Artificial intelligence (AI) and machine learning (ML) are promising tools
that can revolutionize research in this area [31]. AI is a field of computer science that
creates machines and software capable of performing tasks that typically require human
intelligence [32]. ML is a branch of AI that uses algorithms and statistical models to en-
hance performance through data analysis [33,34]. In clinical practice, AI and ML analyze
datasets to identify new risk factors, construct predictive models, and develop customized
interventions, providing valuable insights to healthcare professionals [32–35]. This deeper
understanding of the underlying mechanisms can pave the way for more effective pre-
vention strategies [36]. Beyond risk prediction, AI and ML offer exciting possibilities for
personalized interventions. These models can utilize AI and ML algorithms to analyze
individual data and predict the risk of developing obesity or cognitive decline [37]. Early
risk identification allows for timely interventions, potentially mitigating the severity and
progression of these conditions [38]. AI and ML can also be used to create personalized
interventions tailored to individual needs and risk factors [32]. For instance, an AI-powered
app can analyze a user’s dietary habits, physical activity levels, and genetic data to identify
their risk for obesity and cognitive decline. The app could then recommend personalized
dietary plans that promote healthy eating and weight management. It could also suggest
exercise programs tailored to the user’s fitness level and preferences while incorporating
cognitive training activities to stimulate brain function. The potential benefits of such
personalized interventions are multifaceted. A recent systematic review and meta-analysis
demonstrated that chatbots can motivate individuals to increase their daily step count,
consume more fruits and vegetables, and improve sleep duration and quality [39]. Fur-
thermore, chatbots for supporting hypertension medication self-management were found
useful in managing patient’s medications, including reminders, refills, and even communi-
cation with healthcare providers [40]. These results overall suggest chatbots as a promising
tool for improving self-management and medication adherence in patients with hyperten-
sion. By addressing the root causes of obesity and cognitive decline in a targeted manner,
these interventions can lead to improved health outcomes and a reduction in healthcare
costs. As previously observed, these personalized approaches can empower individuals to
take control of their health and well-being, fostering motivation and adherence to lifestyle
changes. By continuing to invest in research and development in this field, we can unlock
the full potential of these technologies to create a future where these debilitating conditions
can be effectively prevented, managed, and even potentially reversed.

Therefore, this systematic review aims to evaluate the application of AI and ML
techniques in research related to obesity, its associated health consequences, and cognitive
decline. This review can provide valuable insights into the current state of the art and pave
the way for future advancements in this crucial area of public health.

2. Materials and Methods

This systematic review was conducted and reported in accordance with the Preferred
Reporting Items for Systematic Review and Meta-Analyses (PRISMA) (see Figure 1). A
protocol for this systematic review was established and preregistered on the Open Science
Framework (OSF) on 13 March 2024 (N2CGK).
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2.1. Search Strategy

The search for articles was conducted in January 2024. Articles were selected from
research databases—PubMed, Cochrane, Web of Science, Scopus, Embase and PsycInfo—
using the following search terms: (“Obesity”[All Fields] OR “Adiposity”[All Fields]) AND
(“Mild cognitive impairment”[All Fields] OR “Cognitive decline”[All Fields] OR “De-
mentia”[All Fields]) AND (“Artificial intelligence”[All Fields] OR “Machine learning”[All
Fields]) (Table S1). We conducted independent scans of titles and abstracts from database
searches. Articles were evaluated based on predetermined inclusion criteria to determine
their suitability. All articles that met the inclusion criteria for the full text were selected
based on their titles and abstracts.

This research was not restricted by the year of publication for the articles considered.
Inclusion criteria: (i) articles that enrolled human subjects; (ii) experiments that focused

on the relation between cognitive impairment and obesity in adults; (iii) articles that used
AI or ML techniques; (iv) articles in English language only. Exclusion criteria: (i) reviews
and meta-analyses; (ii) conferences and editorials; (iii) duplicated studies; (iv) animal
studies; (v) non-English studies.

2.2. PICO Model

We employed the PICO (Population, Intervention, Comparison, and Outcome) model
to shape our research question [41]. Our target population comprised midlife adult patients.
The intervention was to investigate the utility of AI and ML in assessing the relationship
between obesity and cognitive decline. For the comparison, we considered the traditional
investigation methods and their utility in clinical practice in terms of costs and time. The
outcome was related to the potential of AI and ML in addressing the interconnected issues
of obesity, its associated health consequences, and cognitive decline.
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2.3. Study Selection

A total of 200 articles were identified through database searches. In total, 25 duplicated
articles were deleted; 16 reviews were removed; 12 editorials or conferences were deleted;
74 studies were removed after title screening; 57 were removed after reviewing abstracts;
and 8 articles were removed after text screening (Figure 1). In this systematic review, we
considered a total of 8 articles about obesity and cognitive decline with the use of ML
techniques. To ensure the integrity of the study selection process, two authors extracted
data independently (I.V. and A.G.), resolving any disagreements through collaborative
discussion and consultation with a third author (G.M.). At least three authors independently
evaluated each article, and in case of any disagreement, the other three authors were
consulted. The necessary data were extracted from the full-text article. If any critical
information was missing from the original studies, their authors were contacted. This
method was implemented to eliminate the possibility of bias and to strengthen the validity
and reliability of the study findings.

2.4. Data Extraction and Analysis

Following the full-text selection, data were extracted from the included studies and
reported in a table using Microsoft Excel (Version 2021). The extracted data included study
title, first author name, year of publication, study aims and design, sample size, type of
participants, type of intervention and control, baseline performance, type of outcome and
time points for assessment, results, and key conclusions. Moreover, the agreement between
the two reviewers (I.V. and A.G.) was assessed using the kappa statistic. The kappa score,
with an accepted threshold for substantial agreement set at >0.61, was interpreted to reflect
excellent concordance between the reviewers. This criterion ensures a robust evaluation of
inter-rater reliability, emphasizing the achievement of a substantial level of agreement in
the data extraction process.

2.5. Risk of Bias within Individual Studies

I.V., A.G., and G.M. independently assessed the risk of bias for each study, which
was cross-checked by L.C. The risk of bias was assessed using the Risk of Bias in Non-
Randomized Studies of Exposure (ROBINS-E) (2023) tool [42] that comprises seven domains:
(i) bias due to confounding; (ii) bias arising from the measurement of the exposure; (iii) bias
in the selection of participants for the study (or for the analysis); (iv) bias due to post-
exposure interventions; (v) bias due to missing data; (vi) bias arising from the measurement
of the outcome; and (vii) bias in the selection of the reported results.

3. Results
3.1. Synthesis of Evidence

We conducted a systematic review to investigate the relationship between obesity, its
consequences, and cognitive decline. In total, we analyzed eight studies (Table 1): four
of these utilized ML techniques for risk assessment and prediction, while the other four
employed ML to understand mechanisms and identify biomarkers.

3.2. Key Findings from Included Studies

These recent studies have revealed more about the intricate connections between
dementia, cognitive decline, and the multiple factors that contribute to these conditions. The
relationships between these elements are not straightforward but rather involve interrelated
factors that interact in complex ways to influence cognitive health. These factors could
include genetics, lifestyle choices, environmental factors, and medical conditions [43].
Despite using different methods, these studies collectively provide valuable insights into
this critical health research area. Emphasizing the connection between these conditions,
research has shown that even mild hyperglycemia can lead to faster cognitive decline in
individuals under 88 years of age who also have central obesity [44]. Conversely, among
those under 87 years of age without central obesity, adiponectin may be an independent
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risk factor for cognitive decline [44]. Additionally, the “Likely Dementia” status is more
prevalent among older individuals, with a 2:1 female-to-male ratio, and is associated with
nine factors that increase the risk of transitioning to dementia. These factors include low
levels of education, hearing loss, hypertension, drinking, smoking, depression, social
isolation, physical inactivity, diabetes, and obesity [45]. Several studies have highlighted
the differential impact of sex on dementia risk [46,47]. For example, a study by Plassman
(2007) [48] found that women tend to have a higher prevalence of dementia compared
to men, partly due to longer life expectancy but also potentially influenced by biological
and sociocultural factors. Other studies have also corroborated a greater incidence of AD
among women, with longevity remaining a significant contributing factor to the higher
prevalence of AD among females compared to males [49,50]. Research also suggests
that there is a direct correlation between BMI trajectories and diabetes, hypertension,
and dementia [51]. Additionally, ML has been employed to predict dementia based on
modifiable risk factors, indicating the potential for preventive intervention. These ML
models have identified BMI, cognitive activity, and physical activity as the most important
features for predicting the risk of dementia [52]. Apart from identifying risk factors, some
of these studies delve deeper into the underlying mechanisms. For instance, ML was
utilized to quantify the impact of cardiovascular and metabolic risk factors (CVMs) on
brain structure, providing valuable insights into how these factors influence cognitive
decline. In a recent study [53], CVMs, such as diabetes and hypertension, had the strongest
association with changes in brain structure, suggesting a cumulative effect. Interestingly,
ML-based index scores did not show any correlation with established markers for brain
aging or AD, implying that these factors have distinct effects from typical age-related
changes and dementia [53]. Furthermore, health-disease phase diagrams (HDPDs) were
introduced to visually represent an individual’s risk progression for various diseases,
including dementia. This can aid in early detection and personalized interventions, helping
to improve health beyond personal boundaries [54]. In fact, HDPDs can potentially prevent
future disease onset in 7 out of 11 diseases [54]. Distinct patterns have been revealed
in how metabolic health relates to brain integrity in men and women. Research shows
that men may be more vulnerable to the direct consequences of metabolic health on brain
damage and cognitive decline. On the other hand, women’s cognitive decline may be
associated with more complex interactions that involve brain health, metabolism, and
possibly genetics [55]. This highlights the need for personalized approaches to address the
unique needs of each individual. Lastly, ML was also used to identify potential diagnostic
genes for both AD and MetS, suggesting common underlying mechanisms. A cluster of
genes related to cellular processes such as organization and transport were identified with
the potential to diagnose both AD and MetS [56].

Table 1. Characteristics of the studies included (by year).

Study Design Sample Size AI/ML
Technique

Cognitive Decline
and Assessment Objective Results

Bin-Hezam
and Ward
(2019) [52]

Secondary
observational

1812 subjects
(aged 55–90)
from ADNI.

LR, NB, DT,
and RF

This study analyzes
existing diagnoses
and dementia risk
factors within the

ADNI dataset (e.g.,
depression,
cognitive

inactivity).

Detect
dementia based
on modifiable

risk factors
leveraging ML

techniques.

ML models
achieved high

accuracy (up to
92%) in

predicting
dementia risk.
BMI, cognitive,
and physical
activity were
identified as

important factors.
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Table 1. Cont.

Study Design Sample Size AI/ML
Technique

Cognitive Decline
and Assessment Objective Results

Ganguli et al.,
2020 [44]

Prospective
cohort

478
individuals
aged 65 and
older from
MYHAT

WHR-
stratified ML

analyses using
CART

Neuropsychological
tests for memory,

attention, and other
cognitive functions
were administered

at baseline and
follow-up to assess

global cognitive
decline.

Investigate
potential

underlying
mechanisms

between
diabetes,

obesity, and
cognitive
decline in

older adults.

Hyperglycemia in
younger

individuals with
central obesity may

lead to faster
cognitive decline,
while adiponectin

could be a risk
factor for cognitive
decline in younger

individuals
without central

obesity.

Foret et al.
(2021) [55] Observational

266
individuals
(121 males

and
145 females;

mean
age ± SD:

49 ± 6 years
for both)

Gaussian
process

Standardized
memory, fluency,

and executive
function tests were
administered (e.g.,
MMSE, CVLT-II,

WAIS-IV) to assess
late-life cognitive

decline.

Investigate the
relationships

between brain
health and

cardiovascular
risk factors in
midlife adults,
with a specific
focus on sex
differences.

Men might be more
vulnerable to the
direct effects of
metabolism on

brain health, while
women might

experience more
complex

interactions
involving brain

health, metabolism,
and potentially

genetics.

Govindarajan
et al. (2022)

[53]

Cross-
sectional

observational
study

N = 24,902
from

8 independent
studies, 54.5%

female,
average

age = 62.4,
age range

45–75 years.

Linear support
vector

classifiers

This study analyzes
existing data

(diagnoses and
MRI scans) from

cognitively normal
iSTAGING

participants to
develop

CVM-related brain
structure measures

(SPARE-CVMs)
relevant to

dementia, AD, and
brain aging.

Develop and
evaluate

ML-based
indices that

can capture the
individual-

level effects of
CVMs on

brain structure
in cognitively
unimpaired
individuals.

ML successfully
revealed distinct

brain changes
associated with

specific CVMs like
diabetes and

hypertension in
cognitively normal
individuals. These
indexes captured
distinct patterns

and were not
linked to typical

aging or AD
markers,

highlighting their
potential for

understanding
CVM-brain health

relationships.

Li et al. (2022)
[56] Observational

Data of AD
and MetS in

the GEO
database

RF and LASSO

The study focuses
on gene expression
data from existing
studies of AD and

MetS.

Explore the
connection

between AD
and MetS by
identifying
genes that

could
potentially

diagnose both
conditions.

The study found
8 genes potentially

useful for
diagnosing both
AD and MetS.
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Table 1. Cont.

Study Design Sample Size AI/ML
Technique

Cognitive Decline
and Assessment Objective Results

Gharbi-
Meliani et al.
(2023) [45]

Longitudinal
observational

Data of
15,278 base-

line
participants

(aged 50 years
and more)

from SHARE

MFA and
HCPC

Autonomy was
assessed via

ADL/IADL scales;
cognition was
assessed via

immediate recall
and VF for “Likely
Dementia” status.

Explore the
potential of

unsupervised
ML in

identifying
transition to

probable
dementia in
longitudinal
population

aging surveys.

“Likely Dementia”
is more common in
older people, with

a higher prevalence
in females than
males. Nine risk
factors including

hypertension,
physical inactivity,

diabetes, and
obesity, increase the

likelihood of
transitioning to

dementia.

Mottalib et al.
(2023) [51]

Observational
cohort study

Data from
1,531,374

patients (aged
20–70)

collected from
1 January
2013 to 31
December

2018

Unsupervised
clustering

Focused on
individuals having
a diagnosis of one

of the 18 major
chronic diseases

examined,
including AD or

dementia.

Classify the
likelihood of
18 common

chronic
illnesses in
individuals
based solely

on their
obesity

patterns, as
indicated by
the trajectory
of their BMI.

The development
of diabetes,

hypertension, and
dementia is directly

related to the
trajectory of BMI.

Nakamura
et al. (2023)

[54]

Observational
cohort study

Data from
3238

individuals
(1281 males,

age
50.2 ± 16.2
years; 1957

females, age
51.5 ± 16.0

years)
collected over

14 years
(2005–2018).

Future-onset
prediction

models and
p-mICE

11 NCDs were
considered,

including incident
dementia that was

defined by the
MMSE ≤ 23.

Investigate the
potential of
HDPDs for

early detection
and

prevention of
NCDs.

HDPDs revealed
individual

variations in health
markers,

suggesting
personalized
prevention
strategies.

Improving health
beyond personal

boundaries in
HDPDs potentially
prevented future
disease onset in
7/11 diseases.

Legend: ADNI = Alzheimer’s Disease Neuroimaging Initiative; LR = logistic regression; NB = naive Bayes;
DT = decision tree; RF = random forest; ML = machine learning; BMI = body mass index; MYHAT = Monongahela–
Youghiogheny Healthy Aging Team; WHR = waist–hip ratio; CART = classification and regression tree; CVLT-
II = California Verbal Learning Test-II; MMSE = Mini-Mental State Examination; WAIS-IV = Wechsler Adult
Intelligence Scale-IV; MRI = magnetic resonance imaging; CVMs = cardiovascular and metabolic risk factors;
AD = Alzheimer’s disease; MetS = metabolic syndrome; GEO = Gene Expression Omnibus; LASSO = least
absolute shrinkage and selection operator; SHARE = Survey of Health, Ageing, and Retirement in Europe;
MFA = multiple factor analysis; HCPC = hierarchical clustering on principal components; ADL = activities of
daily living; IADL = instrumental activities of daily living; VF = verbal fluency; p-mICE = partially modified
individual conditional expectation; NCDs = noncommunicable diseases; HDPDs = personalized health-disease
phase diagrams.

3.3. Risk of Bias

The ROBINS-E tool [42] was used to assess the risk of bias in the articles included
in this review. Figure 2 shows the summary of the risk of bias assessment, while the
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graphs depict the distribution of bias concerns across the included studies. Out of the total
studies assessed, three studies [44,53,54] showed a high risk of bias due to post-exposure
interventions, and one [51] reported a high risk of bias in the selection of participants for the
study (or for the analysis). Additionally, three studies [44,53,56] displayed some concerns
about bias due to confounding. Further, the studies conducted by Govindarajan et al.
(2022) [53] and Foret et al. (2021) [55] exhibited some concerns about bias in the selection
of participants for the study (or for the analysis). Moreover, some concerns about bias
arising from the measurement of the exposure were found in the study of Gharbi-Meliani
et al. (2023) [45]. Finally, another study [51] showed some concerns about the selection of
participants and the selection of the reported results.
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4. Discussion

This systematic review explored the potential of AI and ML in tackling the inter-
connected issues of obesity, its associated health consequences, and cognitive decline.
Examining the genetic underpinnings of obesity, genome-wide association studies (GWAS)
have uncovered over two hundred loci consistently linked with BMI, obesity prevalence,
and fat distribution metrics [57]. There are several potential biological mechanisms through
which obesity may increase the risk of cognitive impairment. The most apparent mecha-
nism involves an increased risk of stroke, diabetes, and cardiovascular disease, as these
conditions are known to heighten cognitive impairment risk and are often linked with
obesity [58,59]. Further, insulin resistance associated with obesity is linked to a systemic
chronic low-grade inflammatory response. Regrettably, the brain is not exempt from these
inflammatory effects, which can ultimately accelerate the progression of cognitive decline
and increase the risk of developing AD [60]. Obesity may be associated with higher levels
of proinflammatory cytokines (like interleukin-1β) in the brain [61], which may explain
why obesity remains linked to executive function even after accounting for blood pressure
(BP) and fasting plasma glucose (FPG) [62]. Neuroinflammation related to obesity and
activation of microglia induces synaptic remodeling and neuronal apoptosis and decreases
neurogenesis, which has been associated with cognitive decline [63–65]. Additionally,
research has shown a connection between obesity in early old age and a decrease in cortical
thickness [66]. These findings collectively suggest that obesity and its associated metabolic
problems may contribute to increased microvascular brain damage and neuroinflammatory
events, ultimately leading to cognitive decline [62].

There might be inherent aspects of central adiposity that elevate cognitive impairment
risk. Visceral adipose tissue is a metabolically active endocrine organ that secretes numerous
inflammatory cytokines and hormones [67,68]. Research suggests that leptin can cross
the blood–brain barrier and may contribute to neurodegeneration [69,70]. Leptin is also
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implicated in the deposition of amyloid beta 42, the primary component of AD-associated
plaques in the brain [71]. Recent research discovered that obese middle-aged adults exhibit
reduced brain volume compared to those of normal weight [72], while another study found
that high central obesity in elderly adults was linked to decreased hippocampal brain
volume and increased brain atrophy [73].

We analyzed eight studies, revealing a complex relationship between these conditions,
with factors like central obesity, hyperglycemia, and hypertension playing significant
roles [44,45,51,53]. Statistical methods used may provide valuable insights into these
associations but cannot establish cause and effect due to data restrictions and limited
generalizability of findings [44]. Another approach shows promise as it identifies potential
cases for further investigation without requiring pre-existing diagnoses [45]. However, it
relies on the “Likely Dementia” designation, which needs clinical confirmation and does
not differentiate between dementia subtypes [45]. AI and ML have still emerged as valuable
tools for both risk assessment and prediction. These models excel in assessing risk and
predicting cognitive decline in patients with obesity due to their ability to glean valuable
insights from data. By analyzing vast datasets, they can identify complex patterns and
subtle connections between obesity, health factors, and cognitive decline that traditional
methods might overlook. This has allowed researchers to identify key risk factors like
BMI, physical activity levels, and cognitive activity in predicting dementia risk [51,52].
However, the k-means clustering technique might not be the most advanced tool for
analyzing complex time-series data, and a focus on BMI alone may exclude other factors
that could influence chronic disease risks [51]. ML techniques can even delve deeper,
exploring the biological mechanisms at play, such as the impact of cardiovascular and
metabolic factors on brain structure [53,55,56]. However, these models can be complex and
hard to interpret due to their “black box” nature, requiring specialized knowledge. It is
important to note that both traditional and ML approaches heavily depend on the quality
of the data they receive. Poor data quality may result in crucial aspects of brain health
being overlooked, leading to an incomplete understanding of the intricate web of factors
impacting brain health. Early risk identification through ML models allows for timely
interventions, potentially mitigating the severity of both obesity and cognitive decline [54].
The study by Nakamura et al. (2023) [54] provides HDPDs for the early detection and
prevention of various NCDs, including dementia. These findings suggest personalized
prevention strategies, which could potentially prevent the onset of future diseases in 7
out of 11 cases [54]. Nonetheless, limiting the analysis of data to a single location with
a healthy population can lead to a reduced number of participants who develop specific
health conditions. For instance, the time-series analysis of some NCDs did not reveal any
significant difference, which might be partially attributed to the small number of records of
patients with dementia [54]. Furthermore, while the retrospective approach employed in
the study provides valuable insights, it does not conclusively establish the effectiveness
of interventions based on model predictions. To solidify the clinical usefulness of the
model, prospective studies that track the outcomes of the interventions designed around
these predictions would be necessary. Gamification and interactive learning elements
could further enhance user engagement, making the process of behavior change more
enjoyable and sustainable. Seamless integration with wearable technology would allow
for real-time data collection and feedback, enabling the platform to continuously adapt
recommendations based on individual progress. Further studies are needed to explore
how AI and ML can be used to create personalized interventions tailored to individual
needs and risk factors, encompassing diet, exercise, and cognitive stimulation activities.
This review emphasizes the importance of personalized approaches due to observed sex
differences in how metabolic health affects brain integrity. While men might be more
susceptible to the direct consequences of metabolic health on the brain, women might
experience a more complex interplay involving brain health, metabolism, and possibly
genetics [56]. Importantly, these technologies can pave the way for personalized medicine
by tailoring risk assessments, prevention strategies, and even treatment plans to each
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patient’s unique needs, considering sex differences in how metabolic health affects the
brain. Female patients diagnosed with dementia have a higher correlation with CVD
risk factors compared to male patients [74]. Meanwhile, male patients tend to have a
higher correlation with behavioral risks and other factors [75]. It is now widely accepted
that vascular risk factors that increase the chances of heart disease, such as hypertension,
diabetes, obesity, and hyperlipidemia, also compromise cerebrovascular health [76]. It is
crucial to detect and control these modifiable risk factors that exist throughout a person’s
lifetime, as managing them early on is currently the only known prevention method [77].
Therefore, there is a pressing need for more efficient strategies to combat multimorbidity
and speed up early diagnosis and management [78].

4.1. Future Directions

This review highlights the need for further research to explore the potential of AI
and ML in developing more accurate and personalized predictive models. This will help
in designing and evaluating effective interventions based on AI and ML insights. While
the reviewed studies shed light on the potential of AI and ML in understanding the
link between obesity and cognitive decline, some notable gaps remain in the literature.
The absence of automatic telemedicine models is striking. These models could offer
comprehensive care by monitoring health parameters, providing psychological support,
and even assessing the risk of cognitive decline in obese patients. Their development would
represent a significant advancement in preventative care. For instance, AI/ML tools could
be developed to assess food intake more effectively using image recognition or personalized
dietary surveys. These data, in combination with other health markers, could be used
by AI/ML models to identify individuals at risk of obesity and cognitive decline at an
early stage, allowing for preventative interventions [79,80]. Secondly, the studies primarily
focus on risk prediction, with limited exploration of intervention design. According to
the research findings [54], it would be interesting to develop sex-specific AI and ML
models for more accurate predictions and personalized interventions. AI can also assist
healthcare professionals in their decision-making processes and analyze patient data to help
stratify risk and recommend personalized treatment plans for cognitive decline in obese
patients [81]. ML can analyze vast datasets to identify the most effective treatment strategies
for individual cases, considering various factors like patient characteristics and potential
side effects. Additionally, AI can optimize resource allocation within the healthcare system
by identifying individuals who would benefit most from different levels of intervention.
Future research should also explore cost-effective ways to implement AI/ML solutions
in healthcare settings. Although initial costs may be a concern, AI/ML models have the
potential to identify high-risk individuals and optimize resource allocation, which could
lead to long-term cost savings. These are just a few examples, highlighting the vast and
ever-evolving potential of AI and ML in addressing the challenges of obesity, cognitive
decline, and other related health concerns.

4.2. Limitations

This systematic review highlights the potential of AI and ML in addressing the con-
cerning link between obesity and cognitive decline. Eight studies were chosen through
a comprehensive search strategy across various databases. To ensure transparency and
eliminate bias, clear inclusion and exclusion criteria were established. The review acknowl-
edges that limitations exist due to the included studies, representing a relatively new and
evolving field. The methodologies employed across the studies varied considerably. This
diversity is likely due to the ongoing development of AI and ML applications in this area.
These factors, combined with the limited number of studies, indicate that further research
is necessary to improve the applicability of these findings.
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5. Conclusions

Evaluating the effectiveness of AI and ML interventions is crucial to assess their real-
world impact. Early detection, prevention, and personalized interventions through these
technologies could lead to substantial cost savings by minimizing the need for expensive
treatments and long-term care. Additionally, AI-powered tools can streamline healthcare
delivery, making preventive care more accessible and cost-effective. However, realizing
these benefits requires careful consideration of ethical concerns, ensuring data privacy,
addressing potential biases, and guaranteeing equitable access for all. While the initial
development and implementation of these technologies can be expensive, their long-term
potential for cost reduction and time saved in the fight against obesity and cognitive decline
is significant. As research continues to advance, we can expect to see even more innovative
and impactful applications of these technologies emerge in the years to come.
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