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Abstract: Objectives: The study aimed to develop a deep learning-based edge AI model deployed
on electrocardiograph (ECG) devices for the real-time detection of atrial fibrillation (AF) risk during
sinus rhythm (SR) using standard 10 s, 12-lead electrocardiograms (ECGs). Methods: A novel
approach was used to convert standard 12-lead ECGs into binary images for model input, and a
lightweight convolutional neural network (CNN)-based model was trained using data collected by
the Japan Agency for Medical and Research Development (AMED) between 2019 and 2022. Patients
over 40 years old with digital, SR ECGs were retrospectively enrolled and divided into AF and
non-AF groups. The data labeling was supervised by cardiologists. The dataset was randomly
allocated into training, validation, and internal testing datasets. External testing was conducted on
data collected from other hospitals. Results: The best-trained model achieved an AUC of 0.82 and
0.80, sensitivity of 79.5% and 72.3%, specificity of 77.8% and 77.7%, precision of 78.2% and 76.4%,
and overall accuracy of 78.6% and 75.0% in the internal and external testing datasets, respectively.
The deployed model and app package utilized 2.5 MB and 40 MB of the available ROM and RAM
capacity on the edge ECG device, correspondingly. The processing time for AF risk detection was
approximately 2 s. Conclusions: The model maintains comparable performance and improves its
suitability for deployment on resource-constrained ECG devices, thereby expanding its potential
impact to a wide range of healthcare settings. Its successful deployment enables real-time AF risk
detection during SR, allowing for timely intervention to prevent AF-related serious consequences
like stroke and premature death.

Keywords: atrial fibrillation; sinus rhythm; standard 12-lead ECGs; deep learning-based; edge
AI deployment

1. Introduction

AF is a common arrhythmia, with an estimated prevalence of 3% in adults [1], and
is associated with an elevated risk of stroke, heart failure, and premature death [2]. How-
ever, the early detection of AF, particularly paroxysmal AF, is very challenging due to its
asymptomatic or infrequent nature. Even when patients present with symptoms such as
palpitations or chest discomfort, standard ECG examinations often show SR. Some studies
suggest that the progression of AF can induce electrical and structural changes, manifesting
as subtle patterns on normal SR ECGs [3]. However, currently, it remains difficult for
cardiologists to manually distinguish AF on ECGs with normal SR.

With the rapid progress and breakthroughs brought about by artificial intelligence
(AI) technology, serval studies demonstrated that some subtle signals caused by clinically
important phenomena can be detected with AI in ECG data that are imperceptible to
the human eye [4]. Some studies have reported promising results from well-trained AI

J. Clin. Med. 2024, 13, 2218. https://doi.org/10.3390/jcm13082218 https://www.mdpi.com/journal/jcm

https://doi.org/10.3390/jcm13082218
https://doi.org/10.3390/jcm13082218
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://orcid.org/0009-0008-2045-4583
https://orcid.org/0000-0003-0548-4449
https://doi.org/10.3390/jcm13082218
https://www.mdpi.com/journal/jcm
https://www.mdpi.com/article/10.3390/jcm13082218?type=check_update&version=3


J. Clin. Med. 2024, 13, 2218 2 of 12

models in extracting relevant features from subtle pattern changes in 12-lead ECGs [3,5,6].
However, these studies often encountered imbalanced datasets between the positive and
negative classes. Furthermore, each patient had unequal numbers of ECG records included
in training, validation, and testing datasets, which could potentially mislead the prediction
accuracy and the estimated area under the receiver operating characteristic (ROC) curve
(AUC) [7,8]. Variations exist among various studies, particularly in four key aspects: dataset
composition and pre-processing, types of model input, deep learning model architectures,
and classification approaches [9]. Despite these advancements, much of the existing
literature remains confined to academic research and lacks exploration into the feasibility
and efficiency of methods for deploying edge AI.

In this study, we proposed a novel approach to convert standard 10 s, 12-lead ECGs
into binary images for model input and designed a lightweight CNN model to enable
real-time AF risk detection on edge ECG devices. The dataset was well balanced between
the AF and non-AF groups, with each patient contributing an equal amount of ECG data,
specifically one ECG datum per patient for testing. Performance evaluation and statistical
analysis were conducted using internal and external testing datasets collected from diverse
clinical facilities in Japan.

2. Methods
2.1. Ethics and Data Collection

Approval for data collection was obtained from the Ethics Committees of the Tokyo
Medical and Dental University. A total of 3109 ECGs from 2930 patients aged over 40 years
were retrospectively collected from seven affiliated hospitals between September 2019 and
March 2022. The study adhered to the Code of Ethics of the World Medical Association
(Declaration of Helsinki) and the Ethical Guidelines for Medical and Health Research
Involving Human Subjects issued by the Ministry of Education of Japan in 2015. Only data
from individuals who provided consent were used, and all records were anonymized. All
ECGs were recorded at a sampling rate of 500 Hz with a 10 s length using FCP-8800 ECG
machines manufactured by Fukuda Denshi, Tokyo, Japan. Diagnostic labels were assigned
by trained physicians under the supervision of cardiologists.

The flowchart detailing the data collection and data composition is presented in
Figure 1. A total of 1668 ECGs from 1489 patients with AF records and 1441 ECGs from
1441 non-AF patients were initially collected. After applying exclusion criteria and selecting
one 12-lead SR ECG datum per patient, from both groups, three datasets were prepared:
a training and validation dataset with a ratio of 8:2, comprising 2330 ECGs (AF: 1165,
non-AF: 1165). The remaining 234 ECGs (AF: 117, non-AF: 117) were used as the internal
testing dataset.

Additionally, to assess the generalization ability and external performance validation
of AF risk detection, 800 (AF: 400, non-AF: 400) more ECGs with paired label data were
retrospectively collected from Kameda General Hospital and Yokohama City University
Medical Center from April 2023 to July 2023. Approval for data collection was obtained
from the Ethics Committees of these two facilities. All ECG records were anonymized
and an opt-out form on a website was used as an acceptable method to obtain consent
from the patients. These two distinct facilities did not contribute any data to the model
training. The same SR ECG inclusion and exclusion criteria described above were applied
for data selection. According to the determined sample size for performance validation, a
total of 220 ECGs from 220 patients in the AF group were randomly selected, and an equal
number of SR ECGs with similar patient characteristics were matched from the non-AF
group, resulting in an external testing dataset comprising 440 ECGs (AF: 220, non-AF: 220).
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Figure 1. The flowchart of data collection and dataset composition. A total of 3909 ECGs from
3730 patients were collected for training, validation, internal testing, and external testing. Following
the exclusion criteria, SR ECGs collected from 1282 patients with AF and 1282 patients from the
control group were randomly allocated into three datasets for training, validation, and internal testing.
Additionally, an external testing dataset comprised 440 SR ECGs collected from 220 patients with AF
and 220 patients from the control group.

2.2. Identifying Study Groups and Selecting SR ECGs

Both the digital SR ECGs and the extracted labels of the included patients were
collected. The dataset was divided into two groups: one group labeled as AF, consisting
of patients with at least one documented AF episode within the past 2 years before the
collected SR ECGs, and the other labeled as non-AF, consisting of patients without any
chief complaint of palpitation symptoms and without an AF diagnostic code in their
electronic medical records. Patients with an AF diagnostic code but no corresponding ECG
documentation of AF were excluded from the performance analysis to mitigate ambiguity.

The inclusion criteria for selecting SR ECGs in both groups are illustrated in Figure 2.
For the AF group, the last event of AF ECG served as an index, and SR ECGs within 2 years
following this index were considered for selection. If multiple SR ECGs were available, the
one closest to the index within the 2-year window was selected. SR ECGs recorded before
the index or after catheter ablation were excluded. The figure on the right side illustrates
examples of SR ECG selection in the non-AF group. The latest SR ECG served as an index.
The window of interest was defined as a timeframe of 5 years before the index SR ECG. If
there was a presence of at least one more SR ECG before it within the 5-year period, the SR
ECG was selected. Otherwise, it was discarded.

According to the prevalence analysis of atrial fibrillation in the general population of
Japan [10,11], all patients included in both study groups were required to be over 40 years
old at the time the selected SR ECG was recorded. Additionally, none of the patients in
either group received any anti-arrhythmic drugs. The following six criteria were applied
for data exclusion: (1) ECGs with paced rhythms. (2) ECGs recorded after catheter ablation
or heart surgery. (3) Patients with mitral stenosis or artificial valve replacement. (4) Patients
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with a history of cardiogenic cerebral embolism in the control group. (5) ECGs included in
an arrhythmia exclusion list defined by the cardiologists (Supplementary Materials, Table
S1). (6) ECGs recorded with misplaced electrodes or poor recording conditions.

Figure 2. The selection process of SR ECGs in both the AF group and non-AF group. The top and
bottom two examples depict the SR ECG selection for the two groups, respectively.

2.3. Data Pre-Processing and Model Input Type

ECG signals often contain various types of noises and artifacts, such as power line
interference, myoelectric noise, base-line drift, and high-frequency noise components that
arise from the device or environment. The corresponding digital filters are provided on the
ECG device. Clinicians may apply different filters during ECG recording to remove noise,
and information about the applied filters is recorded in the saved ECG data. To standardize
the conditions of all collected ECGs, the unused filters among the provided four filters were
applied to the ECG signals for the uniform noise removal of all ECGs.

Since all ECGs were collected during SR for 10 s and with 12 leads, the data dimen-
sionality was high for 12-lead ECG signals. Some researchers used only a subset of 12 leads
or part of signal segments to reduce the computation cost, but still, quite a deep AI model
needs to be used for good performance. This increases the difficulty of high memory usage
for edge AI deployment on resource-constrained devices. In this study, we proposed a
novel approach to transform standard 10 s, 12-lead ECGs into binary images for model
input and to design a lightweight CNN model for real-time AF risk detection on edge
ECG devices. Five steps of signal pre-processing were conducted: (1) An R wave-triggered
signal averaging method was used to generate averaged ECGs with a length of 1 s for each
lead. (2) The averaged waveforms were compressed along the time and amplitude axes to
an appropriate size suitable for deployment. (3) The compressed averaged waveform was
converted into a binary image using brightness processing. (4) Binary images from 12 leads
were arranged into a composite image with a layout of 4 rows and 3 columns. (5) The total
image resolution was adjusted to align with the depth of the CNN model and suitable
for deployment. The selection of image resolution is intricately linked to the model’s
depth: higher resolutions necessitate deeper models for optimal performance. However,
constraints on ROM and RAM capacity in edge devices limit model size and processing
time. Therefore, achieving a balance between image resolution and model performance
is crucial. We conducted tests with various image resolutions and corresponding models,
ultimately selecting a compromised resolution. Further detailed investigation into optimal
resolution settings will be explored in future work. Figure 3 illustrates an example of the
12 generated average waveforms being converted into a composite binary image.
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Figure 3. Converting the 12 averaged waveforms into a composite binary image.

2.4. Model Architecture and Deployment

To ensure that the AI model remains compact, efficient, and accurate, a convolutional
neural network with a small number of layers was implemented using the Keras package
with a TensorFlow backend in Python (v3.7). The architecture of the model consisted of four
convolution blocks, each comprising a two-dimensional convolution layer with a kernel
size of 3 × 3, ReLU activation function, 64 different filters, and a max-pooling layer as
illustrated in Figure 4. After the final max-pooling layer, the extracted ECG features were
input into a fully connected layer (Flatten layer), two dense layers, and a dropout layer,
before being fed into an output layer activated with softmax function for AF classification.
The batch size was set to 64, and 150 epochs, an Adam optimizer, and a categorical cross-
entropy loss function were employed to iteratively update network weights trained on
a computer equipped with an NVIDIA GeForce GTX1080 GPU (8 GB), sold by Tokyo
Computer Service Co. Ltd., Tokyo, Japan. The initial learning rate was set to 0.0001 with a
learning rate decay of 1 × 10 −6.

Figure 4. The architecture of the AI model.

The trained AI model, developed in the Python environment, was saved in the JSON
format and uploaded, along with the necessary header library, into the app package written
in C++ for on-board AF risk detection. The model was optimized to ensure low memory
usage, making it suitable for deployment on resource-constrained ECG devices.

2.5. Outcome Assessments

Performance metrics refer to mathematical formulas that are used for assessing how
well an AI model predicts clinical or other health outcomes from the data. In binary
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classification tasks, where outcomes are classified into two categories, several metrics
such as accuracy, sensitivity, specificity, precision, and AUC are commonly used. While
accuracy and AUC are suitable for well-balanced datasets, they may not be appropriate for
datasets with class imbalances. To address potential bias and ensure robust evaluation, all
datasets in this study, including those used for training, validation, internal testing, and
external testing, were well balanced between AF and non-AF groups. This allows for the
comprehensive assessment of model performance using all the metrics mentioned above.

2.6. Statistical Analysis

The statistical analysis involves collecting and analyzing large volumes of data to
identify trends and develop insights. Once the final fitted model was obtained, a statistical
analysis plan was designed and specified in advance for external testing. The plan included
the following steps: (1) The descriptive and inferential analysis of the clinical characteristics
of patients included in the AF and non-AF groups. The mean, standard deviation, and
independent t-tests for continuous variables, and percentages and Fisher exact tests for
categorical variables were calculated and performed to verify if there were statistically
significant differences (p < 0.05) in clinical variables between the patients in the two groups.
(2) The measurement of outcomes and the estimation of their 95% confidence intervals.
(3) Special data testing for non-AF identification. All the statistical analyses were performed
using EZR version 1.55 and R version 4.3.1 software.

3. Results
3.1. Internal Testing

The model was input with the binary ECG images and trained using the dataset
(n = 2330, AF: 1165, non-AF: 1165) as described in Section 2.1. To enrich the training dataset,
a representative waveform, termed the dominant waveform, was extracted from each lead
of the recorded 10 s, 12-lead ECGs. These dominant waveforms exhibited less noise and
matched the 1 s length of the averaged waveforms used for training. Following the signal
pre-processing described in Section 2.3, two binary ECG images were generated per patient,
effectively doubling the dataset size to n = 4660 (AF: 2330, non-AF: 2330) for model training.

For internal testing, a dataset comprising 234 ECGs (AF: 117, non-AF: 117) was utilized.
Each patient contributed one binary image using the averaged waveforms, and no dominant
ECG waveforms were used for testing. The outcome metrics of the internal testing were
measured as follows: AUC, 0.82 (95% CI 0.77–0.88); sensitivity, 79.5% (95% CI 71.0–86.4);
specificity, 77.8% (95% CI 69.2–84.9); precision, 78.2% (95% CI 69.6–85.2); and accuracy,
78.6% (95% CI 72.8–83.7). The ROC curve was depicted on the left side in Figure 5a to
compare with the ROC curve shown in Figure 5b obtained from the following external
testing in Section 3.2.4.

Figure 5. The ROC curves: (a) on the internal testing dataset; (b) on the external testing dataset.
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3.2. External Testing
3.2.1. External Dataset Analysis

The external testing and statistical analysis were further conducted using the external
dataset (n = 440, AF: 220, non-AF: 220) as described in Section 2.1. Each patient contributed
one binary image using the averaged waveforms, and no dominant waveforms were
used as the same for internal testing. The age distribution of patients was analyzed and
compared with that of the training and validation datasets, as shown in Table 1. Notably, in
the external testing dataset presented on the right side of Table 1, there was a 17% decrease
in patients aged 40 to 59, and a 14% increase in patients aged 70 to 89, compared with
the training and validation dataset. This distribution trend more closely resembled the
prevalence proportion observed in the age group of the AF population, and the proportion
of female patients was observed to be a 5% increase in the external testing dataset as
well. Additionally, in addition to collecting ECGs from patients visiting the Department
of Cardiovascular Medicine for training, validation, and internal testing datasets, we
also included ECGs from patients transported by emergency or other departments in the
external testing dataset. This broader sample allows for a more comprehensive validation
of the generalization ability of the developed AI model. We acknowledge that conducting
further analysis to assess the impact of age and gender-related physiological changes on
model performance would be beneficial. To address this, we plan to collect additional data
with a balanced distribution of patients across age groups and genders in the future.

Table 1. Age distribution comparison between training and external testing datasets.

Age Group
Training + Validation (n = 2330) External Testing (n = 440)

Patients Female Male Proportion Patients Female Male Proportion

40–49 329 101 228 14.1% 19 6 13 4.3%

50–59 438 115 323 18.8% 52 16 36 11.8%

60–69 628 192 436 27.0% 125 50 75 28.4%

70–79 673 275 398 28.9% 162 67 95 36.8%

80–89 250 103 147 10.7% 74 31 43 16.8%

90–100 12 5 7 0.5% 8 2 6 1.8%

Total 2330 791 1539 100.0% 440 172 268 100.0%

Proportion 33.9% 66.1% 100.0% 39.1% 60.9% 100.0%

3.2.2. Additional Measures of Bias Minimization

To minimize the influence of bias from patient characteristics between AF and non-
AF groups on performance evaluation, additional steps were taken. After selecting the
necessary ECGs of AF patients randomly from the available data, an equal number of
non-AF ECGs were selected. These selections were not only matched with the clinical
characteristics but also the age distribution of the patients in the AF group. The results, as
presented in Table 2, indicate that apart from a higher number of diabetes patients in the non-
AF group compared to the AF group, other patient characteristic items were quite similar
between the two groups. Furthermore, patients with both normal (borderline-normal
included) and abnormal (borderline-abnormal included) ECGs during ECG automatic
interpretation were well balanced as well. Therefore, no bias effect existed during the
external performance evaluation. This approach helps ensure the robustness and reliability
of the model’s performance evaluation process by mitigating potential biases. However,
the disparity in the occurrence of diabetes, similar to that observed in the training dataset,
may be attributed to patients without a history of AF predominantly visiting the hospital
for periodic inspections. Additionally, information on whether patients were hospitalized
was not recorded during the data collection. This may potentially introduce selection bias.
We plan to mitigate this limitation by including this information in future investigations.
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Table 2. Matched patient characteristics in two groups for external testing.

Items Non-AF AF Items Non-AF AF

40–49 10 9 Male 134 134

50–59 26 26 Female 86 86

60–69 63 62 Smoking 118 118

70–79 80 82 Hypertension 118 115

80–89 37 37 Diabetes 78 47

90–99 4 4 Normal (ECGs) 121 122

Total 220 220 Abnormal (ECGs) 99 98

3.2.3. Statistical Analysis of Patient Characteristics

According to the first step of the statistical analysis plan outlined in Section 2.6, patient
characteristics were statistically analyzed. The results are summarized in Table 3. It was
observed that several data points were missing in the smoking and hypertension items.
The mean values of age, height, and weight for patients in both groups were approximately
70 years, 160 cm, and 61 kg, respectively. Additionally, approximately 61% of patients
were male.

Table 3. Statistical analysis of the patient characteristics in the external testing dataset.

Items Non-AF Group n
= 220

AF Group
n = 220

p-Value of
F-Test

p-Value of
t-Test

p-Value of
Fisher

Exact Test

Age 69.8 ± 10.7 70.3 ± 10.8 0.848 0.638 NA

Height 160.1 ± 9.5 160.3 ±
10.3 0.218 0.846 NA

Weight 60.9 ± 14.5 61.5 ± 14.6 0.880 0.700 NA

BMI 23.7 ± 5.1 23.8 ± 5.1 0.935 0.802 NA

Gender (M/F) 134/86 134/86 NA NA 1.000

Smoking
(NaN/F/T) 1/101/118 1/101/118 NA NA 1.000

Hypertension
(NaN/F/T) 0/102/118 3/102/115 NA NA 0.324

Diabetes (F/T) 142/78 173/47 NA NA 0.001
NaN: Missing data; F: False; T: True. NA: Not Available.

The p-values for the continuous variables and categorical variables were obtained
from the F-test, student t-tests, and Fisher exact tests, respectively. With the exception of the
diabetes item, all p-values were greater than the 0.05 significance level. This indicates that
there were no statistically significant differences in clinical characteristics between patients
in the AF and the non-AF groups.

3.2.4. Performance Validation

In the second step of the statistical analysis plan, the performance of the fitted model
used for external validation was assessed. The following performance metrics were evalu-
ated: AUC, 0.80 (95% CI 0.76–0.84); sensitivity, 72.3% (95% CI 65.9–78.1); specificity, 77.7%
(95% CI 71.6–83.0); precision, 76.4% (95% CI 70.1–82.0); and accuracy, 75.0% (95% CI 70.7–
79.0), respectively. Two-sided 95% confidence intervals for the measured metrics were
estimated with the Delong method for AUC and the Clopper–Pearson method for the other
metrics. The ROC curve obtained from the external testing is depicted on the right side of
Figure 5b shown in Section 3.1 to compare with the ROC curve in Figure 5a obtained from
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the internal testing. The mere 2% difference compared to the AUC from the internal testing
suggests a strong generalizability of the fitted model.

3.2.5. Special Non-AF Data Testing

To minimize the risk of mislabeling patients in the non-AF group who may have unde-
tected AF, several measures were implemented. Patients presenting with a chief complaint
of palpitations or subjective symptoms were excluded from the non-AF data collection.
Moreover, at least two SR ECGs recorded in the past five years based on the latest selected
SR ECG were required for inclusion. In the third step of the statistical analysis plan, patients
with palpitations but diagnosed with inappropriate sinus tachycardia (IST), or atrioven-
tricular nodal reentrant tachycardia (AVNRT) after catheter ablation had their SR ECGs
collected before the catheter ablation and utilized as special data for non-AF identification.

Data from a total of 29 patients for this special non-AF dataset were collected, com-
prising 12 males and 17 females, with ages ranging from 40 to 80. The detection rate of
non-AF in this subset was 75.9% (95% CI 56.5–89.7), which was slightly lower (1.8%) than
the specificity of 77.7% measured from the external testing data (n = 440). This outcome
further indicates a successful detection rate on the special data with similar accuracy for
non-AF identification.

Each patient contributed one binary image using the averaged waveforms, ensuring
no data duplication occurred in the special data testing. Furthermore, we utilized the
arrhythmia exclusion list described in Section 2.2 to exclude patients with heart diseases
unrelated to AF.

3.3. Successful Deployment

The app package with the edge AI model was successfully deployed on an edge ECG
device, where the time for detecting AF risk on-board was measured to be approximately 2
s, nearly in real time following an automated diagnosis of routine standard 10 s, 12-lead
ECGs. Additionally, the prediction results obtained on the edge device after deployment
were confirmed to be completely the same compared with the results predicted on a PC in
a Python environment. These comparative results validated the low-cost and successful
deployment of the method.

4. Discussion
4.1. Major Findings and Key Outcomes

1. Existing screening methods for AF often miss cases due to the condition’s paroxysmal
and asymptomatic nature. This under-detection can lead to serious consequences
such as stroke and premature death. The findings of this study highlight the potential
of deep learning-based edge AI models in the early detection of AF during normal SR
using standard 10 s, 12-lead ECGs.

2. The inclusion and exclusion criteria for data collection, such as age over 40 years
old, the presence of normal SR, and the exclusion of the ECGs included in a defined
arrhythmia exclusion list, aimed to capture a representative sample of patients who
may have had undetected AF in the past 2 years but are not currently experiencing
symptomatic episodes.

3. The well-balanced data collection, with each patient contributing an equal amount of
ECG data, specifically one ECG datum per patient for testing; the additional measures
of bias minimization in the two groups; and the rigorous labeling process conducted
by trained physicians under cardiologist supervision, ensured the reliability of the
datasets for model training, testing, and accurate performance evaluation.

4. The proposed method involved converting the averaged waveform from each lead
of a standard 10 s, 12-lead ECG into a binary image and then composing them. This
approach facilitated the training of a lightweight CNN model for AF risk detection
during SR.
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5. The performance metrics of the deployed model, including sensitivity, specificity,
precision, overall accuracy, and AUC, demonstrate its effectiveness and generalization
capability in detecting AF risk during SR in both internal and external testing datasets.

6. The model maintains comparable performance and improves its suitability for de-
ployment on resource-constrained devices, thereby expanding its potential impact to
a wide range of healthcare settings. Its successful deployment enables real-time AF
risk detection during SR in clinical settings where immediate intervention is crucial.

4.2. AUC and Methods Comparison

The estimated AUCs for the fitted model in internal and external testing were 0.82
(95% CI: 0.77–0.88) and 0.80 (95% CI: 0.76–0.84), respectively. These values outperform
those of other medical screening tests, such as B-type natriuretic peptide (BNP) for heart
failure and cardiovascular disease diagnosis (AUC: 0.60–0.70) [12], Papanicolaou smear for
cervical cancer screening (AUC: 0.70) [13], and the CHA2DS2-VASc score for stroke risk
assessment (AUC: 0.57–0.72) [14].

Several studies have been reported for AF risk detection during SR ECGs in the last 5
years. The differences between this study and others are summarized in Table 4.

Table 4. Method and performance comparison between this study and the other studies.

Items The Other Studies This Study

Age of patients 18 years or older [3,5,6] 40 years or older

Training and testing dataset Imbalanced [3,5] Well balanced

Testing data Multiple ECGs per patient
[3,5,6] One ECG data per patient

Bias minimization Unreported [3,5,6] Conducted for external testing

Model input type
Time-series ECGs

with multiple leads (8 or 12),
each lasting 8 or 10 s [3,5,6]

Binary ECG images
with 12-lead

averaged waveforms

AI model Resnet [3,6], RNN [6], LSTM
[5] Standard CNN

AUC from internal testing 0.87 [3], 0.79 [5,6] 0.82

AUC from external testing 0.75 [5] 0.80

Type of product Algorithm [3,5,6] Edge AI deployed

We acknowledge that a broader comparison with other models tested on similar
external datasets would enhance the understanding of our model’s performance within the
field. However, currently, we do not have access to other existing models tested on the same
external dataset. We will continue to explore opportunities to conduct such comparisons in
future work.

The achieved sensitivity and specificity of the external testing were balanced at the
optimized cutoff of 0.467. This threshold can be adjusted depending on clinical needs. A
low cutoff with high sensitivity may be useful in excluding healthy individuals who do not
require further inspection, while a high cutoff with high specificity may be beneficial for
identifying patients with a high pretest probability for intensive monitoring.

By employing the R wave-triggered signal averaging method to generate averaged
waveforms from SR ECGs and then converting them into binary images, a lightweight
CNN model was trained. This approach proved to be efficient and feasible for AF risk
detection on resource-constrained ECG devices, with an approximate time of 2 s after
automatic 12-lead ECG interpretation.



J. Clin. Med. 2024, 13, 2218 11 of 12

4.3. Limitations and Future Directions

Several limitations were identified in this study. First, all ECG data were retrospectively
collected from general or university-affiliated hospitals, necessitating further evaluation
in a broader, ostensibly healthy population. Second, although a total of 1502 AF-labeled
ECGs, with one datum per patient, were collected, which is more than some other studies,
the relatively moderate scale of the ECG dataset for AI model training may limit model
performance and robustness. This warrants further analysis with additional data. Finally,
being a multi-center retrospective study, prospective, large-scale studies are required to
validate the model’s performance in the future.

5. Conclusions

The proposed method, which involved extracting averaged waveforms from standard
10 s, 12-lead SR ECGs and converting them into binary images, facilitated the training of
a lightweight CNN model for AF risk detection during SR. The achieved performance,
as evaluated from internal and external datasets, demonstrated the effectiveness and
generalization capability of the trained model in detecting undiagnosed AF.

Moreover, the successful deployment of the app package on edge ECG devices en-
ables the practical application of undiagnosed AF detection in real time during SR. This
development marks a significant contribution to the advancement of AI in healthcare and
holds important implications for early AF screening and the management of patients with
unexplained strokes.

Moving forward, further improvements can be explored through the utilization of
large-scale data. Continual refinement and validation of the model’s performance will be
essential for its continued effectiveness and reliability in clinical practice.

Overall, the deployment of the model on edge AI ECG devices represents a significant
step towards enhancing healthcare outcomes and addressing the challenges associated
with undiagnosed AF, ultimately improving patient care and management strategies.
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