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Abstract: Background: Influenza-like illness (ILI) encompasses symptoms similar to influenza,
affecting population health. Surveillance, including Google Trends (GT), offers insights into epidemic
patterns. Methods: This study used multiple regression models to analyze the correlation between
ILI incidents, GT keyword searches, and climate variables during influenza outbreaks. It compared
the predictive capabilities of time-series and deep learning models against ILI emergency incidents.
Results: The GT searches for “fever” and “cough” were significantly associated with ILI cases
(p < 0.05). Temperature had a more substantial impact on ILI incidence than humidity. Among the
tested models, ARIMA provided the best predictive power. Conclusions: GT and climate data can
forecast ILI trends, aiding governmental decision making. Temperature is a crucial predictor, and
ARIMA models excel in forecasting ILI incidences.
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1. Introduction

The spread of and infection with infectious diseases threaten public health and eco-
nomic stability in many countries [1]. Among infectious diseases, influenza is a significant
global public health problem. According to estimates by the World Health Organization,
many people around the world still suffer from influenza every year. The number of
deaths ranges from 3 million to 5 million [2], and some studies have pointed out that
accurately detecting the dynamics of seasonal and non-seasonal influenza outbreaks is still
a considerable challenge [3–5]. In addition to the impact of influenza on human life and
health, large-scale investment in preventive measures and medical resources also impacts
the national economy [6], which is a considerable threat.

The terms influenza and influenza-like illness (ILI) are closely related, but distinct.
While often used interchangeably, they denote different concepts. Influenza-like illness
encompasses a broader category of symptoms, resembling those of the influenza virus but
not exclusively caused by it [7]. ILI can be the result of various respiratory viruses besides
influenza, such as the respiratory syncytial virus (RSV), rhinovirus, and adenovirus. The
symptoms common to ILI are similar to those of flu and include fever, coughing, a sore
throat, body aches, and fatigue, yet the underlying cause may not be influenza itself.

In the context of global health, monitoring ILI is crucial for maintaining health security
worldwide. The early identification and management of ILI outbreaks is vital in curtailing
the spread of respiratory viruses across borders and mitigating the threat of a worldwide
pandemic. Given that ILI captures a spectrum of respiratory viruses beyond just influenza,
surveillance efforts can distinguish between the various viral agents, such as influenza,
RSV, and rhinovirus. This differentiation is essential for implementing precise public
health interventions.
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The surveillance of ILI is a key component of wider disease-monitoring initiatives,
which aim to assess the incidence and spread of respiratory infections [8]. This surveil-
lance supports health authorities in tracking infection trends, pinpointing populations at
increased risk and efficiently distributing healthcare resources.

The widespread adoption of the internet has significantly enhanced convenience and
access to knowledge-based services for its users worldwide. Individuals frequently utilize
the “search” function of internet search engines to gather necessary information and derive
knowledge from it. Consequently, over the past decade, the ease of access to health-related
information online has transformed how individuals, public health professionals, and
clinicians use the internet. Options for use include conducting online searches for personal
health inquiries, understanding symptoms, and exploring related causes. Therefore, lever-
aging data from Google Trends (GT), a popular search engine, can offer valuable insights
into the prevalence of medical conditions [9,10].

In recent years, more and more research has been conducted on using big data to
analyze information in order to deal with the large amount of information currently avail-
able online. GT is a service based on big data that provides real-time trend predictions
through the frequency of the ‘search keywords’ ability [11]. Nowadays, many research
fields use real-time trends from GT data for analysis and prediction [1,5,12–14]. Due to
the sensitivity and immediacy brought by search engine data, Eysenbach [15] pointed out
that the data obtained by using Google search engine analysis can provide real-time and
accurate predictions and reduce the cost of the entire flu season. The query data from the
Google search engine are also widely used in research in fields such as economics and fi-
nance [16,17], being employed to monitor the incidence of influenza [1,2,18–20] and Dengue
fever [6,12,21–23] and to forecast stock markets [24,25] and unemployment rates [26,27].

In the realm of influenza surveillance, various innovative approaches have been ex-
plored. Ghosh et al. [1] analyzed news articles using supervised temporal topic models and
time-series regression in order to predict outbreaks. Yang et al. [2] and Ginsberg et al. [18]
leveraged auto-regression and search data for real-time tracking and prediction, demonstrat-
ing the effectiveness of using internet-based data in early disease detection. Ortiz et al. [19]
compared traditional CDC surveillance data with Google Flu Trends, while another study
by Yang et al. [20] used Baidu search data and climate variables to obtain enhanced pre-
diction capabilities. Integrating these diverse methodologies could significantly advance
influenza surveillance efforts.

In preventing and controlling infectious diseases, it is essential to develop plans
to control a disease before it becomes a pandemic. It takes 1 to 2 weeks for traditional
surveillance data to be compiled into a database after an event occurs [28]. This delay
limits a surveillance system’s ability to provide real-time information on the occurrence of
infectious diseases, wasting a certain amount of time. Based on the resources and workforce
of these units, the World Health Organization (WHO) estimates that, when an epidemic
breaks out, these economic losses will be as high as USD 950 million. However, the issue
worth paying attention to with influenza vaccines is that no one can say with absolute
certainty which influenza viruses will circulate each year [29]. Therefore, even if people get
vaccinated on time, there is still no guarantee that the vaccine will be effective during the
epidemic season.

Previous studies have pointed out that there are potential errors in models constructed
using only internet search data or climate factors [5,30–33]. In addition, data updates from
traditional government monitoring stations are often delayed by one to two weeks [28],
which may delay the availability of essential data. As in the 2009 and 2010 pandemic
influenza outbreaks, the emergency rooms of major hospitals are experiencing shortages
and congestion, which shows the importance of influenza prediction.

Infodemiology is the study of the distribution and determinants of information in an
electronic medium, specifically the internet, with the aim of informing public health and
public policy. This field analyzes web-based information to monitor and predict public
health issues and trends. The infodemiology of influenza-like illness (ILI) refers to the
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study and analysis of information related to ILI that is generated and disseminated through
digital platforms and sources, including search engine queries, social media posts, and
online news [34]. This approach leverages big data and internet-based information to track,
predict, and understand the patterns and dynamics of the ILI spread within populations.
It aims to complement traditional epidemiological methods by providing real-time or
near-real-time data, offering insights into public interest, concern, and behavior regarding
ILI, and potentially enhancing disease surveillance and public health response strategies.

Among the available analytical methods, the deep learning LSTM model, as a type
of recurrent neural network (RNN), is adept at recognizing and learning from sequential
dependencies in data, making it particularly effective for time-series analysis. This capa-
bility renders LSTM models highly suitable for tracking and predicting phenomena like
influenza outbreaks by analyzing historical patterns in search query data. LSTMs excel in
modeling the intricate, nonlinear relationships that might exist between search trends and
actual disease outbreaks, which simpler models might fail to accurately capture.

On the other hand, time-series analysis using ARIMA models excels in identifying
and modeling the seasonal trends and cycles commonly observed in influenza outbreak
data and related Google Trends search queries. ARIMA models are versatile and capable
of handling time-series data with varying levels of trend and seasonality, thus offering
valuable insights into the temporal dynamics of influenza-like illness outbreaks.

Multiple linear regression allows for the quantification of relationships between several
independent variables (such as diverse GT keywords) and a dependent variable (like the
number of ILI cases). This model is instrumental in pinpointing which keywords serve
as significant predictors of outbreaks. In comparison to the LSTM and ARIMA models,
multiple linear regression analysis is simpler and yields coefficients that are straightforward
to interpret, facilitating an understanding of how each keyword impacts ILI outbreaks.

Each modeling approach brings unique strengths and has limitations. Employing
these models in tandem allows for a comprehensive analysis, leveraging the strengths
of one method to counterbalance the weaknesses of another. This synergistic approach
enhances overall predictive capability and offers a more nuanced understanding of the
interplay between public interest, as reflected in GT searches, and actual cases of influenza-
like illnesses. The combined application of LSTM, ARIMA, and multiple linear regression
models offers a holistic strategy for analyzing and forecasting influenza-like disease out-
breaks, utilizing the distinct advantages of each method to achieve a deeper, more accurate
interpretation of the data.

Hence, this study employs multiple regression models to examine the relationships
among ILI emergency incidents, GT keyword searches, and climatic conditions during
influenza-like outbreaks. It also assesses the predictive capabilities of these incidents
through comparisons with the time-series ARIMA model and the deep learning LSTM
model. The findings of this research could be shared with governmental health entities
or medical professionals, helping to grasp the epidemic’s progression and informing
subsequent decision making and planning.

2. Preliminary
2.1. Influenza and Influenza-like Illness

According to the World Health Organization (WHO), influenza is a viral disease that
is fatal to specific groups of people. Every year, during an influenza outbreak, approxi-
mately 290,000 to 650,000 people worldwide die from respiratory-related illnesses. Another
3 million to 5 million people suffer from severe diseases, and 250,000 to 500,000 people die
from them, accounting for about 5 to 10% of the patient cohort. These diseases range from
mild to severe and can even cause death [35].

Influenza, commonly known as flu, is a viral infection that acutely infects the human
respiratory tract (nose, throat, bronchi, and lungs). The infection is mainly caused by an
infected person coughing or sneezing [36]. The incubation period for droplet infection
is usually about 1 to 4 days, with an average of 2 days. The World Health Organization
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divides influenza into four types of seasonal influenza viruses (A, B, C, and D) according
to their different pathogen classifications. “Influenza-like” refers to any virus that causes
symptoms similar to those of influenza [37]. If an illness is as severe as influenza, it can be
called influenza-like. The Taiwan Association of Family Medicine points out that influenza
viruses cause more than 70% of influenza-like cases during influenza epidemics.

In addition, the rapid progression of influenza viruses often leads to sudden severe
illness, which may lead to other concurrent diseases such as pneumonia, encephalitis,
myocarditis, and ultimately death. Influenza is different from the common cold. Eccles [38]
mentioned that different viruses and symptoms cause influenza. These viruses and their
symptoms are more severe than the common cold and its effects, and their durations are
also relatively long. The Agency for Disease Control and Prevention, which is under the
Ministry of Health and Welfare, defines influenza as flu when fever (high fever for more
than two days), pain (headache, noticeable muscle aches), and tiredness occur.

In temperate climates, seasonal influenza is mainly prevalent in winter, while sudden
influenza may occur throughout the year in tropical regions. Previous studies have pointed
out that influenza epidemics in Taiwan, Hong Kong, Singapore, and Japan occur almost
every season [39]. Therefore, it is essential to establish a surveillance system for epidemic
viruses. Since the emergence of the Spanish flu in 1918, the strain of the virus has been
updated every year and has seen new developments, such as the Asian flu in 1958, the
Hong Kong flu in 1968, the bird flu in 1997, and the H1N1 swine flu in 2009, all of which had
severe outbreaks and caused more than one million deaths. Hsu et al. [40] also mentioned
that the unpredictability and transmission potential of the next pandemic strain could
result in a potential major natural disaster, and so the continuous and accurate surveillance
of influenza viruses needs to be conducted.

The terms influenza-like illness (ILI) and influenza are related but not synonymous.
They are often used interchangeably, but there are differences between them. Influenza-like
illness (ILI) is a clinical term used to describe a group of symptoms commonly associated
with influenza, including a range of symptoms that are similar to those caused by the
influenza virus, but which are not necessarily caused by the influenza virus itself. ILI
includes a spectrum of respiratory illnesses caused by viruses other than influenza, such
as respiratory syncytial virus (RSV), rhinovirus, adenovirus, etc. The symptoms of ILI
are often similar to those of the flu, including fever, cough, sore throat, body aches, and
tiredness. However, the cause of ILI may not always be the flu.

The influenza virus is transmitted via coughing or sneezing, causing severe respiratory
disease. The main periods of prevalence are the autumn and winter of each year. Getting
the flu vaccine is a protective method and the first line of defense against the flu. However,
even after receiving the flu vaccine, there is still a chance of contracting seasonal flu because
the flu virus can be affected by various factors and mutate. The determinants of seasonal
influenza remain complex, as the course of transmission is influenced by various factors,
such as natural, social, and economic influences [41,42].

Previous studies, such as that of Zhang et al. [43], used time-series cross-correlation
analysis and temporal risk analysis. This investigation of the relationship between search
engines’ search index and climate variables, such as temperature and relative humidity,
found a significant positive correlation between the outbreak of influenza and GT data. The
search index and temperature data could be used to predict influenza events. Dai et al. [44]
used the distributed hysteresis nonlinear model (DLNM) to explore the influence of ambient
temperature on influenza and influenza-like illness (ILIs) cases in Jiangsu Province, China.
They found that the increase in influenza-related activity in Jiangsu Province also led to
an increase in ILI. In addition, influenza was more active when temperatures were lower;
that is, influenza activity was negatively correlated with temperature, and other studies
have used social media data (e.g., Twitter, GT influenza data), climate data (mean relative
humidity, mean rainfall, etc.), and other data sources for the analysis and prediction of
influenza correlations.
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Many studies have also been based on different machine learning prediction methods
in influenza transmission prediction. For example, Liu et al. [45] used wavelet analy-
sis and linear detrending regression with the Fourier transform to predict the seasonal
characteristics of influenza. Lu et al. [46] used the AutoRegression with General Online
information (ARGO) method, combining influenza-related GT and electronic health records
to predict influenza numbers in the United States. The results showed that combining
influenza activity with temporal and spatial trends produced more predictions and reduced
errors. The time-series method was also used to explore the effectiveness of the time-series
regression technique in assessing the trend of time topics, and the results showed that
cases can be predicted more accurately prior to the official report of the World Health
Organization [1]. The relevant research on influenza epidemics and the methods used are
summarized in Table 1.

Table 1. Related work of influenza epidemics.

Disease Data and Metrics Method Author

Fl
u

or
IL

I

Climate
ARMA (autoregressive moving average model) Huang [47]

Mathematical modeling Ayesha [48]

Search engine data + traditional
monitoring data

Pearson correlation coefficient
Ginsberg et al. [18]

Cho et al. [49]

Logit linear regression model Kang et al. [50]

ARGO autoregressive model Yang et al. [2]

HFSTM (Hidden Flu State
from Tweet Model) Prakash [51]

Multiple regression model,
artificial neural network Xue et al. [52]

Climate data + Google Trends

SARIMA (seasonal ARIMA),
regression tree analysis Zhang et al. [43]

GLM (generalized linear model) Dugas et al. [53]

Negative binomial Wisnieski et al. [54]

Climate data +
Google Trends + ILI emergency cases

Multiple regression model
ARIMA, LSTM Our study

In today’s interconnected global landscape, the tracking of influenza-like illness (ILI)
plays a pivotal role in safeguarding public health. Prompt identification and intervention
in response to ILI outbreaks are essential for curbing the cross-border transmission of respi-
ratory viruses and minimizing the potential for a worldwide pandemic. ILI encompasses
a variety of respiratory viruses beyond just influenza, including the respiratory syncytial
virus (RSV), rhinovirus, and others. The ability to distinguish between these viral agents
through ILI monitoring is crucial for deploying precise public health measures. Although
the surveillance of influenza itself is vital, ILI surveillance extends the scope of disease-
monitoring efforts. It aids in assessing the incidence and spread of respiratory infections,
enabling health organizations to discern patterns, pinpoint populations at increased risk,
and strategically distribute resources. By offering a comprehensive view of the respiratory
disease burden, ILI surveillance facilitates a more agile and informed response from public
health authorities to the ever-evolving challenge of respiratory virus transmission.

2.2. Google Trends and Its Applications

Google Trends (GT) was launched in 2006 to provide users with the function of search-
ing information and data. Sullivan [55] pointed out that the annual search volume reached
1.2 trillion in 2012, and the search volume in 2016 reached 2 trillion. Nowadays, GT has
become one of the popular resources for big data research. GT obtains information by
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analyzing the number of keyword searches. The immediacy of the information and the
ease of operation of the interface attract many researchers. In addition to collecting a large
amount of data, this method provides various sorting and comparison options [56]. Choi
and Varian’s [57] study once again proved that internet search data are helpful in predictions.
As for applying GT in disease prediction, Zhang et al. [43] found that temperature-related
internet search indicators can predict influenza outbreaks and should be regarded as an
effective indicator for modeling influenza outbreaks and monitoring and early warning sys-
tems; Ghosh et al. [1] also used relevant news trends to monitor the time-varying incidence
of diseases. In addition to being used for medical research, GT can be used in other fields,
such as explaining economic activities, energy use trends [11,58], agricultural economic
development [14,59], and forecasting the unemployment rate [17,26,60,61], stock market
changes [24,25,62,63], and tourism behavior [64–67].

2.3. Analytical Method

We use a combination of deep learning LSTM (long short-term memory) models,
time-series analysis ARIMA (autoregressive comprehensive moving average) models, and
multiple linear regression to identify associations between flu-like outbreaks and Google
Trends (GT) keyword queries. Each approach has the advantage of providing a comprehen-
sive understanding of the data. The following is a description of each analytical method.

2.3.1. Multiple Regression Analysis

Multiple linear regression is a standard statistical analysis research method that uses
mathematical expressions to understand the linear relationship between dependent and
independent variables and study changes between variables. According to Jia et al. [68],
regression analysis can extract meaningful information hidden in data to predict the
dependent variable that will change with the independent variable. The general expression
of multiple linear regression is shown in Equation (1):

Ŷi = a + b1X1 + b2X2 + b3X3 + . . . + bnXn, i = 1, . . . , n (1)

where b1, b2, b3 . . . bn are regression coefficients, indicating the predictive ability of X1, X2,
X3 . . . Xn n variables on y.

2.3.2. ARIMA (Autoregressive Integrated Moving Average Model)

The ARIMA model was proposed by BOX and Jenkins in the early 1970s [69]. The
ARIMA model forms a sequence of data using changing samples over time and then builds
a regression model based on random error values and lag values in the data. The established
model predicts the future value of the time series based on its past and present values [43].
ARIMA is composed of autoregressive (AR) and moving averages (MA), which contain
three parts (p, d, q). These, respectively, represent the parameters of the autoregressive
model, the order of the difference, and the moving average (moving average) parameters of
the model. The process of establishing the ARIMA moving average autoregressive model
is shown in Figure 1.
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The ARIMA model is shown in Equation (2):(
1 − ∑p

i=1 ϕiL
i
)
(1 − L)dXt =

(
1 + ∑q

i=1 θiLi
)
εt (2)

where L is the lag operator. The modeling steps are described as follows below.

1. Data stability processing

At this stage, the unit root test is used to determine the stationarity of the data. If the
data appear unstable, differential processing is performed here, which is the d parameter
in the ARIMA model. After differential processing, an ARIMA (p, q) model is generated.
Difference indicates finding the difference between x(t) and x(t − 1).

2. Model identification

At this stage, AR (p) and MA (q) parameters are selected. After differential d process-
ing is used to stabilize the data, stationary model data are obtained. Next, the autocorrela-
tion function (ACF) and the local autocorrelation function (PACF) are used at this stage to
determine the selection of coefficients and orders of AR (p) and MA (q).

The autocorrelation function (ACF), also known as serial correlation, is the correla-
tion between a series of numbers n time intervals apart when delayed by n. The local
autocorrelation function is obtained when the delay is n. In addition to considering the
properties of the autocorrelation function, the values between intervals are also considered.
The value is between 1 and −1, and the correlation coefficient is the basis for the strength
of the association. The larger the absolute value is, the stronger the relationship between
the two will be.

AR (p) represents the lag value (lag), which is the relationship between the current
and historical values. Let us suppose that the time calculation is expressed in days. In that
case, p = 1 represents the comparison between today’s data and yesterday’s data, and p = 2
represents today’s data compared with the data obtained from the day before yesterday,
etc. MA (q) represents the accumulation of error terms in the autoregressive model, and the
purpose of q is to eliminate random fluctuations in predictions. The selected p and q values
are inserted into the model to obtain the results. The adjustment of the model’s parameters
is performed in the next step.

3. Model evaluation

At this stage, the AIC (Akaike information criterion), AICc, or BIC method is generally
used to identify suitable models. The smaller the value is, the more suitable the model will
be for the data. Generally, the AIC criterion can evaluate the model’s results closer to the
actual value. Then, the BIC criterion is used to find the best fit because it has more severe
specifications in terms of parameter penalties.

4. Model validation

The last step is to verify the model’s results to determine whether the model is the
most appropriate and select the best model for subsequent predictions.

2.3.3. LSTM

Long short-term memory (LSTM) networks are considered to be representative of deep
learning, especially in sequential data processing, because of their ability to solve challenges
related to vanishing gradients and capture long-term dependencies [70]. The long-term
and short-term memory network technique is a learning sequence method composed of
storage units. It strengthens decision-making effects by receiving information from the
inside and memorizing it. The storage unit has three control valves (gates) for updating
information and determining the memory. For storage and use, the control valves are the
input gate, forget gate, and output gate. The long and short-term memory network unit
structure is shown in Figure 2 below.
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1. Input gate

The function of the input gate is to determine the importance of input information in
relation to the entire block. Among the input “words”, the input “word” may or may not
be necessary to the current data, and this judgment action is performed by the input gate
(input gate) at this stage. This stage conducts preliminary data verification, identifies the
importance of the information entered into the entire dataset, and decides whether to enter
the data and generate memories.

2. Forget gate

The task of the forget gate is to identify whether the message that entered the memory
program in the previous stage is a new topic or an opposite and unrelated word to the
previous message. If the message meets the conditions above, it will be, at this stage,
filtered and cleared. Otherwise, if it is judged to be new content, it will be retained in
the memory.

3. Output gate

This stage controls which states in the internal memory will be transmitted to the
output end and determines which of the messages stored in the memory unit will be
output. The LSTM long short-term memory network model is generally expressed as
Equations (3)–(8):

ft = σ
(

w f · [ht−1, xt] + b f

)
(3)

it = σ(Wi · [ht−1, xt] + bi) (4)

Ct = tanh(Wc · [ht−1, xt] + bC) (5)

Ct = ft × Ct−1 + it × Ct (6)

ot = σ(Wo · [ht−1, xt] + bo) (7)

ht = ot × tanh(Ct) (8)

In the input gate step process, Equation (3) identifies the input variables in order to
determine whether the data should be input and remembered. In Equations (4) and (5), it
is necessary to enter the forgetting gate to determine the new information to be created and
save it in memory. In Equation (6), the memory information in the unit layer is updated.
Equation (7), the information in the layer is used, and the output is prepared. In the final
equation, Equation (8), the cell uses the tanh activation function to generate a value between
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1 and −1. The above program, one part after another, is the internal structure of the LSTM
method. Through the control state between gates, it remembers the information that needs
to be remembered in a long-term sequence and forgets unimportant information.

LSTM has been widely used to predict events with time series and can be successfully
applied. It also outperforms most non-parametric methods [71–86]. Related research,
including flow forecasts, climate forecasts, and health monitoring, are shown in Table 2.

Table 2. Related work on LSTM.

Method Field Indicator Author

LSTM

Flow prediction
Traffic forecast Tian et al. [71]; Yang et al. [72]; Zhao et al. [73];

Huang et al. [74]

Stock forecast Kim and Won [75]; Cao et al. [76]; Sonkavde et al. [77]

Climate forecast

Temperature, pressure, humidity,
dew point Salman [78]; Narang et al. [79]

Solar irradiance Qing and Niu [80]; Jailani et al. [81]

Health monitoring

Twitter, ILIs Volkova et al. [82]; Akande et al. [83]

Infectious diseases Chae et al. [84]; Wan et al. [85]

Sports performance Wang et al. [86]

3. Materials and Methods

The utilization of LSTM, ARIMA, and multiple linear regression models presents a
holistic strategy for analyzing and forecasting influenza-like disease outbreaks through
Google Trends (GT) keyword searches. By harnessing the distinctive strengths of each
model, this approach provides a nuanced understanding of the underlying data. The
objective of this research is to employ predictive technologies in order to forecast the
incidence of influenza-like illnesses. To achieve this, this study compares various predictive
models, including the deep learning-based LSTM model and the ARIMA model for time-
series analysis. Additionally, multiple linear regression is applied to the exploration of
correlations between GT-related variables and the occurrence of influenza-like diseases.

3.1. Research Scenario

This study’s methodology unfolds through several key phases, beginning with data
acquisition and preprocessing. Initially, we gather data on Google search trends, leveraging
the number of searches for specific keywords within a given region on a particular day
as our assessment metric. These data, along with governmental open data and climate
information sourced from open platforms, undergoes preprocessing to ensure quality and
relevance. Subsequently, the refined data are stored in a designated database, marking the
transition to the phase of extensive data training and model construction.

During the data analytical phase, we employ a trio of research techniques to dissect and
predict influenza trends: a deep learning long short-term memory (LSTM) network, a time-
series analysis model using ARIMA, and multiple linear regression. These methodologies
are chosen for their complementary strengths in capturing and forecasting the dynamic
nature of influenza outbreaks based on the collected data.

The findings from this analysis are then visualized to facilitate understanding and are
communicated to policymakers and health officials. This information serves as a valuable
tool for informing public health strategies and policy implementation. The research sce-
nario is encapsulated in Figure 3, illustrating the study’s comprehensive approach to the
prediction of ILI epidemics.
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3.2. Research Architecture and Modules

This study’s research framework, depicted in Figure 4, outlines a comprehensive
approach to analyzing ILI trends using open-source data. Initially, the process involves
gathering GT data on keywords related to influenza-like symptoms from an open-source
platform. These data undergo a preprocessing phase to ensure their effective storage in
a database. The data collection is bifurcated into structured and unstructured categories.
Structured data are sourced from the government’s open data platform, DATA.GOV.TW,
which focuses on emergency department cases of ILI. Meanwhile, unstructured data
encompass Google Trends keyword information on ILI trends and climate data from the
Environmental Protection Agency of the Executive Yuan.
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This study utilizes GT data to pinpoint the most pertinent search terms for ILI by
conducting a keyword ratio analysis. Climate data are gathered from the Environmental
Protection Agency’s global climate stations, with daily climate records being aggregated
into weekly figures for analysis. These two distinct datasets are then merged and stan-
dardized through a data integration process. Subsequently, an optimal set of variables is
selected to identify the key search indicators for tracking ILI trends.

The final phase of the study involves constructing predictive models and conducting
predictive analysis. This is achieved by employing a multifaceted analytical approach that
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includes a multiple linear regression model, time-series analysis using an ARIMA model,
and a LSTM network. These methods are applied to forecast the incidence of ILI, leveraging
the integrated datasets for enhanced predictive accuracy.

3.3. Framework

The framework used for the model used in this study is illustrated in Figure 5, which
details a structured approach to forecasting influenza-like illness trends. The initial step
in this involves aggregating data from three primary sources: keyword trends from the
GT platform; the count of influenza-like illness cases from official health statistics; and
environmental climate data. The first phase of the model’s framework focuses on data
preprocessing. This includes addressing missing values, transforming daily climate data
into weekly aggregates, and subsequently storing these processed data within a dedicated
database. The aim is to prepare the raw data for use in further analysis by ensuring
consistency and completeness.
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In the second phase, the focus shifts to optimizing the selection of variables for
the study. This involves exploring every possible combination of keywords and climate
data variables to identify the set that offers the highest explanatory power. The chosen
combination of variables then serves as the input for the models used in the subsequent
analytical processes. The third phase entails determining the most effective lag time for use
in predictions. This involves identifying the optimal time delay between observed data
points and predictions to improve the model’s accuracy in forecasting future trends.

The fourth and final phase involves dividing the original dataset into two parts: one for
training and the other for testing the models. The performance of three distinct analytical
models is then assessed using common evaluation metrics such as the root-mean-square
error (RMSE) and mean absolute error (MAE). This stage is crucial for evaluating the
predictive accuracy and reliability of the models in terms of forecasting the incidence of
influenza-like illnesses based on the selected variables and data preprocessing techniques.

4. Experimental Design
4.1. Dataset

The study sources its data from three primary locations: (1) Google Trends (GT),
which provides data on trends related to influenza keywords from an open-source platform.
Google Trends is a free tool developed and maintained by Google to show trends in the
volume of searches for specific keywords or topics over time. It operates based on big
data statistics from the Google search engine and provides trend data based on the volume
of search queries. (2) Data on cases of influenza-like illnesses, which are made available
by the Center for Disease Control (CDC) under the Ministry of Health and Welfare of
Taiwan, are also used. The Taiwanese CDC’s infectious disease statistical information query
system provides the general public, academia, the medical service industry, and public
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health departments with the most straightforward online query method with which to
obtain the latest statistical information needed on Taiwan’s notifiable infectious disease.
(3) Climate data from the Environmental Protection Agency of the Executive Yuan, which
are accessible through its official website, are also used. Climatic data are used by the
National Health Service and the Department of Disease Control to enhance the provision
of weather forecasts and meteorological information. In light of the COVID-19 pandemic’s
impact, which started in 2019, this study deliberately selects data from the years 2016
to 2018 in order to prevent any potential skewing of the analysis due to the pandemic’s
influence. This period encompasses a total of 156 weeks of data. The specifics of the data’s
sources, along with a detailed description of the variables used, are systematically outlined
in Table 3.

Table 3. Data source and variable description.

Variable Source Description Number of
Observations

Emergency influenza-like cases Center for Disease Control Weekly number of flu-like emergencies

156 weeks
GT keywords Google Data Lab Weekly Google search frequency

Temperature Environmental Protection
Agency of the Executive Yuan

Average weekly temperature in Taiwan

Humidity Average weekly humidity in Taiwan

4.1.1. Emergency Influenza-like Cases

The Government Information Open Platform serves as an accessible, open-source
repository, offering a wide array of Taiwanese statistical information to the public, academic
circles, the healthcare sector, and public health authorities. This platform is characterized
by its openness, providing data that are readily available and transparent. It facilitates the
use of data by anyone with an interest or need, supporting modifications, sharing, and
open access to encourage information exchange across various entities. This approach not
only makes accessing information convenient but also contributes to enhancing quality of
life. For this study, data were gathered on influenza-like illness emergency cases across
all regions of Taiwan from the years 2016 to 2018. The compilation of this emergency case
dataset drew upon survey data from the Centers for Disease Control (CDC), the Department
of Health and Welfare, and the Agency for Disease Control. The dataset encompassed
details such as the year and week of onset for the influenza-like illnesses, which were
presented as string data, and the count of emergency visits attributed to influenza-like
illnesses, which was recorded as numerical data.

4.1.2. GT Keywords

GT captures trends through the search terms that users input, reflecting the frequency
of these keywords within specific regions, on particular days, months, or over selected
periods. The ratios of these keywords provide insights into fluctuating use trends over
time, serving as a valuable predictive tool and reference point. This research focuses on
the search volume of keywords across Taiwan from 2016 to 2018, with the GT data being
sourced directly from Google. Following the methodology of Ginsberg et al. [16], cold
and flu were initially identified as the primary search indicators. However, this study
expanded its scope to include a broader range of influenza-like symptoms as defined by
the CDC, such as fever, cough, muscle aches, headache, and fatigue. These symptoms are
subsequently used as GT keyword search indicators, with a detailed exploration provided
in the following section.

4.1.3. Climate Variables

The Taiwan Ministry of Environment’s Environmental Information Open Platform
(https://data.moenv.gov.tw/en, accessed on 31 January 2023) operates as a governmental

https://data.moenv.gov.tw/en
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open database, making a wide range of environmental information accessible to the general
public, academic researchers, the medical community, and public health agencies. The
platform features an array of integrated databases, categorized by environmental aspects
(such as atmosphere, water, and land) or thematic areas (including pollution prevention and
control, environmental statistics, ecological information, and monitoring activities). Users
can search through and utilize this information according to their specific requirements.

For this study, meteorological data were gathered from 36 climate monitoring stations
across Taiwan for the period from 2016 to 2018. The collected data included various
parameters such as the monitoring station name, date of monitoring, station pressure,
temperature, relative humidity, wind speed, precipitation levels, and hours of sunshine.
This information was all derived from the Central Meteorological Administration’s survey
data. The dataset incorporates details like the date and time of monitoring (treated as
string data), along with temperature and relative humidity (considered numerical data),
among others. Descriptive statistics for all variables collected within this timeframe are
meticulously compiled in Table 4. This table includes a symptom’s variables, their minimum
value (Min.), median (Median), average (Mean), maximum value (Max), variation (Var.),
and standard deviation (SD).

Table 4. Descriptive statistics of variables.

Symptom Variable Min. Median Mean Max. Var. SD

Number of ILI cases Occurrences 9402 11,721 14,056.01 62,959 41,583,115.04 6469.27

Fever

GT frequency

44 67 67.36 100 103.68 10.22

Cough 34 57 60.21 100 196.09 14.05

Muscle soreness 6 40.5 41.05 100 287 17

Headache 54 76 75.06 100 59.37 7.73

Fatigue 11 44 44.29 100 256.74 16.07

Common cold 30 55.5 56.39 100 217.25 14.79

Influenza 1 11 14.73 100 200.67 14.21

Climate variables
Temperature (◦C) 11.76 22.84 22.24 28.47 19.39 4.42

Humidity (%) 65.97 78.78 78.14 86.76 16.7 4.10

4.2. Experimental Environment

This study’s experimental setup operates within a Windows 10 operating system
environment, utilizing an Intel i5-3230 processor with a 2.6 GHz clock speed. For the
training, testing, and prediction phases of the LSTM model, the open-source Integrated
Development Environment (IDE) Spyder is employed to conduct experiments, with pro-
gramming carried out in Python. Additionally, ARIMA models and multiple regression
analyses are conducted using the IBM SPSS Statistics 22 software.

The experimental process begins with the construction of an initial prediction model,
following the collection and preprocessing of data. This involves gathering relevant data in
order to predict influenza-like illnesses, including official data on influenza-like emergency
cases, GT keywords, and climate data, among other things. After the data preprocessing is
completed, the experiment proceeds to various stages, as outlined in the study: Section 4.2.1
details the synchronization and size adjustment of the data conversion process. Section 4.2.2
discusses the methodology used to select the optimal combination of variables for the study.
Section 4.2.3 explores how the best prediction lag time is determined in order to improve
model accuracy. Section 4.2.4 presents the equation used in the multiple linear regression
model. Section 4.2.5 outlines the settings for the ARIMA model. Finally, Section 4.2.6 details
the parameter settings used in the LSTM model, providing insights into how each model is
customized and optimized for a study’s specific requirements.
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4.2.1. Data Conversion

The climate data utilized in this study were sourced from the Environmental Infor-
mation Open Platform provided by the Taiwan Ministry of Environment. This dataset
comprised hourly observations from various regional meteorological stations. To ensure
compatibility and consistency with the temporal resolution of other input variables in the
predictive model, the climate data underwent conversion processes. Detailed instructions
and methodologies for these data transformations are systematically presented in Table 5.

Table 5. Data conversion.

Observation Data Before Conversion After Conversion
Number of Input Samples

Station 36 36

Monitoring date 2016~2018 2016~2018

Monitoring time

Daily, hourly 156 weeksTemperature

Relative humidity

4.2.2. Variable Selection

Selecting the right variables is a crucial step in any predictive modeling task. It in-
volves identifying the most relevant features from a pool of potential variables in order
to construct an effective model. Including irrelevant or redundant variables can lead to
overfitting, where the model performs well on training data but poorly on unseen data.
Multicollinearity, the phenomenon where two or more predictor variables are closely corre-
lated, can further complicate the model’s ability to distinguish between their individual
impacts. By carefully selecting variables, it is possible to mitigate redundancy, reduce
multicollinearity, and enhance the stability of a model.

In the context of regression analysis, the adjusted R-squared value is a vital metric
that refines the standard R-squared value to account for the number of predictors used
in a model. It penalizes the model for including unnecessary variables, offering a more
accurate measure of fit. This makes adjusted R-squared an ideal criterion for evaluating
the effectiveness of different variable combinations, facilitating the comparison of models
with varying numbers of predictors. Adjusted R-squared does not offer a clear explanation,
and so it may be challenging for non-statisticians to understand its meaning. In addition,
it can only be used for linear regression models and cannot be used for other types of
models (such as nonlinear or machine learning models). Consequently, this study employs
adjusted R-squared as the primary metric for variable selection.

This research utilizes three types of data: GT keywords, temperature (T), and hu-
midity (H). The keywords used encompass fever (f), cough (c), muscle soreness (m),
headache (h), fatigue (b), and influenza (flu). Temperature and humidity are denoted
as t and hid, respectively. From these data, 120 different combinations of variables are
possible. The evaluation performed using adjusted R-squared with the output variable of
ILIs identified the top 10 combinations, as depicted in Figure 6.

The findings, illustrated in Figure 6, reveal that the combination of muscle soreness (m),
fever (f), headache (h), and influenza (flu) achieves the highest explanatory power, with
an R-squared of 0.62525. The next most effective combination includes fever (f), cough (c),
headache (h), fatigue (b), muscle soreness (m), and influenza (flu), with an R-squared
of 0.62342. A close third involves all variables, including fever, cough, muscle aches,
headache, fatigue, cold, flu, temperature, and humidity, showing an R-squared of 0.62312.
Although the combination of muscle soreness, fever, headache, and influenza exhibits the
highest explanatory power, the marginal differences in R-squared values among the top
combinations suggest minimal distinctions in their explanatory capabilities. Therefore,
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this study opts to utilize all variables for a comprehensive analysis, aiming to capture the
broader dynamics of the model for use in subsequent predictions and analyses.
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4.2.3. Incubation Period and Time Lag

The significance of the incubation period in the study and control of infectious diseases
has been well-documented in previous research [87]. Echoing this, Chae et al. [84] and
Kwon et al. [88] highlighted the predictive benefits of incorporating lag time into data
analysis for the early detection of infectious diseases. Building on this insight, our study
incorporated a lag time ranging from 1 to 12 weeks to observe its impact on predictive
outcomes. An evaluation using adjusted R-squared with the output variable of influenza-
like illnesses (ILIs) was conducted to assess the effectiveness of various lag times. The
results, depicted in Figure 7, reveal that a 1-week lag time offers the highest explanatory
power, with an R-squared value of 0.576089. Consequently, this study opts for a 1-week lag
for further prediction and analysis, aligning with findings that the incubation period for
ILIs is approximately one week long.
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4.2.4. Multiple Regression Analysis

The model’s establishment phase is entered after selecting the best variable combina-
tion in Figure 6 and selecting the best prediction time difference (Lag) in Figure 7. This
study will use Ŷt (dependent variable) as the number of influenza-like emergency cases, x
(independent variable) to represent GT keyword indicators, and temperature and humidity
as input items. The model is constructed as shown in Equation (9):

Ŷt = β1GTi,t−1 + β2Tt−1 + β3Ht−1 + εi (9)

where β1 is the coefficient defining the influence on GT; β2 is the coefficient defining the
influence on T (temperature); β3 is the coefficient defining the influence on H (humidity);
and ε is the error. Furthermore, it is necessary to set the lag time difference to 1 in order to
establish the regression equation.

4.2.5. ARIMA Parameter Setting

ARIMA is among the most commonly used methods among statistical models for
time-series prediction modeling. The model consists of three parameters (p, d, and q), and
different parameter settings produce different results. The experimental parameter d used
in this study is established based on the evaluation of whether the model data are stationary.
After selecting the parameters p and q, the AIC (Akaike information criterion) and BIC
(Bayesian information criterion) criteria are used to adjust p and q. Finally, the best model
is selected for subsequent use. First, this study inputs GT keywords data, temperature,
and humidity. It uses autocorrelation function (ACF) and partial autocorrelation function
(PACF) tests to find out the truncation and tail of the model, as shown in Figure 8 below:
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From the truncation and tail presented by ACF and PACF, we learn that the model
enters the interval at AR (8). It enters the interval at PACF (2), and so the selection of
ARIMA parameter values is based on the p-value set from 8 to 9. The d value is set from 0 to
1, and the q value is set from 2 to 3. The experiment tests various parameter combinations
and finds the minimum RMSE value as the model input parameter result.

4.2.6. LSTM Parameter Setting

Multiple regression models and time-series analysis ARIMA are traditional and stan-
dard analytical methods, and the LSTM method of deep learning has been proven to be
suitable for the prediction of time-series data [65,78]. Therefore, this study uses LSTM by
comparing its prediction performance with the ability of other two methods.
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To compare the pros and cons of the model, LSTM deep learning uses 23 parameters.
Chae et al. (2018) [84] mention four activation functions (activation), for which ELU, ReLU,
SELU, and SoftPlus are chosen, and four training periods (epochs), namely, 400, 600, 800,
1000, and 1200. Seven optimizers are used, which are Adadelta, Adagrad, Adam, Adamax,
Nadam, RMSprop, and SGD. Various optimization parameter combinations are tested,
with hidden layers set to 4, Batch_size is set to 32 (only 32 samples are trained each time),
and dense is set to 1, resulting in 112 combinations, which are shown in Figure 9 to show
the process of LSTM optimization of parameter settings. The minimum RMSE value is
obtained as the output parameter of the model from the combination.

J. Clin. Med. 2024, 13, x FOR PEER REVIEW 18 of 29 
 

 

 

Figure 9. LSTM optimization parameter setting process. 

4.3. Evaluation Metrics 

In order to assess the performance of the prediction models developed using three 

analytical learning approaches, this study employed two key metrics: mean absolute error 

(MAE) and root-mean-square error (RMSE). These metrics are pivotal in evaluating the 

accuracy of a model’s predictions, with lower values indicating superior predictive per-

formances. The formulas used to calculate MAE and RMSE are presented as Equations 

(10) and (11), respectively. 

𝑀𝐴𝐸 =  
∑ |𝑌𝑖 − 𝑌�̂�|

𝑖=1 
𝑛

𝑛
 (10) 

𝑅MSE =  √
1

𝑚
∑ (𝑦𝑖 − �̂�𝑖)

2𝑚
𝑖=1  (11) 

5. Results and Discussion 

The findings from this research are systematically presented in Section 5, with each 

subsection dedicated to a specific aspect of the study’s outcomes. Section 5.1 delves into 

the regression outcomes obtained for various combinations of variables using multiple 

linear regression. Section 5.2 discusses the forecasting results obtained from the ARIMA 

model. Section 5.3 elaborates on the predictions made by the LSTM model. Section 5.4 

offers a comparative analysis and discussion of the models that demonstrated the greatest 

explanatory power. Finally, Section 5.5 explores the implications of the study infodemiol-

ogy of ILI in clinical medicine. 

5.1. Results of Multiple Linear Regression Model 

In this study, the regression model incorporates a 1-week lag for each input variable, 

with the dataset split into training and testing segments at a ratio of 2:1. The experimental 

outcomes of the multiple linear regression model, across various variable combinations, 

are detailed in Table 6. According to the findings shown in Table 6, the variable combina-

tion of GT and temperature (T) exhibits the highest explanatory power, with an adjusted 

𝑅2 of 0.635. Following closely, the model that includes all variables (GT + temperature + 

humidity) ranks second in explanatory power, with an adjusted 𝑅2 of 0.62727. 

  

Figure 9. LSTM optimization parameter setting process.

4.3. Evaluation Metrics

In order to assess the performance of the prediction models developed using three
analytical learning approaches, this study employed two key metrics: mean absolute
error (MAE) and root-mean-square error (RMSE). These metrics are pivotal in evaluat-
ing the accuracy of a model’s predictions, with lower values indicating superior predic-
tive performances. The formulas used to calculate MAE and RMSE are presented as
Equations (10) and (11), respectively.

MAE =
∑i=1

n
∣∣Yi − Ŷi

∣∣
n

(10)

RMSE =

√
1
m ∑m

i=1(yi − ŷi)
2 (11)

5. Results and Discussion

The findings from this research are systematically presented in Section 5, with each
subsection dedicated to a specific aspect of the study’s outcomes. Section 5.1 delves into
the regression outcomes obtained for various combinations of variables using multiple
linear regression. Section 5.2 discusses the forecasting results obtained from the ARIMA
model. Section 5.3 elaborates on the predictions made by the LSTM model. Section 5.4
offers a comparative analysis and discussion of the models that demonstrated the greatest
explanatory power. Finally, Section 5.5 explores the implications of the study infodemiology
of ILI in clinical medicine.

5.1. Results of Multiple Linear Regression Model

In this study, the regression model incorporates a 1-week lag for each input variable,
with the dataset split into training and testing segments at a ratio of 2:1. The experimental
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outcomes of the multiple linear regression model, across various variable combinations, are
detailed in Table 6. According to the findings shown in Table 6, the variable combination of
GT and temperature (T) exhibits the highest explanatory power, with an adjusted R2 of 0.635.
Following closely, the model that includes all variables (GT + temperature + humidity)
ranks second in explanatory power, with an adjusted R2 of 0.62727.

Table 6. Regression results of various variable combinations.

Disease Variable R2 Adjusted R2 F

ILIs

GT 0.663 0.609 12.355

GT + T 0.692 0.635 12.078

GT + H 0.663 0.601 10.592

GT + T + H 0.693 0.627 10.537
Ps. T: temperature; H: umidity.

In order to delve deeper into the impact and significance of each variable within the
regression model, Table 7 provides a comprehensive breakdown of the multiple linear
regression outcomes for all variables. The results indicate that the p-values for the regres-
sion model concerning influenza-like illnesses (ILIs) are below the significance threshold
(p < 0.05), suggesting that the model’s performance is statistically significant, with an
adjusted R2 value exceeding 0.5. This underscores the model’s substantial explanatory
power, making it a reliable reference point. Notably, the search frequencies for the key-
words ‘fever’ (p < 0.001) and ‘cough’ (p < 0.05) on Google Trends significantly influence the
regression model. This implies that an increase in searches for these keywords to a certain
threshold should prompt heightened vigilance from the Ministry of Health and Welfare. In
addition, among climate factors, temperature (p < 0.05) has a more significant impact on
ILIs than humidity.

Table 7. Regression model results.

Disease R2 Adjusted R2 F p Variable β T p

ILIs 0.693 0.627 10.537 <0.001

fever 255.983 4.054 0.000 ***

cough 169.347 2.556 0.014 *

muscle soreness −57.750 −1.855 0.071

headache −97.753 −0.859 0.395

fatigue 12.950 0.525 0.603

common
cold −80.621 −0.948 0.349

influenza −61.738 −1.318 0.195

temperature −493.204 −2.015 0.049 *

humidity −49.845 −0.373 0.711

where *** p < 0.001, * p < 0.05.

5.2. Results of ARIMA Model

For comparative analysis, the ARIMA model’s input variables were aligned with those
used in the multiple linear regression, with a one-week time lag and the division of the
dataset into training and testing sets at 2/3 and 1/3 ratios, respectively. When configuring
the ARIMA model’s parameters, autocorrelation function (ACF) and partial autocorrelation
function (PACF) analyses were employed to determine the model’s cut-off and tailing
effects. The model parameters were varied to explore a variety of parameter combinations,
with the ‘p’ value set between 8 and 9, the ‘d’ value ranging from 0 to 1, and the ‘q’ value
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adjusted to between 2 and 3. As detailed in Table 8, this process resulted in eight distinct
parameter configurations being evaluated.

Table 8. Results of ARIMA model.

Disease Models BIC RMSE MAE R2

ILIs

ARIMA (8, 0, 2) 17.223 2570.06 1240.5 0.786

ARIMA (8, 1, 2) 17.545 2985.01 1352.04 0.718

ARIMA (8, 0, 3) 17.284 2550.76 1270.35 0.796

ARIMA (8, 1, 3) 17.656 3036.78 1517.76 0.718

ARIMA (9, 0, 2) 17.330 2610.45 1241.22 0.786

ARIMA (9, 1, 2) 17.674 3064.01 1475.43 0.713

ARIMA (9, 0, 3) 17.419 2626.97 1278.88 0.790

ARIMA (9, 1, 3) 17.715 3008.67 1351.63 0.732
The bold numbers represent the models with the best evaluation metrics.

Among these, the ARIMA (8, 0, 3) configuration demonstrated the most favorable
results, achieving the lowest root-mean-square error (RMSE) value of 2550.76, alongside
a robust explanatory power with an R2 value of 0.796 and a standardized Bayesian infor-
mation criterion (BIC) of 17.284. Consequently, the ARIMA (8, 0, 3) model was selected
for use in the analysis of input variable combinations. The outcomes of applying the
ARIMA (8, 0, 3) model, as shown in Table 9, reveal that the combined use of all variables
(GT + temperature + humidity) in the model yielded the highest explanatory power, with
an R2 of 0.7966.

Table 9. ARIMA model variable combination results.

Disease Models Variable BIC RMSE MAE R2

ILIs ARIMA (8, 0, 3)

Original 16.871 2921.32 1412.20 0.654

GT 17.107 2519.19 1218.98 0.788

GT + T 17.179 2514.28 1262.89 0.795

GT + H 17.211 2554.76 1221.53 0.788

GT + T + H 17.284 2550.76 1270.35 0.796
The bold numbers represent the models with the best evaluation metrics.

5.3. Results of LSTM Model

The LSTM model utilized in this study employs the same input variables as those
used in the multiple linear regression and ARIMA models, with a time lag of 1 week. To
determine the optimal parameter configuration for the LSTM model, the study explores
various combinations of 7 optimizers, 4 activation functions, and 4 epoch settings, resulting
in a total of 112 unique combinations. Table 10 outlines the enumeration of each opti-
mization parameter, while Table 11 ranks the top-performing LSTM models based on their
performance metrics.

Table 10. Optimization parameter representative number.

Number 1 2 3 4 5 6 7

Optimizers Adadelta Adagrad Adam Adamax Nadam RMSProp SGD

Activation ELU ReLU SELU SoftPlus - - -

Epochs 400 600 800 1000 - - -
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Table 11. Top ranked LSTM models.

Disease Models RMSE MAE

ILIs

LSTM (5, 1, 4) 2923.31 1588.55

LSTM (5, 3, 4) 2926.44 1589.58

LSTM (5, 2, 4) 2930.74 1598.16

LSTM (5, 3, 3) 3012.26 1579.25

LSTM (1, 3, 3) 3018.78 1611.51

LSTM (5, 1, 3) 3019.86 1588.94

LSTM (1, 1, 3) 3035.9 1632.1

LSTM (5, 2, 3) 3049.64 1623.26

LSTM (1, 3, 4) 3060.79 1694.99

LSTM (1, 4, 1) 3067.12 1806.03

According to the results presented in Table 11, the LSTM model configuration labeled
as (5, 1, 4) emerges as the most effective, showcasing the lowest root-mean-square error
(RMSE) value of 2923.31 and the lowest mean absolute error (MAE) value of 1588.55.
Consequently, the study adopts the LSTM (5, 1, 4) configuration in order to analyze the
input variable combinations in the subsequent phases.

The effectiveness of the LSTM (5, 1, 4) model’s application to various combinations
of variables is detailed in Table 12. This analysis reveals that using the GT variable alone
resulted in the lowest RMSE value of 2888.51, while the combination of GT and temperature
(T) variables achieved the lowest MAE value of 1542.44.

Table 12. Variables combination results (LSTM).

Disease Models Variable RMSE MAE

ILIs LSTM (5, 1, 4)

Original 2964.90 1589.26

GT 2888.51 1663.13

GT + T 2893.05 1542.44

GT + H 3082.18 1768.11

GT + T + H 2923.29 1588.07
The bold numbers represent the models with the best evaluation metrics.

5.4. Discussion and Comparison of Results across All Models

Table 13 compiles the evaluation results of all the models and their respective variable
combinations, with the best evaluation indices highlighted in bold. Among the models,
the multiple linear regression analysis, combining all variables (GT + T + H), achieves
the most favorable result across all prediction models, with an RMSE value of 2413.33.
Meanwhile, the ARIMA (8, 0, 3) model, utilizing only the GT variable, secures the best
MAE value of 1218.98 among all the models evaluated. This underscores the ARIMA
model’s proficiency in univariate time-series forecasting, and it is particularly crucial when
capturing time-dependent patterns.

Figure 10 juxtaposes the forecasted outcomes against the actual data utilized to predict
ILIs by using the combined-variables model (GT + T + H). In Figure 10, we can observe
that, in terms of the steady count of emergency room visits, the three models are almost
comparable, but that in the early stages of the outbreak, the LSTM model performed well
in the burst. This comparison reveals that, in scenarios of abrupt increases in the count of
emergency room visits for influenza-like symptoms, the LSTM approach outperforms the
other two methodologies, demonstrating its effectiveness in handling sudden shifts in the
data trend.
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Table 13. Comparison of explanatory power in all models.

Disease Models Variable MAE RMSE R2

ILIs

Regression analysis

GT 1705.3 2529.43 0.663

GT + T 1624.18 2417.32 0.692

GT + H 1699.5 2527.3 0.663

GT + T + H 1623.67 2413.33 0.693

ARIMA (8, 0, 3)

GT 1218.98 2519.19 0.788

GT + T 1262.89 2514.28 0.795

GT + H 1221.53 2554.76 0.788

GT + T + H 1270.35 2550.76 0.796

LSTM (5, 1, 4)

GT 1663.13 2888.51 -

GT + T 1542.44 2893.05 -

GT + H 1768.11 3082.18 -

GT + T + H 1588.07 2923.29 -
The bold numbers represent the models with the best evaluation metrics.
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The analysis encapsulated in Table 13 clearly demonstrates that the multiple linear
regression model, when considering all variable combinations, outperformed both the
ARIMA and LSTM models in predicting the volume of ILI emergency department visits.
This suggests that regression analysis is a particularly effective tool for forecasting ILI-
related emergency visits.

Further examination of the performance across different variable combinations re-
vealed that the GT + H (Google Trends + humidity) combination yielded suboptimal
predictions. In contrast, incorporating temperature (GT + T) significantly enhanced the
model’s predictive accuracy. This indicates that temperature fluctuations, particularly dur-
ing the influenza season, play a more crucial role in influencing ILI occurrences compared
to humidity levels, highlighting the importance of temperature as a predictive factor for ILI
emergency visits.
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Statistically, the performance of the LSTM method is slightly lower than that of the
regression and ARIMA methods. However, during the 2016 influenza outbreak, the LSTM
method had a good prediction effect when there was an outbreak of influenza-like emer-
gency rooms, but the performance could have been better. The possible reasons for the
numerical value achieved are as follows:

1. Optimization of parameter selection: The choice of optimization parameters followed
the approach of Chae et al. [78], with other parameters set to the default values
seen in Keras. The optimal number of epochs remains uncertain due to the unique
characteristics of each dataset, where data variability and stationarity can impact the
ideal settings. The study’s fixed approach to hidden layers and batch sizes, without
considering variable data factors, may have contributed to the reduced efficacy of the
LSTM model.

2. Variable selection: At the optimal variable combination phase, despite identifying the
top combinations, the study proceeded by using all variables for the LSTM model
input. While LSTM models excel in analyzing complex time-series data with long-
term dependencies, they require substantial data and computational resources. The
exclusion of other potentially influential variables might have led to the LSTM model’s
suboptimal learning outcomes.

This study faces several key limitations that warrant consideration. Firstly, the tem-
poral scope of the data sources utilized for the model is relatively brief, spanning from
2016 to 2018. Notably, the year 2016 represented the peak of Google Trends (GT) activity,
yet instances of influenza-like illnesses and confirmed influenza cases predate this period.
Secondly, the dataset employed in this research aggregates the number of visits to emer-
gency rooms for influenza-like symptoms on a weekly basis. Consequently, both GT and
climate data were also consolidated into weekly intervals. This aggregation may not align
optimally with the capabilities of the deep learning long short-term memory (LSTM) analy-
sis method. The limited dataset size, particularly in the context of deep learning, which
typically requires large volumes of data to achieve accurate predictions, could potentially
diminish the effectiveness of the LSTM model’s predictive performance.

These insights suggest areas for further refinement in terms of model selection and
parameter optimization in order to enhance predictive performance in future studies.

5.5. Implications of the Study Infodemiology of ILIs in Clinical Medicine

The study of infodemiology, particularly as it pertains to influenza-like illnesses (ILIs),
carries significant practical implications for the field of clinical medicine. These implications
span early detection, patient care, public health response, and health communication
strategies. Outlined here are some of the implications of this study’s findings.

1. The discovery that Google Trends keywords for fever and cough significantly correlate
with ILI incidence has practical uses, such as refining diagnostic criteria, enhancing
public health surveillance, guiding health communication strategies, and informing
clinical decision making and patient management during ILI outbreaks.

2. The practical implications of discovering that the incubation period of ILI is approxi-
mately one week in length include more accurate timing for public health advisories,
targeted patient advice on symptom monitoring and quarantine durations, opti-
mized timing for testing post-exposure, and improved models for outbreak prediction
and management.

3. The finding that temperature is a more significant factor than humidity in monitoring
the incidence of influenza-like illnesses implies that public health strategies and
predictive models should prioritize temperature data in order to achieve more accurate
surveillance, outbreak prediction, and intervention planning.

4. The finding that the ARIMA model has better explanatory power in terms of predicting
influenza-like illnesses suggests its utility in enhancing disease surveillance systems,
improving accuracy in forecasting outbreaks, and informing timely public health
interventions and resource allocation decisions.
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The practical implications of studying the infodemiology of ILI are profound and
multifaceted, impacting public health surveillance, healthcare delivery, policymaking, and
community awareness in several ways:

1. Early detection and preparedness: Infodemiology can alert clinicians and healthcare
facilities to increases in ILI-related searches in their region, serving as an early warning
system for potential outbreaks. This can prepare them for a surge in patient volume,
enabling them to allocate resources effectively, such as staffing, beds, and medications.

2. Enhanced patient care: By understanding the prevalent symptoms and concerns
of the population through search trends, clinicians can become more attuned to
the needs of their patients. This insight can inform clinical assessments, diagnostic
decisions, and patient communication, ensuring that care is responsive to the current
epidemiological context.

3. Improved patient triage and management: Real-time data on ILI trends can help
healthcare providers to triage patients more effectively, allowing them to prioritize
care for those most in need and advise others on home care and symptom monitoring.
This can also help in managing patient flow and reducing unnecessary hospital visits.

4. Telemedicine and remote care: Infodemiology’s insights can guide the implementation
of telehealth services, identifying periods when remote consultations can effectively
address patient needs and thus minimizing the risk of exposure for both patients and
healthcare workers during flu seasons.

5. Vaccine promotion and administration: Clinicians can use infodemiology data to
identify when and where to focus vaccine education and outreach efforts, particularly
in areas showing high levels of ILI-related search activity but low vaccination rates.

6. Public health communication: Healthcare providers can leverage infodemiology
findings to tailor their health communication strategies, addressing common miscon-
ceptions, providing clear guidance on when to seek medical care, and reinforcing
preventive measures such as hand hygiene and vaccination.

7. Monitoring treatment efficacy and disease evolution: Infodemiology can aid in moni-
toring the effectiveness of treatment protocols and interventions over time, as well as
in detecting shifts in disease presentation or severity, which may indicate emerging
strains or changes in the ILI landscape.

8. Clinical research and epidemiological studies: Insights from infodemiology can inform
clinical research priorities, helping to identify areas in need of further investigation,
such as factors contributing to disease spread, the effectiveness of interventions, and
public attitudes towards illness and prevention strategies.

In essence, the practical applications of ILI infodemiology in clinical medicine are vast,
offering tools to enable better preparedness, patient care, and public health engagement.
By integrating digital epidemiology insights with traditional clinical practices, healthcare
providers can enhance their response to influenza-like illnesses, ultimately improving
patient outcomes and public health.

Taiwan is one of the most advanced countries in the world in terms of providing
health and medical data to people. The process of ILI surveillance, utilizing climate data,
Google Trends, and ILI emergency case reports, can potentially be adapted and applied
in other countries beyond Taiwan. The feasibility and effectiveness of such an integrated
surveillance approach would depend on the availability, accessibility, and quality of the
data in those countries. With the increasing digitization of health records and the prevalence
of internet usage worldwide, many countries could leverage these data sources to enhance
their public health surveillance systems, provided that there is a commitment to data
sharing and the technical capacity for data analysis.

In addition, focusing on Google search data from specific professional communities,
like medical doctors and nurses, for ILI surveillance could potentially increase the accuracy
and relevance of predictions. These professionals might search for more technical terms re-
lated to ILI symptoms, treatments, and diagnostics compared to the general public, leading
to the earlier and possibly more precise detection of outbreaks. However, this approach
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requires access to segmented data and may face privacy and data-sharing challenges. The
best guess is that such targeted data could enhance predictive models but would need to
be evaluated for its practical implementation and ethical considerations.

6. Conclusions

In today’s interconnected world, the ability to monitor outbreaks of influenza-like
illnesses (ILIs) is vital for maintaining global health security. Early detection and swift
responses are crucial in preventing the international spread of such viruses, thereby mit-
igating the risk of global pandemics. The surveillance of ILI trends yields critical data
for researchers studying the virus, enhancing the understanding of its genetic diversity,
transmission modes, and potential shifts in virulence. This knowledge is instrumental in
refining vaccine formulations and developing more effective treatment strategies.

Surveillance efforts also assist health organizations in tracking the incidence and
prevalence of ILI cases, which is crucial for monitoring disease spread and severity. Iden-
tifying patterns, hotspots, and vulnerable groups enables the implementation of timely
interventions aimed at outbreak control.

Globally, ILI remains a significant public health concern. This study leverages data
from Google Trends (GT), records of ILI-related emergency room visits, and climate infor-
mation to forecast the ILI incidence in Taiwan. The findings indicate a correlation between
GT data and ILI occurrences, underscoring the potential of GT to act as a supplementary
tool for forecasting. According to the results from multiple regression analysis, variables
such as fever, cough, and headache show a significant association with ILI cases (p < 0.05),
highlighting the predictive value of GT data. Furthermore, the study reveals that combin-
ing GT with temperature data yields more accurate predictions than combining GT with
humidity data, suggesting that temperature is a more reliable monitoring indicator.

Comparing different analytical approaches, regression analysis emerges as a particu-
larly suitable method for this context. Although the deep learning LSTM model exhibits
a slightly higher prediction error than traditional methods, its performance during the
2016 influenza outbreak demonstrates its capability to effectively predict ILI surges. Thus,
despite its limitations, the LSTM method is recognized as a valuable tool in the arsenal of
the analytical techniques used for ILI surveillance.

Future Study

This study incorporates a limited range of external climate variables, specifically
temperature and humidity, but excludes other potentially relevant climate data such as
precipitation, sunshine hours, and wind speed. Including these additional variables could
enhance the predictive accuracy of the influenza-like illness model. Furthermore, consistent
with prior research, this study reaffirms the effectiveness of using variables from Google
Trends (GT) as predictors of influenza outbreaks. When seeking future enhancements in the
model’s performance, especially concerning the LSTM model, there is an opportunity to
expand the range of optimization parameters and explore a broader array of model predic-
tions. Adjusting the model’s learning rate and exploring diverse parameter combinations
may address the current limitations related to model efficiency.

Additionally, while this study utilizes GT variables to represent the symptoms de-
fined by the CDC, future investigations could benefit from examining a wider variety
of GT variable combinations. This approach could further refine and improve the ac-
curacy of model predictions for ILI, offering a more comprehensive understanding and
forecasting capability.

Author Contributions: Conceptualization, D.-H.S.; Data curation, Y.-H.W. and S.-C.C.; Formal analy-
sis, T.-W.W. and S.-C.C.; Funding acquisition, D.-H.S.; Investigation, D.-H.S. and M.-H.S.; Method-
ology, D.-H.S. and S.-C.C.; Project administration, M.-H.S.; Resources, Y.-H.W.; Software, T.-W.W.;
Supervision, Y.-H.W. and M.-H.S.; Validation, Y.-H.W.; Visualization, M.-H.S.; Writing—original draft,
T.-W.W. and S.-C.C.; Writing—review & editing, D.-H.S. All authors have read and agreed to the
published version of the manuscript.



J. Clin. Med. 2024, 13, 1946 25 of 28

Funding: This work was partially supported by the National Science and Technology Council, Taiwan
(grant number NSTC 112-2410-H-224-007). The funder had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ghosh, S.; Chakraborty, P.; Nsoesie, E.O.; Cohn, E.; Mekaru, S.R.; Brownstein, J.S.; Ramakrishnan, N. Temporal topic modeling to

assess associations between news trends and infectious disease outbreaks. Sci. Rep. 2017, 7, 40841. [CrossRef] [PubMed]
2. Yang, S.; Santillana, M.; Kou, S.C. Accurate estimation of influenza epidemics using Google search data via ARGO. Proc. Natl.

Acad. Sci. USA 2015, 112, 14473–14478. [CrossRef] [PubMed]
3. Bouzillé, G.; Poirier, C.; Campillo-Gimenez, B.; Aubert, M.L.; Chabot, M.; Chazard, E.; Cuggia, M. Leveraging hospital big data to

monitor flu epidemics. Comput. Methods Programs Biomed. 2018, 154, 153–160. [CrossRef] [PubMed]
4. Lipsitch, M.; Finelli, L.; Heffernan, R.T.; Leung, G.M.; Redd, S.C. Improving the Evidence Base for Decision Making During a

pandemic.pdf. Biosecurity Bioterrorism Biodefense Strategy Pract. Sci. 2011, 9, 89–115. [CrossRef]
5. Zhang, Y.; Bambrick, H.; Mengersen, K.; Tong, S.; Hu, W. Using Google Trends and ambient temperature to predict seasonal

influenza outbreaks. Environ. Int. 2018, 117, 284–291. [CrossRef]
6. Strauss, R.A.; Castro, J.S.; Reintjes, R.; Torres, J.R. Google dengue trends: An indicator of epidemic behavior. The Venezuelan

Case. Int. J. Med. Inform. 2017, 104, 26–30. [CrossRef]
7. Leung, N.H.; Xu, C.; Ip, D.K.; Cowling, B.J. The fraction of influenza virus infections that are asymptomatic: A systematic review

and meta-analysis. Epidemiology 2015, 26, 862–872. [CrossRef]
8. Al-Tawfiq, J.A.; Zumla, A.; Gautret, P.; Gray, G.C.; Hui, D.S.; Al-Rabeeah, A.A.; Memish, Z.A. Surveillance for emerging

respiratory viruses. Lancet Infect. Dis. 2014, 14, 992–1000. [CrossRef]
9. Dewan, V.; Sur, H. Using google trends to assess for seasonal variationin knee injuries.pdf. J. Arthrosc. Jt. Surg. 2018, 5, 175–178. [CrossRef]
10. Alibudbud, R. Google Trends for health research: Its advantages, application, methodological considerations, and limitations in

psychiatric and mental health infodemiology. Front. Big Data. 2023, 6, 1132764. [CrossRef]
11. Park, S.; Kim, J. The effect of interest in renewable energy on US household electricity consumption an analysis using Google

Trends data.pdf. Renew. Energy 2018, 127, 1004–1010. [CrossRef]
12. Althouse, B.M.; Ng, Y.Y.; Cummings, D.A. Prediction of dengue incidence using search query surveillance. PLoS Negl. Trop. Dis.

2011, 5, e1258. [CrossRef] [PubMed]
13. Naccarato, A.; Falorsi, S.; Loriga, S.; Pierini, A. Combining official and Google Trends data to forecast the Italian youth

unemployment rate. Technol. Forecast. Soc. Chang. 2018, 130, 114–122. [CrossRef]
14. Chu, A.M.; Chong, A.C.; Lai, N.H.; Tiwari, A.; So, M.K. Enhancing the Predictive Power of Google Trends Data Through Network

Analysis: Infodemiology Study of COVID-19. JMIR Public Health Surveill. 2023, 9, e42446. [CrossRef] [PubMed]
15. Eysenbach, G. Infodemiology: Tracking flu-related searches on the web for syndromic surveillance. In AMIA Annual Symposium

Proceedings; American Medical Informatics Association: Washington, DC, USA, 2006; Volume 2006, p. 244.
16. Yuan, Q.; Nsoesie, E.O.; Lv, B.; Peng, G.; Chunara, R.; Brownstein, J.S. Monitoring influenza epidemics in china with search query

from baidu. PLoS ONE 2013, 8, e64323. [CrossRef] [PubMed]
17. Chiu, P.C.; Teoh, S.H.; Zhang, Y.; Huang, X. Using Google searches of firm products to detect revenue management. Account.

Organ. Soc. 2023, 109, 101457. [CrossRef]
18. Ginsberg, J.; Mohebbi, M.H.; Patel, R.S.; Brammer, L.; Smolinski, M.S.; Brilliant, L. Detecting influenza epidemics using search

engine query data. Nature 2009, 457, 1012–1014. [CrossRef]
19. Ortiz, J.R.; Zhou, H.; Shay, D.K.; Neuzil, K.M.; Fowlkes, A.L.; Goss, C.H. Monitoring influenza activity in the United States: A

comparison of traditional surveillance systems with Google Flu Trends. PLoS ONE 2011, 6, e18687. [CrossRef]
20. Yang, L.; Zhang, T.; Han, X.; Yang, J.; Sun, Y.; Ma, L.; Chen, J.; Li, Y.; Lai, S.; Li, W.; et al. Influenza Epidemic Trend Surveillance

and Prediction Based on Search Engine Data: Deep Learning Model Study. J. Med. Internet Res. 2023, 25, e45085. [CrossRef]
21. Gluskin, R.T.; Johansson, M.A.; Santillana, M.; Brownstein, J.S. Evaluation of Internet-based dengue query data: Google Dengue

Trends. PLoS Negl. Trop. Dis. 2014, 8, e2713. [CrossRef]
22. Wu, C.; Kao, S.C.; Shih, C.H.; Kan, M.H. Open data mining for Taiwan's dengue epidemic. Acta Trop. 2018, 183, 1–7. [CrossRef] [PubMed]
23. Wang, D.; Guerra, A.; Wittke, F.; Lang, J.C.; Bakker, K.; Lee, A.W.; Finelli, L.; Chen, Y.H. Real-Time Monitoring of Infectious

Disease Outbreaks with a Combination of Google Trends Search Results and the Moving Epidemic Method: A Respiratory
Syncytial Virus Case Study. Trop. Med. Infect. Dis. 2023, 19, 75. [CrossRef] [PubMed]

24. Hu, H.; Tang, L.; Zhang, S.; Wang, H. Predicting the direction of stock markets using optimized neural networks with Google
Trends.pdf. Neurocomputing 2018, 285, 188–195. [CrossRef]

https://doi.org/10.1038/srep40841
https://www.ncbi.nlm.nih.gov/pubmed/28102319
https://doi.org/10.1073/pnas.1515373112
https://www.ncbi.nlm.nih.gov/pubmed/26553980
https://doi.org/10.1016/j.cmpb.2017.11.012
https://www.ncbi.nlm.nih.gov/pubmed/29249339
https://doi.org/10.1089/bsp.2011.0007
https://doi.org/10.1016/j.envint.2018.05.016
https://doi.org/10.1016/j.ijmedinf.2017.05.003
https://doi.org/10.1097/EDE.0000000000000340
https://doi.org/10.1016/S1473-3099(14)70840-0
https://doi.org/10.1016/j.jajs.2018.02.002
https://doi.org/10.3389/fdata.2023.1132764
https://doi.org/10.1016/j.renene.2018.05.044
https://doi.org/10.1371/journal.pntd.0001258
https://www.ncbi.nlm.nih.gov/pubmed/21829744
https://doi.org/10.1016/j.techfore.2017.11.022
https://doi.org/10.2196/42446
https://www.ncbi.nlm.nih.gov/pubmed/37676701
https://doi.org/10.1371/journal.pone.0064323
https://www.ncbi.nlm.nih.gov/pubmed/23750192
https://doi.org/10.1016/j.aos.2023.101457
https://doi.org/10.1038/nature07634
https://doi.org/10.1371/journal.pone.0018687
https://doi.org/10.2196/45085
https://doi.org/10.1371/journal.pntd.0002713
https://doi.org/10.1016/j.actatropica.2018.03.017
https://www.ncbi.nlm.nih.gov/pubmed/29549012
https://doi.org/10.3390/tropicalmed8020075
https://www.ncbi.nlm.nih.gov/pubmed/36828491
https://doi.org/10.1016/j.neucom.2018.01.038


J. Clin. Med. 2024, 13, 1946 26 of 28

25. Sukono, M.; Napitupulu, H.; Mohamed, N. A Conceptual Model of Investment-Risk Prediction in the Stock Market Using
Extreme Value Theory with Machine Learning: A Semisystematic Literature Review. Risks 2023, 11, 60. [CrossRef]

26. Mulero, R.; Garcia-Hiernaux, A. Forecasting unemployment with Google Trends: Age, gender and digital divide. Empir. Econ.
2023, 65, 587–605. [CrossRef]
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