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Abstract: Background/Objectives: Preferentially expressed antigen in melanoma (PRAME), a mem-
ber of the cancer testis antigen family, is a promising target for cancer immunotherapy. Understanding
the epigenetic mechanisms involved in the regulation of PRAME expression might be crucial for
optimizing anti-PRAME treatments. Methods: Three malignancies of different lineages (sinonasal
melanoma, testicular seminoma, and synovial sarcoma), in which immunohistochemical (IHC) re-
activity for PRAME is a common yet variable feature, were studied. The expression of PRAME,
ten-eleven translocation demethylase 1 (TET1), and DNA methyltransferase (DNMT) 3A and 3B
were evaluated using immunohistochemistry. Moreover, the expression of two epigenetic marks,
5-hydroxymethylcytosine (5hmC) and histone 3 acetylation (H3ac), was tested. Results: All PRAME-
positive tumors expressed medium-to-high levels of H3ac but differed considerably with respect
to other markers. In seminomas, PRAME expression correlated with TET1, but in melanomas
and synovial sarcomas, it correlated with both DNMTs and DNMT3A, respectively. Conclusions:
PRAME expression was not determined by a balance between the global expression of DNA methylat-
ing/demethylating enzymes. However, histone acetylation may be one of the epigenetic mechanisms
involved in PRAME regulation. Thus, the therapeutic combination of histone deacetylase inhibitors
and PRAME immunotherapy merits further investigation.

Keywords: PRAME; TET1; DNMT3A; DNMT3B; 5hmC; H3ac; seminoma; synovial sarcoma; sinonasal
melanoma; methylation; histone acetylation

1. Introduction

Preferentially expressed antigen in melanoma (PRAME) belongs to the family of
cancer testis antigens. In normal tissues, PRAME expression is essentially restricted to
the testis and the endometrium; however, it has been detected in a broad spectrum of
malignancies [1]. PRAME is a transcriptional repressor of retinoic acid signaling and
thereby regulates cellular growth, differentiation, and apoptosis [2]. Moreover, it has been
implicated in the promotion of invasion, metastasis, epithelial-to-mesenchymal transition,
and genomic instability in a number of cancers [3–7]. Notably, cytotoxic T lymphocytes
have been shown to effectively target PRAME-expressing cancer cells [8,9]. Several clinical
trials are underway to evaluate the efficacy of PRAME-directed therapies (ClinicalTrials.
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gov). Understanding the epigenetic mechanisms, such as DNA methylation, that regulate
PRAME expression is essential for the optimization of such therapies [10,11].

Methylated DNA forms a dynamic landscape modified by DNA methyltransferases
(DNMTs) and ten-eleven translocation (TET) demethylases [12]. DNMT3A and DNMT3B
catalyze the de novo methylation of previously unmethylated CpG sites. Conversely,
TET enzymes oxidize 5-methylcytosine to 5-hydroxymethylcytosine (5hmC), which can
ultimately result in the restoration of unmethylated cytosine [12]. TET1 is instrumental in
the demethylation of gene promoters and transcription start sites [13,14]. Dysregulation of
DNMTs and TETs has been reported in cancer [12].

Apart from DNA methylation, in vitro experiments suggested a functional association
between PRAME expression and histone acetylation [15,16]. This epigenetic mechanism,
regulated by the interplay of histone acetyltransferases and deacetylases, relaxes chromatin
structure and facilitates gene transcription [17]. Modulation of either DNA methylation or
histone 3 acetylation (H3ac) might therefore prove useful in augmenting PRAME expression
in the context of anti-PRAME immunotherapy. Both epigenetic processes can be targeted
by an expanding family of epigenetic drugs, some of which are already in clinical use [17].

This study aimed to investigate the potential relationship between the expression of
PRAME and methylation-regulating enzymes. Moreover, we sought to verify whether
PRAME levels are associated with histone acetylation. Three malignancies from different
lineages (melanoma, seminoma, and synovial sarcoma), characterized by frequent yet
variable PRAME expression [1], were studied. We examined whether the variability
of PRAME immunoreactivity is attributable to the differential expression of epigenetic
modifiers DNMT3A, DNMT3B, and TET1, as well as levels of 5hmC and H3ac.

2. Material and Methods
2.1. Tissue Samples

This study evaluated 247 formalin-fixed paraffin-embedded (FFPE) malignant tumors,
including 79 testicular seminomas (63 pure and 16 mixed with non-seminomatous compo-
nents), 66 sinonasal melanomas, and 102 synovial sarcomas. Paraffin blocks with mixed
germ cell tumors were dissected to obtain fragments containing seminoma tissues. Samples
were arranged in multi-tissue blocks as previously described [18]. Blocks with melanoma
and synovial sarcoma samples were previously developed [19,20]. Representative images
of the studied tumors are shown in Supplemental Figure S1. The study was carried out in
accordance with the Declaration of Helsinki and was approved by the Bioethics Committee
of Wroclaw Medical University (Approval #: KB165/2023).

2.2. Immunohistochemistry and Evaluation of Staining

Immunohistochemistry (IHC) was performed using either the DAKO or Leica (Leica
Biosystems, Bannockburn, IL, USA) platform and panel of antibodies to PRAME, TET1,
DNMT3A, DNMT3B, 5hmC, and H3ac (pan-acetyl). Detailed information about antibodies
and staining protocols are provided in Supplemental Table S1. Immunoreactivity in neo-
plastic cells was estimated using histochemical scoring (h-score) assessment. A percentage
of stained tumor nuclei multiplied by staining intensity score (0: none; 1: weak; 2: medium;
3: strong) produced a final h-score value ranging from 0 to 300. To exclude potential
artifacts from non-specific staining, h-scores ≤ 10 were considered negative.

2.3. Statistical Analysis

To assess the correlations between IHC expression of PRAME, the methylation reg-
ulators TET1 and DNMT3A/B, and the epigenetic marks 5hmC and H3ac, the values of
Kendall’s tau correlation coefficient were estimated. The difference in PRAME expression
between seminomas and seminoma components of mixed GCTs was verified with the
Mann–Whitney U test. Differences in IHC marker expression between tumor types were
analyzed using the Kruskal–Wallis test. The Dunn’s test and Holm–Bonferroni correction
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were used as post hoc tests. Differences were considered significant when p < 0.05. The
analysis was conducted using Statistica v.13. (TIBCO Sotfware Inc., Palo Alto, CA, USA).

3. Results
3.1. Expression of PRAME, Methylation Regulators and Epigenetic Marks

Only the staining of neoplastic cells was evaluated for the purpose of immunohisto-
chemistry scoring. However, some non-neoplastic cells also demonstrated the expression
of the analyzed markers and, when present, could be used as internal positive controls. All
of the studied markers were expressed by the seminiferous epithelium, albeit with different
distributions among cells in various stages of spermatogenesis. 5hmC was also expressed
by Leydig cells and some lymphoid cells, mostly weakly, as well as some spindled stromal
cells. Similar weak staining of some lymphoid cells was observed in the case of DNMT3A.
Scattered-to-diffuse expression of both DNMTs, as well as 5hmC, was present in transitional
and squamous epithelium within specimens of mucosal melanomas.

Representative photomicrographs of the IHC studies are shown in Figures 1–3.
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Figure 2. Immunohistochemical expression of PRAME (A), TET1 (B), DNMT3A (C), DNMT3B (D), 
5hmC (E), and H3ac (F) in mucosal melanoma (magnification ×200). 

Figure 2. Immunohistochemical expression of PRAME (A), TET1 (B), DNMT3A (C), DNMT3B (D),
5hmC (E), and H3ac (F) in mucosal melanoma (magnification ×200).

All three tumor types were characterized by a wide spectrum of PRAME expressions
ranging from negative (h-score = 0) to strong and diffuse (h-score = 300). PRAME h-scores of
>10 (positive expression) were observed in 97% (77/79) seminomas, 94% (62/66) sinonasal
melanomas, and 74% (75/102) synovial sarcomas. Median PRAME expression was highest
in melanomas and lowest in synovial sarcomas (Figure 4A).

H-score values were comparable in seminomas and seminoma components of mixed
GCT (Supplemental Figure S2). TET1 immunopositivity was present in 90% (71/79) of
seminomas, and 2% (2/102) of synovial sarcomas had faint immunoreactivity and all
melanomas were negative (Figure 4B). Conversely, melanomas revealed frequent expres-
sion of methyltransferases DNMT3A (49/66, 74%) and DNMT3B (44/66, 67%). However,
expression of these enzymes was remarkably lower in seminomas and synovial sarcomas.
DNMT3A was expressed in 3% (2/79) of seminomas and 36% (37/102) of synovial sar-
comas, while DNMT3B was expressed in 33% (27/79) of seminomas and 5% (5/102) of
synovial sarcomas (Figure 4C,D). Subsequently, the expression of 5hmC, an intermediate
in DNA demethylation, and the pan-acetylation of histone 3 were evaluated. Weak 5hmC
immunostaining was seen in 3% of seminomas (2/79). In contrast, 80% of melanomas
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(53/66) and 95% of synovial sarcomas (97/102) had positive 5hmC IHC (Figure 4E). H3ac
was detected in all analyzed tumors, usually with high h-scores (Figure 4F).
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Figure 3. Immunohistochemical expression of PRAME (A), TET1 (B), DNMT3A (C), DNMT3B (D),
5hmC (E), and H3ac (F) in synovial sarcoma (magnification ×200).

3.2. Correlations between Expression of PRAME, Methylation Regulators and Epigenetic Marks

Kendall’s tau correlations for the studied tumor groups are summarized in Table 1. In
all tumor categories, PRAME expression correlated with increased histone 3 acetylation.
Also, PRAME IHC positively correlated with both DNMTs and DNMT3A in melanomas
and synovial sarcomas, respectively. A positive correlation between PRAME and TET1
expression was seen in seminomas. However, no similar correlation was seen between
expression of PRAME and 5hmC, a product of 5mC oxidation by TET enzymes.
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Figure 4. Quantitative analysis of expression of PRAME (A), TET1 (B), DNMT3A (C), DNMT3B (D),
5hmC (E), and H3ac (F) in testicular seminomas (Sem), mucosal melanomas (MM), and synovial
sarcomas (SS).

Table 1. Kendall’s tau correlation coefficient values for the IHC expression of PRAME and methylation
regulators TET1 and DNMT3A/B, and epigenetic marks 5hmC and H3ac.

Kendall’s tau p Value

All (n = 247)
TET1 0.206 <0.001

DNMT3A 0.229 <0.001
DNMT3B 0.329 <0.001

5hmC −0.033 0.408
H3ac 0.176 <0.001

Seminoma (n = 79)
TET1 0.246 0.001

DNMT3A * −0.158 0.040
DNMT3B −0.010 0.894
5hmC * −0.202 0.009

H3ac 0.300 <0.001

Mucosal melanoma (n = 66)
TET1 NA NA

DNMT3A 0.316 <0.001
DNMT3B 0.347 <0.001

5hmC 0.100 0.235
H3ac 0.188 0.026

Synovial sarcoma (n = 102)
TET1 * 0.108 0.109

DNMT3A 0.338 <0.001
DNMT3B * 0.182 0.007

5hmC 0.421 <0.001
H3ac 0.299 <0.001

* false correlations—insufficient number of tumors with positive IHC; statistically significant correlations are in
bold text.
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4. Discussion

PRAME is a promising target for cancer immunotherapy. Recent and ongoing clini-
cal trials have employed various techniques, including peptide vaccines, T cell-engaging
molecules, and adoptive transfer of engineered T cells that activate the immune system
against PRAME-expressing tumor cells. Those drugs have been tested in solid tumors and
hematological malignancies (ClinicalTrials.gov). An iatrogenic enhancement of PRAME ex-
pression in cancer cells may improve the efficacy and applicability of such novel treatments.
Several previous studies evidenced that PRAME is regulated epigenetically through the
gene promotor methylation and histone acetylation [10,11,15,21].

This study employed IHC to evaluate the expression of key methylating/demethylating
enzymes (DNMT3A, DNMT3B, and TET1) and two epigenetic marks, namely,
5-hydroxymethylcytosine and histone 3 acetylation. Tumors from three different lineages
(sinonasal melanoma, testicular seminoma, and synovial sarcoma), identified to have
common yet variable PRAME immunoreactivity, were studied [1].

In seminomas, expression of DNMT3A or DNMT3B was at a low level, as previously
reported [22,23]. However, it was paired with elevated levels of demethylase TET1 and
low expression of 5hmC (2/79, 3%). The latter likely reflects genomic hypomethylation
and a shortage of substrate (5mC) for oxidation [22]. A recent study reported differential
expression of PRAME in seminomas and seminoma components of mixed tumors [24].
This disparity is believed to result from PRAME involvement in the “reprogramming” of
seminoma cells towards the embryonal carcinoma phenotype [24]. Almost all testicular
embryonal carcinomas lack PRAME expression [1,15,24]. In our cohort, median PRAME
h-scores for seminomas and seminoma components of mixed germ cell tumors were not
statistically different (Supplemental Figure S2).

In synovial sarcomas, a positive association between expression of PRAME and
DNMT3A was identified. Also, PRAME staining was strongly, positively correlated with
global 5hmC levels. However, TET1 expression was infrequent. This might imply involve-
ment of other enzymes in the oxidation of 5-methylcytosine in these tumors. Additional
studies are required to address the nature and significance of this association.

In melanoma, positive associations between expression of PRAME and DNMT3A
and DNMT3B were seen. Both DNMT3A and DNMT3B manifest oncogenic properties in
melanoma and have been linked with unfavorable clinical outcomes [25–27]. Increased
PRAME expression in melanomas has also been linked with poor prognosis, and this might
explain the co-occurrence of this marker with DNMTs [28,29].

Increased histone acetylation was associated with higher PRAME expression. These
findings corroborate earlier experimental observations that PRAME may be induced by
histone deacetylase inhibitors (HDACIs) [15,16]. Two embryonal carcinoma cell lines,
2102EP and NCCIT, which are naturally PRAME-negative and hypermethylated, revealed
upregulated PRAME expression following treatment with various HDACIs [15]. Thus, a
formation of euchromatin around the PRAME locus via histone deacetylation appears to
override the repressive DNA methylation mark within the gene promoter, allowing for
de-repression of PRAME expression [15]. Functional link between histone acetylation and
PRAME is further supported by a recent study on laryngeal squamous cell carcinoma in
which the expression of PRAME was negatively correlated with IHC staining for histone
deacetylase 5 [7]. Nevertheless, validation of these observations will require further stud-
ies on fresh/frozen tissues, employing techniques allowing for protein quantitation and
measurements of enzymatic activities.

Overall, apart from a weak correlation between TET1 and PRAME expression in
seminomas, we found no evidence supporting a relationship between PRAME and the
global expression/activities of DNA methyltransferases DNMT3A/B or demethylase TET1
in the analyzed tumors. However, histone acetylation might be a common mechanism
regulating the transcription of PRAME in distinct types of cancer. Therefore, the addition
of HDACIs to anti-PRAME immunotherapy might improve its clinical efficacy through
increased expression and presentation of PRAME antigens.

ClinicalTrials.gov
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HDACIs themselves are an emerging class of anticancer compounds acting through
diverse downstream mechanisms, e.g., induction of differentiation, apoptosis, growth
arrest, or inhibition of neoangiogenesis. Promising effects of HDACIs have been shown in a
number of tumors, including melanoma, testicular germ cell tumors, and sarcomas [30–32].

5. Conclusions

Despite PRAME expression in cancer presumably being regulated by gene methylation,
we found no relevant, direct correlation with DNA methylase/demethylase expression.
Regulatory cues that influence PRAME methylation might therefore be more site-specific.
On the other hand, global levels of H3ac were positively correlated with PRAME in three
distinct types of cancer: seminoma, synovial sarcoma, and melanoma. Although histone
acetylation, as a determinant of PRAME expression, warrants further studies, there may
be a rationale for the use of anti-PRAME immunotherapy in combination with histone
deacetylase inhibitors in cancer treatment.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/jcm13061554/s1: Figure S1: H&E-stained sections of representative
examples of the studied tumors: testicular seminoma (A,B), mucosal melanoma (C,D), synovial
sarcoma (E,F) (magnification ×200); Figure S2: Quantitative analysis and comparison of PRAME
expression in pure seminomas and seminoma components of mixed germ cell tumors; Table S1:
Detailed information about antibodies and immunohistochemical protocols.
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