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Abstract: Sudden cardiac death (SCD) accounts for a substantial proportion of mortality in heart
failure with reduced ejection fraction (HFrEF), frequently triggered by ventricular arrhythmias (VA).
This review aims to analyze the pathophysiological mechanisms underlying VA and SCD in HFrEF
and evaluate the effectiveness of guideline-directed medical therapy (GDMT) in reducing SCD. Beta-
blockers, angiotensin receptor–neprilysin inhibitors, and mineralocorticoid receptor antagonists have
shown significant efficacy in reducing SCD risk. While angiotensin-converting enzyme inhibitors and
angiotensin receptor blockers exert beneficial impacts on the renin-angiotensin-aldosterone system,
their direct role in SCD prevention remains less clear. Emerging treatments like sodium-glucose
cotransporter 2 inhibitors show promise but necessitate further research for conclusive evidence. The
favorable outcomes of those molecules on VA are notably attributable to sympathetic nervous system
modulation, structural remodeling attenuation, and ion channel stabilization. A multidimensional
pharmacological approach targeting those pathophysiological mechanisms offers a complete and
synergy approach to reducing SCD risk, thereby highlighting the importance of optimizing GDMT for
HFrEF. The current landscape of HFrEF pharmacotherapy is evolving, with ongoing research needed
to clarify the full extent of the anti-arrhythmic benefits offered by both existing and new treatments.

Keywords: heart failure with reduced ejection fraction; sudden cardiac death; ventricular arrhythmias;
guideline-directed medical therapy; pharmacological management

1. Introduction

Heart failure (HF), and, more specifically, heart failure with reduced ejection fraction
(HFrEF), stands as a public health challenge characterized by substantial morbidity and
mortality, notably attributed to sudden cardiac death (SCD). The incidence of SCD in the
HF population is fivefold greater than in the general population, accounting for 40–50%
of all deaths, which is a considerable proportion of potentially preventable deaths in
this population [1]. The association between SCD and HF is predominantly mediated by
ventricular arrhythmias (VA), resulting from the complex interplay between the structurally
altered cardiac substrate in HF and various environmental triggers [2,3].

Guideline-directed medical therapy (GDMT) for HFrEF is founded on a cornerstone
of four distinct classes of medications: beta-blockers (BB), renin-angiotensin-aldosterone
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system (RAAS) inhibitors, mineralocorticoid receptor antagonists (MRA), and sodium-
glucose cotransporter 2 inhibitors (SGLT2i) [4]. Each of these pharmacological classes
has demonstrated significant efficacy in reducing major cardiac events in HFrEF patients,
including, for some, reduction in the incidence of SCD [5,6]. In this comprehensive review,
we delve into the pathophysiological mechanisms underlying VA and SCD within the
context of HF, and we undertake an in-depth analysis of the beneficial effects conferred by
each of these medication classes in preventing SCD in this population.

2. Pathophysiology of Ventricular Arrhythmia and Sudden Cardiac Death

The pathophysiology of SCD due to VA in the context of HF is multifaceted. It
involves an intricate interplay among transient factors or events that serve as triggers
(e.g., ischemic episodes, metabolic disturbances, electrolyte imbalances, fluctuations in
sympathetic nervous system activity), occurring in the presence of a myocardial substrate
predisposed to arrhythmias [3,7].

Three primary electrophysiological mechanisms lead to VA within this context:
(1) Inappropriately Increased Automaticity: This mechanism involves certain ventric-
ular myocyte regions exhibiting increased automaticity, thereby initiating spontaneous
action potentials without external stimulation, contributing to the onset of arrhythmias.
(2) Triggered Activity: Triggered activity can manifest as early afterdepolarizations (occur-
ring late in phase 2 or early in phase 3 of the action potential) or delayed afterdepolarizations
(occurring after complete repolarization). These afterdepolarizations can reach the thresh-
old potential necessary for the activation of ion channels, ultimately leading to arrhythmic
events. Triggered activity typically follows a preceding impulse and is not a self-generating
rhythm. (3) Reentry: This involves the circulation of electrical impulses around a barrier,
often anatomical, such as scar tissue or fibrosis, perpetuating a continuous myocardial
excitation, leading to sustained arrhythmias. It is noteworthy that these three mechanisms
can coexist; arrhythmias may initiate through triggered activity and transition to reentrant
patterns [7–9].

The pathophysiological changes in HF create an environment that favors these VA
mechanisms. HF is characterized by cardiac remodeling, which includes ventricular en-
largement, hypertrophy, and fibrosis [10]. Fibrosis may result from myocardial infarctions
or from other structural cardiac disorders such as hypertrophic cardiomyopathy and ar-
rhythmogenic cardiomyopathy. Factors like TGF-β1, endothelin-1, and Angiotensin II
induce fibrosis, perturbing electrical excitation and repolarization [11]. Regions of fibrosis
facilitate reentrant tachycardias by disrupting myocardial electrical impulses and fostering
areas of slow conduction [12].

The nervous system and the RAAS, which are both markedly activated in the setting
of HFrEF due to ventricular dysfunction, are significantly implicated in arrhythmogenesis.
Angiotensin II and Aldosterone, acting through RAAS, induce vasoconstriction, increasing
the afterload and remodeling, and stimulate fibroblasts’ activity, leading to interstitial
fibrosis and scar formation [10,13]. At the cellular level, angiotensin II initiates multi-
ple signaling pathways that induce electrical remodeling, notably through alterations in
the sodium current [14] and the destabilization of Kv4.3 messenger RNA [15], leading
to increased Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity, perturbing
calcium homeostasis, and predisposing to VA [16–18]. Moreover, Angiotensin II stimulates
the sympathetic nervous system, contributing to VA through an increased sympathetic
tone. Elevated levels of norepinephrine raise the afterload, thus increasing the myocardial
oxygen demand and promoting cardiac remodeling, dilatation, and fibrosis [10]. Such
structural alterations create a favorable environment for arrhythmogenesis. Additionally,
sympathetic activation induces electrophysiological alterations, disrupting sodium and cal-
cium channel currents and prolonging action’s potential duration, ultimately predisposing
the myocardium to early depolarizations [19]. For example, chronic adrenergic activation
destabilizes Ryanodine receptors 2 (RyR2) channels, which are critical Ca2+ release channels
located on the sarcoplasmic reticulum, playing a central role in the excitation-contraction
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coupling in the heart. Dysfunctional RyR2 channels lead to calcium leak and elevated
cytoplasmic calcium levels via CaMKII, impairing cardiac function and exacerbating ar-
rhythmogenesis through electrical instability, delayed afterdepolarizations, and triggered
arrhythmias [18,19].

All this intricate electrical and structural remodeling in HFrEF leads to arrhythmo-
genesis and SCD (Figure 1). This highlights the importance of the GDMT for HFrEF in
mitigating the risk of SCD in this population.
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3. Beta-Blockers

β-adrenergic receptors are expressed on cardiomyocytes. The activation of the cardiac
sympathetic system by the binding of norepinephrine and epinephrine to these receptors ini-
tiates a cascade of intracellular reactions involving the cAMP/PKA signaling pathway [20].
This signaling pathway affects several key targets, including RyR2, L-type calcium chan-
nels, phospholamban, and others [19,20]. The net result of these signaling events is the
enhancement of various aspects of cardiac function: an increased heart rate (chronotropy),
an accelerated conduction velocity (dromotropy), a heightened force of contraction (in-
otropy), and an improved speed of relaxation (lusitropy) [21]. All these downstream
effects of β-adrenergic stimulation facilitate the development of ectopic activity, including
early afterdepolarizations and delayed afterdepolarizations, as well as functional reentry
through action potential duration shortening, effective refractory period reduction, and
conduction alterations [21]. Consequently, excessive β-adrenergic stimulation is associated
with arrhythmias.

Three subtypes of β-receptors are known, with β1-receptors being predominantly
localized in the cardiac tissue. The classes of BB are diverse, encompassing non-selective
β-adrenergic antagonists (e.g., nadolol, propranolol), β1-selective adrenergic antagonists
(e.g., acebutolol, atenolol, esmolol, metoprolol), and β-adrenergic antagonists with ad-
ditional cardiovascular effects (e.g., carvedilol, labetalol, nebivolol), which may exhibit
vasodilatory, anti-inflammatory, and antioxidant properties [22]. BB attenuate the sym-
pathetic tone and sympathetically mediated triggers [22]. They mitigate automaticity by
prolonging the sinus node cycle length and decelerating the atrioventricular conduction
velocity by limiting calcium entry via catecholamine-dependent channels [21]. Moreover,
BB have been shown to possess antifibrotic properties, improve the left ventricular (LV)
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function, reduce the LV diameter, and decrease the LV mass, outcomes that are favorable in
reducing SCD in HF [21].

Multiple studies have demonstrated the efficacy of BB in preventing arrhythmias and
SCD in the context of HF. CIBIS II investigated the impact of Bisoprolol in HFrEF and
demonstrated a significant mortality benefit, with a 42% reduction in SCD compared to
the placebo group [23]. Metoprolol in HFrEF showed a similar and significant reduction in
SCD in the MERIT-HF trial [24]. In the SENIORS trial, evaluating Nebivolol in an elderly
HFrEF population, the SCD rate was significantly lower in the nebivolol-treated group [25].
The COPERNICUS trial in 2001, studying Carvedilol, showed a mortality benefit, although
explicit data on SCD were not presented [26]. Additionally, several studies have indicated a
significant reduction in shocks in patients wearing implantable cardioverter–defibrillators
(ICD) when treated with BB compared to those without [27]. Meta-analyses have confirmed
the benefit of BB on both mortality and SCD, without revealing statistically significant
differences among the various types of BB [28–30]. Recent evidence, however, indicates a
potential superiority of non-selective beta-blockers in antiarrhythmic effects. Specifically,
Propranolol has been demonstrated to be superior to Metoprolol in managing electrical
storms in ICD patients [31]. Carvedilol has also been associated with a substantial decrease
in VA risk, compared to Metoprolol [32]. Further robust data are needed to confirm
these findings.

In conclusion, BB substantially reduce proarrhythmic risk by inhibiting sympathet-
ically mediated triggers, reducing functional reentrant substrates, and slowing the si-
nus node and atrioventricular nodal rates. The evidence supporting their use in HFrEF
is robust and emphasizes their critical role in mitigating arrhythmias and SCD in this
patient population.

4. Angiotensin-Converting Enzyme Inhibitor/Angiotensin Receptor Blocker

The RAAS exerts a critical influence on the pathophysiology of HFrEF by contributing
to cardiac remodeling, interstitial fibrosis, and perturbations in various ionic currents,
which collectively enhance arrhythmogenesis. The inhibition of the RAAS is principally
achieved through two pharmacological classes: angiotensin-converting enzyme inhibitors
(ACEi) and angiotensin II receptor blockers (ARB). ACEi act by inhibiting the conversion
of angiotensin I to angiotensin II, while ARB selectively antagonize the angiotensin II type
1 receptors [33]. This blockage results in several beneficial effects, including the attenuation
of ventricular remodeling, vasodilatation, a reduction in neurohormonal agents, and a
decrease in the sympathetic tone and circulating catecholamines, along with favorable
effects on ionic currents [10,34].

Several pivotal trials have explored the efficacy of RAAS inhibitors in the context of
HFrEF. The CONSENSUS study, assessing the use of Enalapril in HFrEF, demonstrated a
significant reduction in mortality, although it did not find a difference in SCD [35]. Similar
results were found in the SOLVD-Prevention study [36]. In the ELITE trial, which compared
Losartan to Captopril, Losartan was associated with a lower mortality, primarily driven by
a lower incidence of SCD [37]. However, these results were not replicated in the ELITE II
trial, where no significant differences were observed in either mortality or SCD [38]. Trials
such as CHARM (exploring Candesartan) [39] and Val-HEFT (exploring Valsartan) [40] did
not specifically monitor SCD as an endpoint. In patients wearing ICD, ACEi/ARB therapy
has been associated with an improved freedom from shocks [41,42]. A large retrospective
registry by Schupp et al. [43] indicated that ACEI/ARB treatment is associated with reduced
all-cause mortality in patients who survived episodes of VA. Nonetheless, meta-analyses
have shown a lack of a consistent efficacy of ACEi/ARBs in reducing the risk of SCD and
VA, despite demonstrating benefits in overall mortality and hospitalization rates [30,44–46].
The exception appears to be in the context following acute myocardial infarction, where
ACEi have shown a 20% reduction in SCD [47].
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In conclusion, although ACEi and ARB have demonstrated favorable effects on the
RAAS and have robust data supporting their beneficial impact on overall outcomes in
HFrEF, their role in reducing the risk of SCD has not been definitively established, as
underscored by multiple meta-analyses.

5. Angiotensin Receptor–Neprilysin Inhibitor

The Angiotensin Receptor–Neprilysin Inhibitor (ARNi) combines two active com-
ponents: Valsartan, an ARB, and Sacubitril, a Neprilysin Inhibitor [48]. The molecular
mechanisms underlying the anti-arrhythmic effects of ARNi are not yet fully elucidated
and remain speculative to some extent. The mechanism of action encompasses effects on
the RAAS via the ARB component and additional effects attributable to the Neprilysin
Inhibitor, Sacubitril. At the electrophysiological level, ARNi exerts an influence on ionic
currents in cardiomyocytes. Chang et al. [49] observed that ARNi had the potential to
up-regulate the expression of potassium channel proteins, including KCNH2, KCNE1, and
KCNE2. The consequent shortening of the action potential duration potentially ameliorates
ventricular arrhythmogenicity, especially in the context of HF induced by myocardial in-
farction. Moreover, ARNi also appears to have a favorable effect on calcium homeostasis
by downregulating the expression of CaMKII and mitigating diastolic calcium leak arising
from dysfunctional RyR2 [50,51]. Additionally, neprilysin inhibition by ARNi contributes
to elevated circulating levels of natriuretic peptides, which exert various cardioprotective
effects countering the detrimental effects of the RAAS and sympathetic nervous system
activation [52]. Natriuretic peptides increase the intracellular levels of cyclic guanosine
monophosphate and its downstream effector molecule protein kinase G. This cascade leads
to vasodilation, natriuresis, the inhibition of the RAAS, and sympathetic systems [52]. Fur-
thermore, natriuretic peptides exert anti-inflammatory, anti-apoptotic, anti-hypertrophic,
and anti-fibrotic effects on the myocardium [53–55]. ARNi has also been shown to signifi-
cantly reduce biomarkers associated with profibrotic signaling [56].

Multiple studies and trials corroborate the beneficial effects of ARNi on VA and ICD
therapy [57,58]. Post hoc analyses of the PARADIGM-HF trial, investigating ARNi in
HFrEF, showed a significant reduction in VA and the risk of SCD [59,60]. Liu et al. [61]
found in their meta-analyses that although ARNi did not affect the incidence of VA, it
did significantly reduce the risk of SCD in heart failure patients. Another meta-analysis
by Pozzi et al. [62] demonstrated a significant reduction in the burden of VA and ICD
shock when comparing ARNi to ACEi/ARB therapy. Fernandes et al. [63] reported a
significant reduction in SCD, VA, and appropriate ICD therapy with ARNi. Major studies
and meta-analyses regarding the effect of ARNi on VA and SCD are summarized in Table 1.

Table 1. Major studies and meta-analyses regarding effect of ARNi on ventricular arrythmia and
sudden cardiac death.

Authors
Journal Year

Type of Study
Intervention

No. of Patients in the
Population

Effect on
VA and SCD

Martens, et al.
Clin Res Cardiol.

2019 [57].

Retrospective, cohort
Pre- vs. Post-ARNi initiation

151
HFrEF with ICD

VA reduction (51 vs. 14; p < 0.001)
ICD shock reduction (16 vs. 6;

p < 0.001)

De Diego, et al.
Heart Rhythm.

2018 [58].

Prospective, cohort
ARNi vs. ACEi/ARB

240
HFrEF with ICD

VA and ICD shock reduction
(0.8% vs. 6.7%; p < 0.02)

Russo, et al.
J Clin Med.
2020 [64].

Prospective, cohort
ARNi

167
HFrEF with ICD

VA reduction (15 vs. 4; p = 0.03)
ICD shock reduction (13 vs. 3;

p = 0.02)
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Table 1. Cont.

Authors
Journal Year

Type of Study
Intervention

No. of Patients in the
Population

Effect on
VA and SCD

Rohde et al.
JACC Heart Fail. 2020 [59].

RCT—post hoc analysis
ARNi vs. ACEi

8399
HFrEF

SCD reduction in the ICD group
(HR 0.49; 95% CI 0.25–0.99) and
non-ICD group (HR 0.81; 95% CI

0.67–0.98)

Curtain, et al.
Eur J Heart Fail.

2022 [60].

RCT—post hoc analysis
ARNi vs. ACEi

8399
HFrEF

VA reduction (HR 0.76; 95% CI
0.62–0.95)

Fernandes, et al.
Heart Rhythm O2.

2021 [63].

Meta-analysis
ARNi vs. ACEi/ARB

11,204
HFrEF

SCD reduction (OR 0.78; 95% CI
0.63–0.96)

VA reduction (OR 0.45; 95% CI
0.25–0.79)

Higher BiV Pacing (p < 0.0001)

Liu, et al.
Front Cardiovasc Med.

2022 [61].

Meta-analysis
ARNi vs. ACEi/ARB/Placebo

18,500
HFrEF or HFpEF

No VA reduction (RR 0.86; 95% CI
0.68–1.10)

SCD reduction (RR 0.79; 95% CI
0.70–0.90)

Mujadzic, et al.
J Innoc Card Rhythm Mang.

2022 [65].

Meta-analysis
ARNi vs. ACEi/ARB/Placebo

18,548
HFrEF or HFpEF

VA & SCD reduction (OR 0.71;
95% CI 0.54–0.93)

ICD shock reduction (OR 0.23;
95% CI 0.11–0.47)

Pozzi, et al.
Heart Fail Rev.

2023 [62].

Meta-analysis
ARNi vs. ACEi/ARB

8837
HFrEF

VA reduction (OR 0.78; 95% CI
0.63–0.96 for RCT and RR 0.62;

95% CI 0.53–0.72 for observational
studies)

ICD shock reduction (RR 0.24;
95% CI 0.12–0.24)

ACEi, Angiotensin-Converting Enzyme Inhibitor; ARB, Angiotensin II Receptor Blocker; ARNi, Angiotensin
Receptor–Neprilysin Inhibitor; BiV, Biventricular; HFpEF, Heart Failure with Preserved Ejection Fraction; HFrEF,
Heart Failure with Reduced Ejection Fraction; ICD, Implantable Cardioverter–Defibrillator; RCT, Randomized
Controlled Trial; SCD, Sudden Cardiac Death; VA, Ventricular Arrhythmia.

In conclusion, ARNi therapy appears to manifest favorable effects via multiple mech-
anisms, including vasodilation, the attenuation of sympathetic activation, the reduction
in myocardial wall stretch and fibrosis, and modulatory impacts on ion channels such as
potassium channels, RyR2, and the CaMKII pathway. Meta-analyses confirm ARNi’s effi-
cacy in reducing both VA and SCD, yet further investigation is needed to fully understand
the precise molecular mechanisms.

6. Mineralocorticoid Receptor Antagonists

MRA provide a complementary approach to the neurohormonal suppression of the
RAAS by targeting the aldosterone receptor [66]. These agents achieve a series of beneficial
cardiovascular outcomes, including the prevention of the electrical remodeling of cardiac
tissue [67,68], the attenuation of myocardial fibrosis and ventricular remodeling [69,70], a
decrease in sympathetic activation [71], and beneficial effects on endothelial vasomotor dys-
function [72]. Through these several mechanisms, MRA have been shown to prevent SCD.

The RALES trial, which investigated the use of Spironolactone in patients with HFrEF,
reported a significant reduction in both overall mortality and cardiac-specific mortality.
It showed a 29% reduction in the risk of SCD [73]. Similarly, the EPHESUS trial focusing
on Eplerenone demonstrated a significant reduction in all-cause mortality, cardiovascular-
related death, and the risk of cardiovascular-related death or hospitalization. Notably, it
also showed a significant reduction in the incidence of SCD [74]. Numerous meta-analyses
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have consistently shown a clear benefit for MRA in reducing SCD, reinforcing their critical
role in managing patients with HFrEF [30,75–77].

7. Sodium-Glucose Cotransporter 2 Inhibitors

SGLT2i have emerged as a recent addition to the GDMT for HFrEF [4]. They primarily
function by the selective inhibition of the SGLT2 receptor in the renal proximal tubules,
conferring a variety of metabolic and cardiovascular benefits, including a reduction in
cardiovascular mortality in patients with HFrEF [78].

The specific anti-arrhythmic mechanisms of SGLT2i are not yet completely understood,
but several plausible pathways have been proposed. SGLT2i have been shown to exhibit
anti-oxidative and anti-inflammatory properties by promoting multiple anti-oxidant and
anti-inflammatory signaling pathways [79,80]. For instance, they activate AMP-activated
protein kinase [81,82], attenuate the nucleotide-binding domain-like receptor protein 3
(NLRP3) inflammasome [83], and reduce the expression of inflammatory factors. This
reduction in inflammation and oxidative stress may lead to anti-fibrotic and anti-remodeling
properties, thereby decreasing the arrhythmic substrate. Data have indicated a reversal
in cardiac volumes, a decrease in LV mass, and an improvement of LV function following
SGLT2i treatment [84–86]. These positive changes have also been observed in the right
ventricle [87]. Another anti-arrhythmic mechanism of SGLT2i is through ionic channels
modulation. SGLT2i may modulate ionic channels by restoring intracellular Ca2+ and
Na+ homeostasis. HF is characterized by cellular Na+ overload, often mediated by the
upregulation of the Na+/H+ exchanger 1 (NHE1), contributing to cytosolic Ca2+ overload,
thus increasing arrhythmogenic risk [88,89]. SGLT2i can mitigate this risk by directly
reducing Na+ overload through the inhibition of the late sodium current (INaL) and
NHE1 [90,91]. Moreover, they may indirectly modulate CaMKII activity, thereby reducing
calcium leakage from the sarcoplasmic reticulum and diminishing arrhythmic triggers like
afterdepolarizations [92]. SGLT2i have also been shown to normalize the QT interval and
QT dispersion, potentially reducing arrhythmogenic risks [93,94]. Experimental models
have demonstrated that SGLT2i reduce ventricular arrhythmia vulnerability following
myocardial ischemia [95].

Clinical trials, like DAPA-HF [96] and EMPEROR-Reduced [97], have shown a de-
crease in cardiovascular-related mortality in HFrEF with Dapagliflozin and Empagliflozin,
respectively. Post-hoc analyses have indicated that Dapagliflozin reduces the risk of VA,
cardiac arrest, and SCD [98]. Nonetheless, data from several meta-analyses have been
inconclusive in showing a significant reduction in SCD or VAs with SGLT2i [99–101]. It
is worth noting that many of these meta-analyses often included studies with SGLT2i
focusing on diabetic patients without the specific consideration of HF. More recently, a
meta-analysis by Oates et al. [102] focused specifically on the HF population and showed
that SGLT2i therapy is associated with a reduced risk of SCD in patients with HF receiv-
ing contemporary medical therapy. The ongoing trial EMPA-ICD, assessing the effect of
SGLT2i on VA in patients with type 2 diabetes (T2DM) wearing an ICD, is expected to
provide additional data on the anti-arrhythmic effect of SGLT2i [103]. Major studies and
meta-analyses regarding the effect of SGLT2i on VA and SCD are summarized in Table 2.

In conclusion, SGLT2i appear to exhibit anti-arrhythmic properties through various
pleiotropic mechanisms, including the restoration of calcium and sodium homeostasis,
the reversal of cardiac remodeling, and the exertion of antioxidant and anti-inflammatory
effects. Although current data trends suggest a reduced incidence of SCD and VA, further
well-designed prospective studies are imperative for the definitive validation of these
anti-arrhythmic effects.
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Table 2. Major studies and meta-analyses regarding the effect of SGLT2i on ventricular arrhythmia
and sudden cardiac death.

Authors
Journal Year

Type of Study
Intervention

No. of Patients in the
Population

Effect on
VA and SCD

Curtain, et al.
Eur Heart J.
2021 [98].

RCT—post hoc analysis
Dapaglifozin vs. Placebo

4744
HFrEF

Reduction in the composite
outcome of VA and SCD (HR 0.79;

95% CI 0.63–0.99)

Fernandes, et al.
Heart Rhythm.

2021 [99].

Meta-analysis
SGLT2i vs. Placebo

63,166
T2DM or HF

SCD reduction (HR 0.72; 95% CI
0.54–0.97)

No difference in VA

Li, et al.
Cardiovasc Diabetol.

2021 [104].

Meta-analysis
SGLT2i vs. Placebo

52,115
T2DM or CKD or HF

VA reduction (RR 0.73; 95% CI
0.53–0.99)

Sfairopoulos et al.
Europace.
2022 [100].

Meta-analysis
SGLT2i vs. Placebo

55,590
T2DM or CKD or HF

No VA reduction (RR 0.84; 95% CI
0.66–1.06)

No SCD reduction (RR 0.74; 95%
CI 0.50–1.08)

Yin et al.
Front Cardiovasc Med.

2022 [101].

Meta-analysis
SGLT2i vs. Placebo

10,344
HFrEF or HFpEF

No VA reduction (VT: RR 0.90;
95% CI 0.44–1.82; VF: RR 1.40;

95% CI 0.73–2.67)

Oates, et al.
J Cardiovasc Electrophysiol.

2023 [102].

Meta-analysis
SGLT2i vs. Placebo

10,796
HFrEF or HFpEF

SCD reduction (RR 0.68; 95% CI
0.48–0.95)

No VA reduction (RR 1.03; 95% CI
0.83–1.29)

CKD, Chronic Kidney Disease; HF, Heart Failure; HFpEF, Heart Failure with preserved ejection fraction; HFrEF,
Heart Failure with reduced ejection fraction; RCT, Randomized Controlled Trial; SCD, Sudden Cardiac Death;
SGLT2i, Sodium-Glucose Cotransporter 2 Inhibitor; T2DM, Type 2 Diabetes; VA, Ventricular Arrhythmia; VF,
Ventricular Fibrillation; VT, Ventricular Tachycardia.

8. Implantable Cardioverter–Defibrillator in Light of New Heart Failure Treatment

ICD therapy is a cornerstone in the management of HFrEF, offering a proven benefit
in reducing the risk of SCD. According to the current European Society of Cardiology (ESC)
guidelines, ICD implantation is recommended with a class I indication for patients with
ischemic HF and a left ventricular ejection fraction (LVEF) <35%, despite medical therapy
for 3 months or more, and at a New York Heart Association (NYHA) functional class II or
III. For patients with non-ischemic dilated cardiomyopathy, a Class IIa recommendation
is provided [7]. Medical therapy includes the four classes of medications (BB, RAAS
inhibitor, MRA, SGLT2i), each of which presents a Class I recommendation [4]. Similarly,
the American Heart Association/American College of Cardiology/Heart Failure Society of
America (AHA/ACC/HFSA) 2022 guidelines also endorse a Class 1 recommendation for
both ischemic and non-ischemic patients [105].

These recommendations derive their basis from pivotal trials conducted over two decades
ago—notably, MADIT II [106], SCD-HeFT [107], and DEFINITE [108]. In these studies,
patient management included BB and RAAS inhibitors, such as ACEi and ARB, with
approximately 20% of participants in the SCD-HeFT trial receiving an MRA. The more
recent DANISH trial, however, did not demonstrate a significant reduction in all-cause
mortality with ICD use, though a reduction in SCD was observed [109]. This outcome may
be attributable to the inclusion of an older patient cohort, the extensive use of cardiac resyn-
chronization therapy in both arms, or potentially, better medical management including
the broader use of MRA and higher utilization rates of BB and ACEi/ARB compared to
earlier trials. The latter highlights the importance of optimal medical therapy.

In the context of today’s GDMT, including newer treatments such as ARNi and SGLT2i
with a beneficial anti-arrhythmic profile, the criteria for ICD therapy may merit reconsider-
ation. Prior data, predicated on outdated HFrEF management protocols, may no longer
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fully apply. Does the current GDMT have a sufficient anti-arrhythmic effect to disturb the
benefit–risk balance of primary prevention ICD in HFrEF? Only proper trials could answer
this question. Moreover, the timing for ICD implantation, currently recommended after 3
months of medical therapy, may also be challenged. The PROVE-HF trial indicated that
within an HFrEF cohort treated with ARNi, 32% of patients exhibited an improvement in
LVEF to over 35% at 6 months and 62% at 12 months [110]. Consequently, patients initially
eligible for ICD therapy may no longer meet the criteria within this timeframe, suggesting
that an ICD implantation at 3 months might be premature in this era of novel HF therapy.
This improvement of LVEF with GDMT may play an important role in the burden reduction
of VA. For example, Martens et al. [57] reported that patients treated with ARNi exhibiting
more left ventricular reverse remodeling (defined by a mean improvement in LVEF of 5%)
present a significantly lower burden of VA, compared to those with less reverse remodel-
ing. Besides their direct beneficial effect on structural substrate and electrical remodeling,
GDMT’s improvement of LVEF may by itself decrease the arrhythmic burden, due to its
hemodynamic benefit with a more favorable neurohormonal profile.

All these considerations question the exact place of ICD in this contemporary era
of HF medication. In the absence of appropriate trials that incorporate the latest GDMT,
adherence to existing guidelines is obligatory. However, there is a compelling need for
updated research to more precisely define the indications and optimal timing for ICD
implantation in the current therapeutic landscape.

9. Emerging Horizons in Heart Failure Treatment

Vericiguat and Omecamtiv Mecarbil represent newer pharmacological interventions
for HFrEF. Vericiguat is a soluble guanylate cyclase (sGC) activator. By modulating the
sGC-cyclic guanosine monophosphate pathway, Vericiguat induces vasodilatation, which
in turn has beneficial effects on left ventricular afterload and hypertrophy [111,112]. The
VICTORIA Study demonstrated that Vericiguat led to a statistically significant reduc-
tion in the primary endpoint of death from cardiovascular causes or heart failure hos-
pitalizations. However, data specifically concerning SCD were not provided [113]. In
pre-clinical mouse models, Vericiguat demonstrated the potential for anti-arrhythmic prop-
erties through favorable effects on ventricular remodeling and ionic currents, notably by
inhibiting CaMKII [114]. Further investigations are warranted to validate these preliminary
findings on its anti-arrhythmic properties.

Omecamtiv Mecarbil, on the other hand, was evaluated in the GALACTIC-HF trial in
2020 and showed a significant but modest lowering of the incidence of the primary compos-
ite outcome of heart failure hospitalization or death from cardiovascular causes [115]. The
incidence of VA in the Omecamtiv Mecarbil cohort was analogous to that of the placebo
group. Given these results, the anti-arrhythmic potential of Omecamtiv Mecarbil remains
inconclusive at present.

Another drug worth mentioning is Glucagon-like peptide 1 receptor agonists (GLP-1
RA), which represent a relatively recent class of drugs introduced for the treatment of
T2DM, exhibiting a range of diverse effects—notably, favorable metabolic outcomes [116].
Major trials investigating GLP-1 RA in T2DM have shown a reduction in major adverse
cardiovascular events [117–119]. Regarding the HFrEF population specifically, two pivotal
trials warrant mention. The FIGHT study, evaluating Liraglutide in HFrEF, reported no
significant benefits, including in LVEF [120]. A post hoc analysis showed an excess risk
of arrhythmias and HF events [121]. Furthermore, the LIVE study associated Liraglutide
treatment with an increase in the heart rate and serious cardiac adverse events, including
VT [122]. This brings concerns about the risk of VAs and SCD in HFrEF patients. Multiple
meta-analyses regarding the T2DM population did not reveal an increased risk for VAs or
SCD with GLP-1 RA use [123,124]. The overall impact of GLP-1 RAs on VA and SCD in the
HFrEF population remains inconclusive, as does their general effect in HFrEF management.
Nonetheless, their utility in heart failure with preserved ejection fraction (HFpEF) appears
more promising, attributed to their broad spectrum of effects, including weight loss [116],
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improved diastolic function [125], and mitochondrial function enhancements [126]. This is
supported by the STEP-HFpEF trial, endorsing the use of Semaglutide in HFpEF patients
with an obesity phenotype [127].

All these new drugs offer innovative therapeutic approaches for HF, though the data
on their anti-arrhythmic effects are limited and inconclusive (Figure 2). The outcomes
of these initial trials signal the need for more targeted investigations, especially about
potential anti-arrhythmic properties and their impact on SCD and VA.
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10. Conclusions

In conclusion, SCD constitutes a critical contributor to mortality among patients with
HFrEF, predominantly due to malignant VA. The optimization of GDMT serves as an
effective strategy to mitigating the incidence of SCD within this population. Therapeutic
interventions primarily target key systems such as the RAAS and the sympathetic nervous
system, preventing both structural and electrical remodeling of the myocardium.

Despite their favorable modulatory effects on RAAS, ACEi and ARB have not been
conclusively associated with a reduction in either SCD or VA. Robust evidence supports
the utility of BB, ARNi, and MRA in reducing the risk of SCD. Furthermore, SGLT2i
offer promising preliminary data, necessitating further well-designed prospective studies
for confirmation of their anti-arrhythmic effects. Through the employment of different
complementary mechanisms of action, those molecules act in synergy, highlighting the
importance of optimizing GDMT to reduce arrhythmic risk in HFrEF.

Overall, the landscape of pharmacological interventions for HFrEF is progressively
expanding, with novel agents undergoing evaluation. Further research is imperative for
the unequivocal delineation of these agents’ impact on SCD and VA, thus augmenting our
arsenal in the management of HFrEF.
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