
Citation: Factor, S.; Gurel, R.; Dan, D.;

Benkovich, G.; Sagi, A.; Abialevich, A.;

Benkovich, V. Validating a Novel 2D

to 3D Knee Reconstruction Method on

Preoperative Total Knee Arthroplasty

Patient Anatomies. J. Clin. Med. 2024,

13, 1255. https://doi.org/10.3390/

jcm13051255

Academic Editors: Tilman Walker,

Tobias Gotterbarm and Babak Moradi

Received: 2 January 2024

Revised: 18 February 2024

Accepted: 20 February 2024

Published: 22 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Clinical Medicine

Article

Validating a Novel 2D to 3D Knee Reconstruction Method on
Preoperative Total Knee Arthroplasty Patient Anatomies
Shai Factor 1,* , Ron Gurel 1 , Dor Dan 2, Guy Benkovich 3, Amit Sagi 4,5,6, Artsiom Abialevich 5,7,8

and Vadim Benkovich 5,7,8

1 Division of Orthopedic Surgery, Tel Aviv Medical Center, Faculty of Medicine, Tel Aviv University,
Tel Aviv 6423906, Israel

2 Orthopedic Department, Meir Medical Center, Faculty of Medicine, Tel Aviv University,
Tel Aviv 4428164, Israel

3 Orthopedic Department, Sheba Medical Center, Faculty of Medicine, Tel Aviv University,
Tel Aviv 5262000, Israel

4 Orthopedic Department, Barzilai Medical Center, Ashkelon 78278, Israel
5 Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8499000, Israel
6 South West London Elective Orthopaedic Centre, Epsom KT18 7EG, UK
7 Department of Orthopedic Surgery, Soroka Medical Center, Beer Sheva 84101, Israel
8 Israeli Joint Health Center, Tel Aviv 69710, Israel
* Correspondence: factor310@gmail.com; Tel.: +972-527360753; Fax: +972-74-7219810

Abstract: Background: As advanced technology continues to evolve, incorporating robotics into
surgical procedures has become imperative for precision and accuracy in preoperative planning.
Nevertheless, the integration of three-dimensional (3D) imaging into these processes presents both
financial considerations and potential patient safety concerns. This study aims to assess the accuracy
of a novel 2D-to-3D knee reconstruction solution, RSIP XPlan.ai™ (RSIP Vision, Jerusalem, Israel), on
preoperative total knee arthroplasty (TKA) patient anatomies. Methods: Accuracy was calculated
by measuring the Root Mean Square Error (RMSE) between X-ray-based 3D bone models generated
by the algorithm and corresponding CT bone segmentations (distances of each mesh vertex to the
closest vertex in the second mesh). The RMSE was computed globally for each bone, locally for eight
clinically relevant bony landmark regions, and along simulated bone cut contours. In addition, the
accuracies of three anatomical axes were assessed by comparing angular deviations to inter- and
intra-observer baseline values. Results: The global RMSE was 0.93 ± 0.25 mm for the femur and
0.88 ± 0.14 mm for the tibia. Local RMSE values for bony landmark regions were 0.51 ± 0.33 mm
for the five femoral landmarks and 0.47 ± 0.17 mm for the three tibial landmarks. The RMSE
along simulated cut contours was 0.75 ± 0.35 mm for the distal femur cut and 0.63 ± 0.27 mm
for the proximal tibial cut. Anatomical axial average angular deviations were 1.89◦ for the trans
epicondylar axis (with an inter- and intra-observer baseline of 1.43◦), 1.78◦ for the posterior condylar
axis (with a baseline of 1.71◦), and 2.82◦ (with a baseline of 2.56◦) for the medial–lateral transverse
axis. Conclusions: The study findings demonstrate promising results regarding the accuracy of
XPlan.ai™ in reconstructing 3D bone models from plain-film X-rays. The observed accuracy on
real-world TKA patient anatomies in anatomically relevant regions, including bony landmarks, cut
contours, and axes, suggests the potential utility of this method in various clinical scenarios. Further
validation studies on larger cohorts are warranted to fully assess the reliability and generalizability
of our results. Nonetheless, our findings lay the groundwork for potential advancements in future
robotic arthroplasty technologies, with XPlan.ai™ offering a promising alternative to conventional
CT scans in certain clinical contexts.

Keywords: knee reconstruction; accuracy assessment; 2D-to-3D; total knee arthroplasty (TKA);
registration; artificial intelligence; 3D reconstruction; RSIP XPlan.ai
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1. Introduction

In modern orthopedics, precise preoperative planning is essential for total knee arthro-
plasty (TKA), often relying on three-dimensional (3D) surgical planning through com-
puted tomography (CT) scans and robotic systems like Stryker’s MakoTM [1,2]. While
CT-based planning is highly accurate, it presents challenges such as financial burdens,
longer turnaround times, increased patient radiation exposure, and logistical complexities.
Additionally, evolving healthcare reimbursement models in the United States may limit
insurance coverage for CT scans, reducing patient access to these advanced technologies [3].

Precise preoperative planning is critical for TKA to avoid implant sizing and align-
ment complications. Radiographs play a pivotal role in this process, with 3D CT-based
approaches offering practical advantages. According to multiple studies, 3D CT planning
of the knees offers advantages in accuracy over 2D knee radiographs and is required for
certain robotic workflows. However, it comes with higher costs. Additionally, a major
shortcoming of CT scans is that they are taken in non-weight-bearing positions, which fail
to capture pathologies related to joint space narrowing while bearing weight.

Personalized surgical instruments (PSIs) have also shown success in total knee re-
placement in comparison to conventional techniques. A PSI utilizes disposable cutting
blocks customized to match a patient’s anatomy, eliminating the need for invasive pins and
instrumentation of the intramedullary canals. However, a PSI’s success also depends on
accurate digital bone surface data obtained from preoperative CT or MRI scans [4–8].

Efforts have been made to explore X-ray-based two-dimensional-to-three-dimensional
(2D–3D) reconstruction techniques for knee anatomy. Still, adoption has been slow due to
concerns about accuracy in real-world pathological TKA cases. Most validation studies have
been limited to healthy knee cadaver specimens, raising doubts about their applicability in
clinical practice [9].

Recent advancements in artificial intelligence (AI) have paved the way for innovative
algorithms that can construct 3D bone reconstructions from 2D biplanar radiographs, offer-
ing a cost-effective alternative to traditional 3D imaging. These algorithms are based on
statistical shape modeling (SSM) and require specialized calibration procedures and image
acquisition protocols [10–12]. To address these challenges, researchers have explored alter-
native approaches using SSM and multiple calibrated radiographic images to reconstruct
patient-specific 3D surface models. SSM methods provide advantages by transforming
morphological characteristics into a space governed by fundamental modes of variation.
The quality of the results depends on the extent of morphological variability within the
training dataset in addition to the quantity and orientation of the Digitally Reconstructed
Radiographs (DRRs) [13,14]. RSIP XPlan.ai™ [15] represents a groundbreaking solution
driven by AI principles. This innovation combines machine learning models, trained on
a diverse dataset of over 1000 pathological knee samples, with a robust 3D calibration
technique for X-ray acquisition geometry. This study’s aim was to assess the accuracy
of this novel 2D-to-3D knee reconstruction solution using clinically relevant data from a
TKA patient cohort, comparing X-ray-based 3D reconstructions with corresponding patient
CT scans.

2. Materials and Methods

The study took place at a major medical center, was approved by the institution’s
IRB, and followed the applicable laws and regulations. The inclusion criteria for the study
were adults (age > 18 years old) with diagnosed osteoarthritis referred to CT scans by their
orthopedic surgeon. The average within-slice resolution of the CT scans was 0.49 mm
(median: 0.37 mm; STD: 0.17 mm; max: 0.71 mm), and the average slice thickness was
0.61 mm (median: 0.6 mm; STD: 0.24 mm; max: 1 mm). All patients underwent standard
anteroposterior (AP) and lateral knee X-rays while wearing the RSIP XPlan.ai™ calibration
jig, which was strapped to the patient’s shin by the X-ray technician (Figure 1). The pixel
size of all X-ray images was 0.14 mm.
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osteophytes, were included in the bone segmentations; femurs and tibias were each 
segmented separately.  

Examples of the X-ray-based 3D reconstructions and their corresponding CT-based 
ground-truth models are shown in Figure 2.  
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Figure 1. RSIP XPlan.ai™ calibration jig positioning. (A) Patient’s pose for lateral X-ray. (B) Patient’s
pose for anteroposterior X-ray.

X-ray-based 3D reconstructions were generated by running the RSIP XPlan.ai™ algo-
rithm and its associated image processing workflow. The algorithm generates 3D models
from X-rays using a proprietary neural network.

The bone model generated by the neural network is represented as a 3D volumet-
ric mask. This mask is then converted into an STL mesh using Marching Cubes. All
the CT scans were manually segmented, yielding a 3D volumetric mask for each bone.
These masks are then converted into STL meshes using Marching Cubes. The segmenta-
tion was performed under the guidance of a certified radiologist or orthopedic surgeon,
using ITK SNAP software (version 4.0.2), generating the ground-truth CT-based bone
models. All voxels with the appearance of bone, including spongy bone, cortical bone,
and osteophytes, were included in the bone segmentations; femurs and tibias were each
segmented separately.

Examples of the X-ray-based 3D reconstructions and their corresponding CT-based
ground-truth models are shown in Figure 2.

The Root Mean Square Error (RMSE) distance between the points of the X-ray-based
3D models and the CT segmentations was computed by registering the STL meshes using
the Iterative Closest Points algorithm. Subsequently, the RMSE was calculated by taking
the square root of the mean of the square distances of each mesh vertex to the closest vertex
in the second mesh. This computation was performed using the Python implementation of
Open3D (version 0.17.0), using the following formula:

RMSE =

√
∑N

i=1
(ŷi − yi)

2

N

ŷi = predicted surface point;
yi = actual surface point;
N = # of points (For X-ray-based models.)

The average number of points (N) was 34,298 (STD: 4669) for the femur, and
29,852 (STD: 4463) for the tibia.
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anteroposterior X-ray. Third column: X-ray-based 3D reconstruction generated by the RSIP 
XPlan.ai™ pipeline. Fourth column: representative view of a patient’s CT scan. Fifth column: 
ground-truth CT segmentation model. 
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Figure 2. Comparison of X-ray-based 3D reconstructions and CT-based ground-truth segmentations
for two patients. Each row shows data from one patient. First column: lateral X-ray. Second column:
anteroposterior X-ray. Third column: X-ray-based 3D reconstruction generated by the RSIP XPlan.ai™
pipeline. Fourth column: representative view of a patient’s CT scan. Fifth column: ground-truth CT
segmentation model.

Eight bony landmarks (five on the femur and three on the tibia) were analyzed to assess
reconstruction accuracy in clinically relevant regions, as illustrated in Table 1. Additionally,
three anatomical axes (two on the femur and one on the tibia) were assessed, as presented
in Table 2.

Table 1. Bony landmarks.

Bone Landmark

Femur

Posterior Lateral Condyle

Posterior Medial Condyle

Lateral Distal Condyle

Medial Distal Condyle

Anterior Cortex

Tibia

Lateral Plateau

Medial Plateau

Tuberosity

Table 2. Anatomical axes.

Bone Axis

Femur
Trans epicondylar axis (TEA)

Posterior condylar axis (PCA)

Tibia Medial–lateral transverse axis (MLTA)

To define the locations of the bony landmarks and the anatomical axes, 3D models
of the X-ray-based reconstructions and the CT segmentations were annotated by three
certified orthopedic surgeons using MITK software. (Version 2023.04, German Cancer
Research Center, Heidelberg, Germany.) Each surgeon was presented twice with each 3D
model, in a randomized order, and was blinded to the model’s origins—whether CT-based
or X-ray-based. Surgeons performed annotations independently and were unaware of
the study’s purpose. For each of the two presentations (of each bone model), the surgeon
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annotated a single point, yielding 6 points (3 surgeons × 2 presentations) per landmark per
bone model. Bony landmark regions were then defined by fitting a circle with a predefined
radius to all 3 × 2 = 6 point annotations of each landmark and discarding outliers. Examples
of the resulting landmark regions are shown in Figure 3. The X-ray-based bony landmark
regions were then compared to the CT-based models using the RMSE.
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Figure 3. Bony landmark regions. (A) Femur anterior cortex. (B) Femur posterior condyles. (C) Femur
distal condyles. (D) Tibial tuberosity, medial and lateral plateaus.

The TEA was annotated 6 times for each bone model, by asking each of the 3 surgeons
to annotate the epicondyles twice (in random order, blinded), yielding 6 annotations per
bone model of a 3D TEA axis, defined simply as the line connecting the epicondyles.
The 3D PCA was similarly defined as the line connecting the posterior lateral condyle
to the posterior medial condyle, yielding 6 annotations per bone model. The 3D MLTA
was defined as the line connecting the lateral and medial tibial plateau points, yielding
6 annotations per bone model.

To simulate the distal femoral cutting plane, the anatomical axis of the femur was
first computed by fitting a line to the center of the femoral shaft. An estimated mechanical
axis was then defined at a 5◦ rotation angle in the AP plane. The simulated cutting plane
was defined as perpendicular to the estimated mechanical axis at an offset of 9 mm from
the most distal point on the medial condyle. A proximal tibial cutting plane was defined
using a tibial slope at an offset of 9 mm from the most proximal tibial plateau center. The
simulated cutting planes are shown in Figure 4.

A 2-dimensional slice contour was obtained by intersecting the cutting plane with
the corresponding bone model to assess model performance on the cut contours. The
X-ray-based model’s cut contour was then compared to the CT-based model’s cut contour
using the RMSE, which was calculated by computing the square root of the mean of the
square distances between each point along the contour from the closest point of the second
contour. It is noteworthy that the contours were rendered at 0.1 mm resolution (Figure 4).

The 2D anatomical axes (TEA, PCA, and MLTA) were then defined by projecting the
axes that were annotated by the surgeons on the 3D models onto the relevant 2-dimensional
cutting planes, as shown in Figure 5. This process yielded 6 annotations of each 2D axis per
bone model.
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Figure 4. Cutting planes simulation. (A) Femur anatomical axis (red), estimated mechanical axis 
(green), and cutting plane (yellow). (B) Distal view of femur cutting plane. (D) Tibia anatomical axis 
(red), estimated mechanical axis (green), and cutting plane (yellow), anterior view. (E) Additional 
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Overlapping areas between X-ray-based and CT-based models are shown in white, and non-
overlapping areas are shown in gray. 

Figure 4. Cutting planes simulation. (A) Femur anatomical axis (red), estimated mechanical axis
(green), and cutting plane (yellow). (B) Distal view of femur cutting plane. (D) Tibia anatomical axis
(red), estimated mechanical axis (green), and cutting plane (yellow), anterior view. (E) Additional view
of tibia cutting plane. Example cut contours of femur (C) and tibia (F) from two patients. Overlapping
areas between X-ray-based and CT-based models are shown in white, and non-overlapping areas are
shown in gray.
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Weight (kg) 86.9(±33.2) 
BMI (kg/m2) 30.7 (±10.7) 
Side—affected knee 11/7 (R/L) 

Figure 5. (A) Two-dimensional femoral axes (TEA—blue, PCA—green). The axial projection of
the entire bone is shown as a black contour, and the cutting plane slice is shown in gray. (B) Two-
dimensional MLTA with tibia projection and cut plane slice contours. TEA; trans epicondylar axis,
MLTA; medial–lateral transverse axis.
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Statistical Analysis

RMSE values for whole bones, bony landmark regions, and cut contours were as-
sessed by computing their means and standard deviations (STDs) across the 18 patients in
the dataset.

To quantify the baseline human-level variation in anatomical axes annotated in com-
puterized bone models, we calculated the mean angle between all possible pairs of CT-based
2D axes’ annotations for a given bone (3 × 2 = 6 annotations per bone per axis, generating
15 pairs of CT-based annotations per bone per axis), and the STD of those angles.

To assess the deviations between the 2D axes computed from X-ray-based reconstruc-
tions and the corresponding CT-based models, we first computed the angles between all
possible pairs consisting of an X-ray-based axis annotation and a CT-based annotation of
the corresponding axis (6 × 6 = 36 pairs per bone per axis). We then computed the means
and the STDs of these 36 angles for each of the 3 axes. The statistical analysis was done
using Pandas 2.1 and NumPy 1.25 Python packages.

3. Results

A total of 18 patients, each with one operative knee, were included in the algorithm
evaluation. Patient demographics are presented in Table 3.

Table 3. Patient demographics.

Age (years) 71 (±8.8)
Gender, Male (n, %) 9 (50)
Height (m) 1.67 (±0.41)
Weight (kg) 86.9(±33.2)
BMI (kg/m2) 30.7 (±10.7)
Side—affected knee 11/7 (R/L)

Global bone RMSE values for all patients are presented in Table 4. The average RMSE
was 0.93 ± 0.25 mm for the femur and 0.88 ± 0.14 mm for the tibia.

Table 4. Global RMSE values [mm] between the X-ray-based 3D reconstructions and CT-based
ground-truth 3D models for all patients’ femurs and tibias. RMSE; Root Mean Square Error, SD;
standard deviation.

Patient No. Femur Tibia

1 0.57 0.74

2 0.97 0.94

3 0.82 0.81

4 0.77 1.03

5 0.90 0.97

6 1.04 0.79

7 0.72 0.70

8 1.21 0.98

9 1.03 1.09

10 1.57 1.09

11 1.41 0.90

12 0.75 0.84

13 0.85 0.93

14 0.87 0.88

15 0.97 0.99

16 0.72 0.86

17 0.74 0.69

18 0.87 0.62

Mean ± SD 0.93 ± 0.25 0.88 ± 0.14
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The local RMSE errors for each bony landmark region are shown in Figure 6. The
mean RMSE across the five femoral landmarks in all patients was 0.51 ± 0.33 mm. The
mean RMSE across the three tibial landmarks in all patients was 0.47 ± 0.17 mm.
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For cut plane contours (shown in Figure 4), the mean RMSE for femoral contours
across patients was 0.75 ± 0.35 mm, while the mean RMSE value for tibial contours across
patients was 0.63 ± 0.27 mm.

Baseline deviation values for anatomical axes (as depicted in Figure 5) are compared
to X-ray-to-CT-based deviations and presented in Table 5.

Table 5. Baseline deviation values for anatomical axes.

Human-Level Baseline
(between-Measurement Angular

Deviations, CT vs. CT)

CT vs. X-Ray Angular Deviation
(between-Measurement Angular

Deviations, CT vs. X-ray)

TEA 1.43◦ (±1.16◦) 1.89◦ (±1.52◦)
PCA 1.71◦ (±1.48◦) 1.78◦ (±1.49◦)
MLTA 2.56◦ (±1.82◦) 2.82◦ (±2.18◦)

4. Discussion

In this study, we evaluate a novel 2D-to-3D reconstruction solution, RSIP XPlan.ai™,
on data from patients that underwent TKA. Our results demonstrate the accuracy of this
solution in both overall bone reconstruction as well as clinically relevant anatomical mea-
surements typically used to plan implant size and positioning. Accuracy was consistently
sub-mm, and accuracy measures on bony landmarks were in the 0.5 mm range, indicating
excellent performance in clinically relevant regions. Anatomical axes were also represented
in X-ray-based reconstructions with CT-level accuracy, as demonstrated by comparison to
human-level baselines.

Image-based robotics, and more generally, preoperative planning, present signifi-
cant benefits to TKA workflows. Two-dimensional-to-three-dimensional reconstruction
technologies present the opportunity to significantly increase access to these solutions by
eliminating the necessity for a preoperative CT scan [12,16]. However, due to the paucity of
information in plain-film X-rays, these technologies face significant challenges in providing
the needed accuracy. In addition, these technologies are often validated on cadaveric data,
which is not reflective of real-world TKA patient anatomical characteristics. For example,
Fernandes et al. [9] supported further investigation into the real-world clinical value of an
AI algorithm that demonstrated high accuracy in converting 2D X-rays to 3D bone models
for TKA planning. When comparing the AI bone reconstructions to CT scans, four out
of six anatomical measurement parameters showed mean absolute errors below 2 mm.
Furthermore, when comparing the AI models to direct cadaveric bone measurements, five
out of six parameters exhibited errors under 2 mm.

Victor et al. [17] evaluated the precision of determining bony landmarks on knee CT
scans and concluded that these landmarks can be determined with fairly high precision.
CT scans allow for reasonably precise and reproducible localization of knee anatomy,
facilitating surgical planning and assessment. The mean intra-observer error was approxi-
mately 1 mm for most anatomical landmarks, indicating good repeatability. However, the
mean inter-observer error ranged from 0.3 to 3.5 mm, depending on the specific landmark,
suggesting moderate variability between observers. Notably, femoral epicondyles and
posterior points of the tibial condyles exhibited higher inter-observer variability, with mean
errors exceeding 2 mm, while joint centers and condyle centers demonstrated lower errors,
typically below 1 mm.

In this work, we demonstrate that the XPlan.ai™ X-ray-based reconstructions are sub-
mm accurate in clinically relevant regions when compared to CT scans. Further research is
warranted to assess the accuracy of CT scans and X-ray-based models when compared to
physical bones. This assessment could be conducted using tools such as a laser scanner,
digitizer, or similar physical measurement apparatus.
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This study has several limitations. Firstly, the data was collected exclusively from a
single medical center, involving a cohort of only 18 patients. Consequently, it is advisable to
conduct broader investigations to validate and establish the robustness and generalizability
of the system’s performance across diverse populations and healthcare settings. It is
important to note that the bone landmarks and anatomical axes were determined through
surgeon interpretation rather than direct measurement from the anatomical landmarks
generated from the CT scan. In addition, clinical suitability was assessed in this study
by specific relevant anatomical measurements performed on computerized 3D models.
Further studies are recommended for direct assessment of solution performance in the
prediction of actual implant sizes and locations in the context of a real-world surgical
planning workflow. Additional application-specific measures, such as registration accuracy
in robotic surgery workflows, should also be explored.

5. Conclusions

The study findings demonstrate promising results regarding the accuracy of XPlan.ai™
in reconstructing 3D bone models from plain-film X-rays. The observed accuracy on real-
world TKA patient anatomies in anatomically relevant regions, including bony landmarks,
cut contours, and axes, suggests the potential utility of this method in various clinical
scenarios. Further validation studies on larger cohorts are warranted to fully assess the
reliability and generalizability of our results. Nonetheless, our findings lay the groundwork
for potential advancements in future robotic arthroplasty technologies, with XPlan.ai™
offering a promising alternative to conventional CT scans in certain clinical contexts.
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