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Abstract: Background: The operation planning and production of individualized implants with the
help of AI-based software after orbital fractures have become increasingly important in recent years.
This retrospective study aimed to investigate the healthy orbitae of 372 patients from CT images in
the bone and soft tissue windows using the Disior™ Bonelogic™ CMF Orbital software. (version
2.1.28). Methods: We analyzed the variables orbital volume, length, and area as a function of age
and gender and compared bone and soft tissue windows. Results: For all variables, the intraclass
correlation showed excellent agreement between the bone and soft tissue windows (p < 0.001). All
variables showed higher values when calculated based on bone fenestration with, on average, 1 mL
more volume, 0.35 mm more length, and 0.71 cm2 more area (p < 0.001). Across all age groups, men
displayed higher values than women with, on average, 8.1 mL larger volume, a 4.78 mm longer orbit,
and an 8.5 cm2 larger orbital area (p < 0.001). There was also a non-significant trend in all variables
and both sexes toward growth with increasing age. Conclusions: These results mean that, due to the
symmetry of the orbits in both the bone and soft tissue windows, the healthy orbit can be mirrored
for surgical planning in the event of a fracture.

Keywords: orbital volume measurement; automated segmentation; artificial intelligence; orbital
symmetry; bony orbit; aging

1. Introduction

The bony orbit is a complex anatomic structure with broad functional importance.
The orbital shape and volume can be affected in patients with midfacial trauma, tumors,
or congenital pathologies. Accurate reconstruction of its original shape, symmetry, and
volume is essential for long-term functional and aesthetic prognosis [1–4]. Overestima-
tion or underestimation of the volume may result in exophthalmos or enophthalmos [5].
Therefore, accurate three-dimensional orbital analysis and knowledge are essential for the
diagnosis, treatment, and operation planning of orbital fractures [6]. Since the contralateral
side is often used to compare reconstructions, it is desirable to know how symmetrical the
human bony orbits are and how they change with age or gender [7]. Several studies have
shown that the bony orbit and thus the volume changes with age [8,9]. However, there
seems to be a gender difference where the remodeling processes occurs, which may affect
the calculated volume depending on the measurement method [10].

Today’s orbital volume measurement methods typically require human assistance
for the correct segmentation in each CT slice, which is a challenging procedure [11]. This
manual or semi-automated segmentation is time-consuming and can be prone to operator
error [12]. Automatic segmentation is up to 8.5 times faster per orbit than semi-automatic
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segmentation, as shown in the study by Jansen et al. (2016) [11]. Automatic segmenta-
tion takes an average of 38 s and semi-automatic segmentation up to 327 s when manual
adjustments are made. Recently created and developed software solutions can automati-
cally measure these orbital volumes using artificial intelligence and analyze their shapes
from computed tomography. This fully automated method, based on deep learning, of
measuring the orbit seems to be at least comparable to a human expert.

The study by Chepurnyi et al. (2020) compared different segmentation approaches.
It was shown that the investigated segmentation methods have the same accuracy in the
evaluation of volume differences between two orbits of the same patient, including defect
areas and prolapsed soft tissue volumes, but not in the absolute values of the orbital
volume due to the different determinations of the anterior closure [13]. Similar results were
obtained by the research group of Haywood et al. (2021), who used a fully automated
method to define the internal boundaries of the bony orbit in both CT and MRI images.
Compared to a human expert, a high level of agreement was found in both images [14].

No study had compared symmetry in healthy orbits based on fully automated seg-
mentation when this study was written. In all cases, segmentation was performed semi-
automatically or manually [15,16]. Concerning changes with age, initial published studies
used fully automated segmentation, but these were limited to the Asian population [17,18].

This study aimed to use the Bonelogic™ CMF Orbital software from Disior™ Ltd.
(Helsinki, Finland) to measure healthy orbits in a fully automated manner to evaluate the
symmetry of the right and left orbit and the gender-specific changes to the bony orbit with
age, using the variables volume, length, and area. Another task of the research was to
state the comparability of values between the bone window and the soft tissue window of
computed tomography.

2. Materials and Methods
2.1. Patient Data

Initially, 712 CT images were selected, which were acquired between 01/2019 and
10/2020 at the University Hospital of Basel, Switzerland. All images were acquired with
one of the following four CT scanners from Siemens Healthineers (Erlangen, Germany):
SOMATOM Definition Flash, SOMATOM Definition Edge, SOMATOM Definition AS+, or
SOMATOM Force. The slice collimation (cSL) was 0.6 mm for all devices. Two CT data sets
in axial slices, one in the bone window and one in the soft tissue window, were exported as
DICOM files for each scan. The bone window settings were 400 to 900 HU for WL and 2000
to 3200 HU for WW. The images in soft tissue window images had a WL of 40 HU and a
WW between 120 and 300 HU. All exported CT images had a slice thickness of 0.75 mm.

Patients were retrospectively and randomly selected from all patients who underwent
CT of the head during this period. Inclusion criteria were as follows: decision-making
ability (>16 years), general consent for further use of data for research purposes, and
complete imaging of the bony orbit. Orbits with pathology such as fracture, tumor, or
previous orbital reconstruction were excluded. Patients were also excluded if the slice
thickness was not 0.75 mm, and if more or fewer than two series were exported, one series
in the bone window and one series in the soft tissue window. The above criteria reduced
the number of CT images from an initial 712 to 372 from 186 patients. Of the patients
included, 96 were male (52%) and 90 were female (48%). The mean age was 53 years, with
a range from 16 to 88 years and with a standard deviation of 18 years.

The Ethics Committee EKNZ (Ethikkommission Nordwest- und Zentralschweiz, Basel,
Switzerland) provided the required ethical approval with the corresponding code: 2022-00546.

2.2. Segmentation and Analysis

In this study, the three-dimensional (3D) medical imaging software “Bonelogic™ CMF
Orbital software” (version 2.1.28) was used. It automatically creates a 3D model of the
orbit based on CT or CBCT scans after the DICOM file is uploaded to the software. It
was initially designed for patients with orbital fractures, where the software analyzes the
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shape, size, and location of the defective region. It also defines areas for reconstruction and
can design patient-specific implants for surgery. In this study, the software was used to
measure and compare healthy orbits. An advantage of the software is that it automatically
determines the anterior orbital opening, making it user-independent.

The DICOM files were imported into the Disior™ Bonelogic™ CMF Orbital software
(version 2.1.28) and reconstructed into a three-dimensional voxel map representing the
bone situation. Voxel sizes varied from 0.28 × 0.28 mm to 0.52 × 0.52 mm. Based on
the voxel data, ball-shaped meshes were inserted into both orbits. These meshes were
iteratively expanded and deformed until they contacted the bony boundaries of the orbit,
as shown in Figure 1.
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Figure 1. Automatic software segmentation of the orbits by the Bonelogic™ CMF Orbital software,
by ball-shaped meshes that expanded and deformed until they made contact to the bony boundaries
of the orbit.

For each imported CT image, the software calculates the parameters length (mm),
surface area (anterior orbital opening, cm2), and volume (mL) for each of the right and
left orbits. Consequently, there are two measurements per CT scan of a patient, each in
both windows.

Length is the distance from the center of the anterior closure to the farthest point of
the orbital walls. The area is the sum of the areas of each triangle, comprising the surface
mesh of the orbital walls, excluding the anterior closure. The volume is the sum of the
volumes of each tetrahedron consisting of the volume mesh of the orbit. The parameters
are visualized in Figure 2.

J. Clin. Med. 2024, 13, x FOR PEER REVIEW 4 of 16 
 

 

 
Figure 2. Presentation of the definition of the anterior closing (dashed line), the length (distance 
between the center point of the anterior closing and the most posterior point), and the volume.  

Using this software, the anterior and posterior orbital closures are automatically de-
fined and thus are independent of any person. The entire segmentation of the orbits is 
performed automatically without any user interaction. 

2.3. Statistical Analysis 
All analyses were calculated using Stata 16.0 (Stata Corp LLC, 4905 Lakeway Drive, 

College Station, TX, USA). To address whether orbital volume, length, and area are asso-
ciated with age, the cumulated left and right orbital values were included as dependent 
variables into a linear mixed regression model, with patient age and gender as independ-
ent variables and patient as a random factor. 

To assess the agreement of the reconstructions based on bones and the reconstruc-
tions based on soft tissue, the intraclass correlation coefficient (ICC) methods using a one-
way random-effects model to estimate absolute agreement between individual measure-
ments on the basis of reconstruction was applied. According to the notation of Shout and 
Fleiss, we used ICC (1.1). As suggested by Koo et al., ICC < 0.5 was interpreted as indicat-
ing poor agreement, between 0.5 and 0.75 was moderate, between 0.75 and 0.9 was good, 
and >0.9 was excellent agreement [19]. The agreement was visualized by using Bland–
Altman plots. Continuous variables were summarized as mean and standard deviation 
(SD) after visually checking normal distribution, and categories as numbers with percent-
ages. p values below 0.05 were considered statistically significant. 

3. Results 
3.1. Comparability of Soft Tissue and Bone Windows 

The intraclass correlation coefficients showed excellent agreement between the two 
windows for all three parameters of the orbit, volume, area, and length (p < 0.001), as 
shown in Table 1. The average values in the bone window were 29 mL for the orbital vol-
ume, 40 mm for the length of the orbits, and 39 cm2 for the surface area. In the soft tissue 
window, the average values for the volume were 28 mL, for the length 39 mm (left) and 
40 mm (right), and 38 cm2 for the surface area. Left and right orbits agreed equally for 
both bone and soft tissue windows and showed no statistically significant differences. 

Table 1. Mean and intraclass correlation coefficients: reconstruction from bone vs. soft tissue win-
dow. 

Variable 
Bone, 

Mean (SD) 
Soft Tissue, 
Mean (SD) ICC (95% CI) p 

Volume left, mL 29 (3.3) 28 (3.2) 0.91 (0.51 to 0.97) <0.001 
Volume right, mL 29 (3.4) 28 (3.3) 0.92 (0.49 to 0.97) <0.001 
Length left, mm 40 (2.4) 39 (2.5) 0.96 (0.90 to 0.98) <0.001 

Length right, mm 40 (2.4) 40 (2.5) 0.95 (0.91 to 0.97) <0.001 
Area left, cm2 39 (3.5) 38 (3.4) 0.95 (0.79 to 0.98) <0.001 

Figure 2. Presentation of the definition of the anterior closing (dashed line), the length (distance
between the center point of the anterior closing and the most posterior point), and the volume.



J. Clin. Med. 2024, 13, 1041 4 of 15

Using this software, the anterior and posterior orbital closures are automatically
defined and thus are independent of any person. The entire segmentation of the orbits is
performed automatically without any user interaction.

2.3. Statistical Analysis

All analyses were calculated using Stata 16.0 (Stata Corp LLC, 4905 Lakeway Drive,
College Station, TX, USA). To address whether orbital volume, length, and area are asso-
ciated with age, the cumulated left and right orbital values were included as dependent
variables into a linear mixed regression model, with patient age and gender as independent
variables and patient as a random factor.

To assess the agreement of the reconstructions based on bones and the reconstructions
based on soft tissue, the intraclass correlation coefficient (ICC) methods using a one-way
random-effects model to estimate absolute agreement between individual measurements
on the basis of reconstruction was applied. According to the notation of Shout and Fleiss,
we used ICC (1.1). As suggested by Koo et al., ICC < 0.5 was interpreted as indicating poor
agreement, between 0.5 and 0.75 was moderate, between 0.75 and 0.9 was good, and >0.9
was excellent agreement [19]. The agreement was visualized by using Bland–Altman plots.
Continuous variables were summarized as mean and standard deviation (SD) after visually
checking normal distribution, and categories as numbers with percentages. p values below
0.05 were considered statistically significant.

3. Results
3.1. Comparability of Soft Tissue and Bone Windows

The intraclass correlation coefficients showed excellent agreement between the
two windows for all three parameters of the orbit, volume, area, and length (p < 0.001),
as shown in Table 1. The average values in the bone window were 29 mL for the orbital
volume, 40 mm for the length of the orbits, and 39 cm2 for the surface area. In the soft
tissue window, the average values for the volume were 28 mL, for the length 39 mm (left)
and 40 mm (right), and 38 cm2 for the surface area. Left and right orbits agreed equally for
both bone and soft tissue windows and showed no statistically significant differences.

Table 1. Mean and intraclass correlation coefficients: reconstruction from bone vs. soft tissue window.

Variable Bone,
Mean (SD)

Soft Tissue,
Mean (SD) ICC (95% CI) p

Volume left, mL 29 (3.3) 28 (3.2) 0.91 (0.51 to 0.97) <0.001
Volume right, mL 29 (3.4) 28 (3.3) 0.92 (0.49 to 0.97) <0.001
Length left, mm 40 (2.4) 39 (2.5) 0.96 (0.90 to 0.98) <0.001

Length right, mm 40 (2.4) 40 (2.5) 0.95 (0.91 to 0.97) <0.001
Area left, cm2 39 (3.5) 38 (3.4) 0.95 (0.79 to 0.98) <0.001

Area right, cm2 39 (3.5) 38 (3.5) 0.96 (0.77 to 0.98) <0.001

In Figures 3a, 4a and 5a, in the Bland–Altman plots, the 95% limit of agreement is the
area between the two dashed red lines. The blue dots represent the difference in value
for each patient between the bone and the soft tissue windows. The red line represents
the mean difference among all calculated values of the bone and soft tissue windows. In
the scatter plots in Figure 3b, Figure 4b, and Figure 5b, all values are shown as one point
representing the bone window value on the vertical axis and the value of the reconstruction
based on the soft tissue window on the horizontal axis. Two sites are marked for each
patient: a blue circle for the left orbit and a red cross for the right orbit. The green line forms
the bisector, i.e., when both types of reconstruction correspond to the same value. Outliers
can be observed in all graphical representations (Figures 3–5). In these scenarios, the
algorithm underestimates the measurements because there are pointed misrepresentations
on the three-dimensional representation.
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the mean difference (solid red line) and the 95% limit of agreement (between the dashed red lines).
(b) Agreement of orbital area in bone and soft tissue windows. The green line represents the diagonal,
and the gray line represents the best fit. See Appendix A Table A1 for corresponding numbers.
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3.1.1. Volume

Considering the volume of the orbit, the average value is 1 mL higher when the
reconstruction is performed based on the bone window CT than when the reconstruction
is based on the same CT image but in the tissue window, as shown in Figure 3a. The
calculated mean difference is exactly 1 mL for the right and for the left orbits. Therefore,
6.99% of the values for the left orbit and 6.45% of the values for the right orbit are outside
the 95% limits of agreement (left: −0.93, 2.93 and right: −0.83, 2.83). In Figure 3b, this
difference can be clearly seen, as the points in the average are above the green line.

3.1.2. Length

For orbital length, the mean difference from the bone window to the tissue window is
0.35 mm (left: 0.36 mm and right: 0.33 mm). The 95% limits of agreement are defined as
−0.91, 1.62 for the left side and −1.09 and 1.75 for the right side. In all, 12 out of 186 values
of all calculated lengths of the left orbits are outside these limits of agreements, which
corresponds to 6.45%. For the lengths of the right orbits, 4.84% are outside the limits of
agreement. The fact that the orbital lengths are on average longer when measured using
the bone window CT is also supported in Figure 4b, where most points also lie slightly
above the green line.

3.1.3. Area

As can be seen in Figure 5a, the orbital surface area is on average 0.71 cm2 larger when
the reconstruction is based on the CT image in the bone window as opposed to the soft
tissue window. Here, 4.30% of the values are outside the 95% limits of agreement (left:
−0.94, 2.36 and right: −0.84, 2.26), corresponding to 8 out of 186 CT scans. Figure 5b again
shows the tendency for the area measured to be larger, based on the bone window.

3.1.4. Symmetry

The left and right orbital measurements were in excellent agreement for volume,
length, and area. The bone and soft tissue window measurements were comparable and
showed no statistical difference (Table 2).

Table 2. Agreement of right and left orbits.

Modality Variable ICC (95% CI) p

Bone window
Volume 0.98 (0.97 to 0.98) <0.001
Length 0.93 (0.91 to 0.95) <0.001

Area 0.95 (0.93 to 0.96) <0.001

Soft tissue window
Volume 0.98 (0.97 to 0.98) <0.001
Length 0.93 (0.90 to 0.94) <0.001

Area 0.94 (0.92 to 0.96) <0.001

3.2. Effects of Age and Gender on Orbital Volume, Orbital Length, and Orbital Area
3.2.1. Differences in Size of the Volume, Length, and Area of the Orbit by Gender

In our study cohort, male patients, regardless of age, had a mean 8.1 mL larger orbital
volume in cumulated right and left orbital volume, a 4.78 mm longer orbit (cumulated right
and left), and an 8.50 cm2 larger orbital area (cumulated right and left) than females. All
these differences were highly statistically significant (Table 3).

3.2.2. Development of the Volume, Length, and Area of the Orbit over Age According
to Gender

In both men and women, there is a tendency for the three variables of volume, length,
and area of the orbit to increase with age (Figure 6, Table 4). The volume increases on
average 0.21 mL per 10 years in women and 0.61 mL per 10 years in men (p = 0.357). The
length of the orbit increases 0.14 mm per 10 years in women and 0.29 mm in men (p = 0.671).
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The area of the anterior orifice of the orbit increases on average 0.17 cm2 per 10 years in
women and about 0.63 cm2 in men (p = 0.313).

Table 3. Mean (SD) and average difference of variables in men and women (cumulated left and right
orbital values).

Size Female (N = 90),
Mean (SD)

Male (N = 96),
Mean (SD) Coefficient (95% CI) p

Volume, mL 54 (4.4) 62 (5.9) 8.10 (6.59 to 9.61) <0.001
Length, mm 77 (3.8) 82 (4.4) 4.78 (3.59 to 5.98) <0.001
Area, cm2 73 (4.8) 82 (6.1) 8.50 (6.93 to 10.08) <0.001
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corresponding numbers. (c) Patient age and bone-derived orbital area. See Appendix A Table A2 for
corresponding numbers.

Table 4. Gender-specific increase (95% CI) in bony orbit per 10 years.

Variable Women Men p *

Volume, mL 0.21 (−0.31 to 0.72) 0.61 (−0.09 to 1.30) 0.357
Length, mm 0.14 (−0.30 to 0.58) 0.29 (−0.23 to 0.81) 0.671
Area, cm2 0.17 (−0.38 to 0.72) 0.63 (−0.08 to 1.33) 0.313

* p was derived from interaction term age X sex.

We did not find an interaction of age and sex with respect to volume, length, and area,
indicating that increase with age was parallel in female and male patients.

4. Discussion

The purpose of this study was to investigate how the symmetry and size of the bony
orbit behave in males and females at different ages and to compare these values from the
Bonelogic™ CMF Orbital software and CT images of the bony and soft tissue windows.

To date, the axial slices of the CT bone window have typically been used to create a
3D orbital model. However, sometimes only the axial soft tissue slices have been available.
Organizing the orbital data can be time-consuming and cumbersome. Therefore, we
wanted to determine if a 3D model created from soft tissue data would provide the same
reconstruction quality as a model based on bone window data.

4.1. Comparability of Soft Tissue and Bone Window

To analyze the difference between the CT bone window and the CT soft tissue window,
in our study, 186 pairs of orbits were compared using the Disior™ Bonelogic™ CMF Orbital
software. For the three variables, orbital volume, orbital length, and orbital area, it was
found that the software calculated higher values on average for reconstruction based on
bone window CT images than reconstruction based on soft tissue CT images.

The volume in the bone window was on average 1 mL larger and the orbital length
0.35 mm longer than in the soft tissue window (p < 0.001).
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To prevent the development of enophthalmos, the correct restoration of the orbital
volume is particularly important. It is well-known in the literature that there is a direct
correlation between the development of enophthalmos and an increase in orbital volume.
On average, a volume increase of 1 mL results in an enophthalmos of 0.8–1 mm. Clinically,
an enophthalmos of 1.6–2 mm and a volume difference of 2 mL are aesthetically and
functionally relevant [10,19,20].

The 1 mL difference between the orbital volume when making a 3D model from the
CT bone window or the CT soft tissue window is not clinically relevant.

It can be concluded that in everyday clinical practice, if only a CT soft tissue window
image is available, it can save time and the need for a radiologist to organize and, if
necessary, reconstruct the bone window image. With this background knowledge, a 3D
model can be printed directly from the soft tissue window CT image, if required, and the
orbital plate can be pre-bent before surgery or intraoperatively. This can make the process
of pre-bending plates on a 3D model as described by Sigron et al. even more efficient [20].

A limitation of our study is that not only is the correct restoration of the orbital volume
alone responsible for the development of an en- or exophthalmos, but also injuries and
shrinkage of the periorbital tissue. This is not the subject of our study and is therefore
not discussed.

4.2. Symmetry

Our study showed excellent agreement between the volume, length, and area of the
right and left orbits in both the bone and soft tissue windows. There were no significant
differences in any of the three variables. This confirms the strong positive correlation between
right and left orbital volume shown by Walker et al. and in the study by Singh et al., where
no significant differences between the two orbits were found in any parameter [15,21]. Other
studies have shown a trend toward small differences in volume between the right and left
orbits. Examples include the study by Lieger et al., with a mean difference of 600 ± 500 mL
between the volumes (p = 0.039), and the study by Tandon et al., where a mean difference of
0.8 mL was calculated which, however, is not significant (p = 0.283) [16,22].

The average male orbital volume, right and left cumulated, is 8.1 mL larger than the
female orbital volume. In the literature, the gender-specific differences vary and are also
usually given per orbital side. Regensburg et al. indicated a comparable difference of 4 mL
between women and men, and Amin et al. also calculated a difference of 3.08 mL [23,24]. A
smaller difference between men and women was found by other authors, such as Andrade
et al., with a difference of 1 mL [25].

Although there may be slight differences between the right and left bony orbits, we
confirm the results of previous studies on the accuracy of using the opposite side as a
reference when planning surgery for an orbital fracture [26–28].

4.3. Association of Patient Age and Gender with Orbital Volume, Length, and Area

In our study, there is a tendency for the bony orbit to change with age. The orbital
volume, the area of the anterior opening, and the length of the orbit tend to increase. The
increase seems to be greater in men than in women, but the results are not significant.

Similarities to our findings have been shown in other studies. Pessa et al. suggested
a remodeling of the bony orbit in age as they discovered that with age the orbital rim
moves backward in relation to the cornea [29]. Kahn et al. found an increase in volume
with age, but without giving an exact increase value [10]. These results were also found
by Li et al., who also used deep learning to make their measurements. Both Kahn and
Li determined that the bone resorption of the superior orbital rim is more obvious than
that of the inferior orbital rim in the aging process [17]. In the study by Chon et al., CT
scans of the same individual were analyzed at a median time interval of 9.4 years. With an
average 0.91 mL larger volume after 9.4 years, the scans displayed an even greater change
in orbital volume with age than our results [8]. However, the measurements in their study
were performed with a handheld device to measure the 2D orbital area. In future work,
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it would be enlightening to compare fully automated measurements on CT images of the
same patients with a time difference.

In line with the study by Zhang et al., we saw a non-significant increase in both the
length and the anterior opening of the orbit. Therefore, it can be assumed that the increase
in orbital volume results from a combination of increases in both variables, length and
area [30].

Orbital change with age is a complex process. Several reasons for a possible increase in
orbital volume with age have been discussed. On the one hand, it has already been shown
that the fat volume of the orbit increases significantly with age, which may be a possible
cause of bony enlargement [31]. On the other hand, the change in the bony orbit may
also be due to metabolic changes with age. As comprehensively described in the work of
Cui et al., osteocytic changes in aging are now thought to lead to changes in the bone [32].

In this study, the focus is on the healthy bony orbit and thus the original condition. In
practice, however, in addition to restoring the bony orbit as closely as possible to its original
state, other relevant factors that influence the clinical outcome in the event of fracture must
be considered. The timing of surgery after the fracture appears to have a significant impact
on the outcome [33]. The meta-analysis by Damgaard et al. shows a significantly higher
risk of persistent diplopia in patients who underwent surgery > 14 days after trauma [34].
A systematic review by Wevers et al. also identified fracture size, and localization as well as
soft tissue involvement were also mentioned as the most relevant parameters for the clinical
outcome [35]. In the study by Zimmerer et al., soft-tissue-related factors are assumed to
hold great importance in predicting the clinical outcome. The authors suggest that in the
future more attention should be paid to the destruction of infraorbital septa, extraocular
muscles, and retroorbital fatty tissue, and that minimally invasive surgical techniques
should be used to avoid this destruction [36].

There are limitations to this study that must be addressed. Patient characteristics,
such as race or other pre-existing conditions, were not taken into account, which could
influence the size of the orbit. These factors may also affect the size of the bony orbit and
could be explored in a follow-up study. Another limitation of this study is that CT images
from four different CT scanners were used, all of which are approved for clinical use. A
real-life study with such a high number of cases using only one device would have been
difficult to achieve as a single-center study. A comparison of the absolute values of orbital
volume, length, and area among the CT devices for the same person would be of interest.
However, it is ethically unjustifiable to conduct such a study with real patients due to the
radiation exposure. The symmetry between the right and left orbits comes from the same
image material and therefore the same CT device, and it is irrelevant for the statement on
right/left symmetry.

In particular, the novelties of this study are the fully automated segmentation of the
high number of images using modern AI-based tools and the subsequent calculation of
orbital volumes, lengths, and areas. This study demonstrated high symmetry between
the right and left sides regarding the volume, length, and area of all three parameters.
This finding suggests that the healthy, mutual orbit can serve as a planning basis for
orbital constructions.

Furthermore, the comparison of the volume, length, and area of the orbit between the
soft tissue and bone windows is novel, where it could be shown that both windows can be
used to create a 3D model.

5. Conclusions

In conclusion, our study demonstrates the practicality of mirroring the healthy con-
tralateral side for orbital fracture surgery planning and 3D modeling, highlighting the
symmetry of orbital structures. Importantly, we found no significant difference in model ac-
curacy whether the bone or soft tissue window was used. This finding will facilitate clinical
decision-making and may improve surgical outcomes in the treatment of orbital fractures.
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Appendix A

The slope of volume and area did not show a deviation from one, indicating that
bone-derived values were higher than soft-tissue-derived values by a constant amount,
whereas the difference between bone- and soft-tissue-derived length values was larger in
low than in high values.

Table A1. Slope and intercept of orbital volume, length, and area.

Variable Slope (95% CI) p * Intercept (95% CI) p *

Volume 0.98 (0.95 to 1.01) 0.307 1.44 (0.59 to 2.28) 0.001
Length 0.94 (0.91 to 0.97) <0.001 2.66 (1.56 to 3.75) <0.001

Area 0.99 (0.97 to 1.02) 0.469 1.05 (0.13 to 1.97) 0.026
* p value is based on H0: slope = 1 and H0: intercept = 0.

Table A2. Association of sex, age, and orbital assessments.

Slope in Women Slope in Men Coefficient (95% CI) p

Volume 0.22 (−0.25 to 0.69) 0.55 (−0.11 to 1.22)
Age per 10 y 0.22 (−0.35 to 0.79) 0.448

Sex 6.22 (1.65 to 10.8) 0.008
Age X Sex 0.33 (−0.49 to 1.15) 0.428
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Table A2. Cont.

Slope in Women Slope in Men Coefficient (95% CI) p

Length 0.16 (−0.26 to 0.58) 0.24 (−0.26 to 0.75)
Age per 10 y 0.16 (−0.30 to 0.62) 0.496

Sex 4.45 (0.77 to 8.14) 0.018
Age X Sex 0.08 (−0.58 to 0.74) 0.802

Area 0.20 (−0.32 to 0.72) 0.56 (−0.12 to 1.24)
Age per 10 y 0.02 (−0.40 to 0.80) 0.516

Sex 6.54 (1.76 to 11.3) 0.007
Age X Sex 0.36 (−0.49 to 1.22) 0.408
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