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Abstract: Artificial intelligence (AI) applied to cardiovascular disease (CVD) is enjoying great success
in the field of scientific research. Electrocardiograms (ECGs) are the cornerstone form of examination
in cardiology and are the most widely used diagnostic tool because they are widely available,
inexpensive, and fast. Applications of AI to ECGs, especially deep learning (DL) methods using
convolutional neural networks (CNNs), have been developed in many fields of cardiology in recent
years. Deep learning methods provide valuable support for rapid ECG interpretation, demonstrating
a diagnostic capability overlapping with specialists in the diagnosis of CVD by a classical analysis
of macroscopic changes in the ECG trace. Through photoplethysmography, wearable devices can
obtain single-derivative ECGs for the recognition of AI-diagnosed arrhythmias. In addition, CNNs
have been developed that recognize no macroscopic electrocardiographic changes and can predict,
from a 12-lead ECG, atrial fibrillation, even from sinus rhythm; left and right ventricular function;
hypertrophic cardiomyopathy; acute coronary syndromes; or aortic stenosis. The fields of application
are many, but numerous are the limitations, mainly associated with the reliability of the acquired
data, an inability to verify black box processes, and medico-legal and ethical problems. The challenge
of modern medicine is to recognize the limitations of AI and overcome them.

Keywords: artificial intelligence; deep learning; convolutional neural networks; electrocardiogram;
cardiovascular diseases

1. Introduction

Cardiovascular disease is the leading cause of death in industrialized countries, ac-
counting for 32% of all deaths and 38% of deaths under the age of 70 (data from the World
Health Organization on cardiovascular diseases). Although the proper management of
heart disease reduces the incidence of mortality, great emphasis is placed on the early
recognition, prevention, and, when necessary, timely treatment of cardiovascular disease.

Electrocardiograms (ECGs) are the cornerstone form of examination in cardiology
and are the most widely used diagnostic tool for assessing cardiac diseases, with the
advantage of being widely available, inexpensive, painless, and easily performed. An
electrocardiogram is a graphic reproduction of the electrical activity of the heart recorded
on the surface of the body. The term electrocardiogram was introduced by Einthoven
in 1893, who was awarded the Nobel Prize in Medicine for this discovery. This tool
records the activity of millions of individual cardiomyocytes graphically, quickly, and
easily. The interpretation of an ECG requires a high degree of expertise and evaluation by a
cardiologist. Classical evaluation by the specialist makes it possible to diagnose specific
clinical disorders through a macroscopic assessment of changes in individual segments,
such as atrial fibrillation (AF), ventricular hypertrophy, or acute coronary syndromes (ACS)
with ST-segment changes.
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The introduction to medicine of artificial intelligence (AI), and especially of deep
learning (DL) and convolutional neural networks (CNNs or ConvNets), has proven to
be a great support for healthcare professionals in improving the quality of care. ECGs
are an ideal substrate for deep learning AI applications since they are widely available
and yield reproducible raw data that are easy to store and transfer in a digital format.
The application of AI to ECGs is an opportunity to support human intelligence, reduce
errors, improve interpretation, and obtain more information [1]. It makes possible the
identification and diagnosis of situations that cannot be recognized by traditional ECG
reading. The application of AI to cardiology is a useful tool to automate and speed up
diagnosis in urgent situations, for example, myocardial infarction (MI) [2]. In addition,
it can be used as a valuable screening tool for AF. Of great interest is the application of
AI to wearable devices [3,4]. Smart watches with AI could be used in the future for the
assessment of oxygen saturation, QT intervals, or Brugada syndrome [5–7]. An interesting
area of interest will be the use of smart watches with AI for the reliable diagnosis of
myocardial infarction using a multichannel electrocardiogram approach [8]. Above all,
AI has become capable of extracting additional information that cannot be assessed with
classical diagnostic criteria, such as in the case of the diagnosis of severe aortic stenosis
using TP and U-wave analysis [9].

This innovation still has limitations, mainly associated with the reliability of the ac-
quired data, non-validatable embedded biases, the impossibility of verifying the machine’s
decision-making processes, and ethical problems. The challenge for modern medicine is to
recognize these limitations and overcome them.

2. Artificial Intelligence, Machine Learning, and Deep Learning

Artificial intelligence is radically changing the modern world, and its great potential
in the field of medicine is certainly a challenge for science and health. In particular,
the last decade has seen a growing interest in the application of artificial intelligence to
cardiovascular medicine.

Artificial intelligence is a tool that uses machines to learn and perform complex tasks
and improve performance through experience (Figure 1).
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ML is an algorithm that can find solutions to problems (patterns) using the data
provided. Whereas traditional learning learns from rules, ML learns from examples. The
machine is given a task to perform and examples in the form of input (features) and output
(labels). The computer, in this way, finds the pattern that links the input and output through
a process called machine learning. Machine learning can take place in two ways: supervised
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or unsupervised. Supervised learning is based on a defined input and output, whereas
unsupervised learning only receives input. These features of machine learning have a very
high potential, as they allow for the analysis of a huge amount of data and for finding
statistical patterns—a performance that cannot be fulfilled by human intelligence alone.

However, machine learning has a limited capacity to learn, being strictly dependent on
features provided by experts. This limitation is overcome by deep learning, a sub-category
of machine learning, which improves its performance by accessing large amounts of data
and allows it to extract information that cannot be evaluated from a human perspective. DL
uses neural networks (NNs) to identify patterns in data or to make predictions. It analyses
many simple linear patterns (nodes) arranged in series (layers) to create a hierarchical
structure: each layer, composed of simple entities, serves to represent complex information
by passing through one or more hidden layers. In this way, deep learning learns extremely
complex relationships between features and labels.

Convolutional neural networks are used in the analysis and interpretation of images
(e.g., electrocardiograms). Such networks exploit principles of linear algebra, in particular
matrix multiplication, to identify patterns within an image. In general, it consists of
an input block; one or more hidden blocks (hidden layers), which perform calculations
using activation functions; and an output block, which performs the actual classification.
The difference is the presence of the three additional layers: a convolutional layer, a
pooling layer, and a fully connected (FC) layer. The convolutional level requires input data
(expressed as a matrix), a feature detector (filter or kernel), and a feature map. This layer
extrapolates the characteristics (features) of the image via the filter. The greater the number
of filters, the greater the complexity of the features that can be detected. The pooling
layer applies a filter to the entire output. It performs an aggregation of the information,
generating feature maps of a smaller size. Typically, each convolutional layer is followed
by a pooling layer to reduce the size of the matrix to recognize increasingly more precise
image features. Finally, the FC layer performs the classification task based on the features
extracted from the previous layers and their different filters. In this way, the inputs are
classified appropriately [10].

3. Application Fields in Electrocardiography

The electrocardiogram is the cornerstone form of examination in cardiology. The
ECG consists of several waves that, in normal conditions, repeat in the same order in each
cardiac cycle. Einthoven assigned the letters of the alphabet “P, Q, R, S, T” to the various
waves, starting arbitrarily from the letter P, which had already been used by Descartes
to indicate the points of a curve in his studies on refraction. The P wave corresponds to
atrial depolarization, the QRS complex corresponds to ventricular depolarization, and
the T wave represents ventricular repolarization, followed by the U wave, whose genesis
is still debated. The classical electrocardiogram comprises 12 leads, which describe the
depolarization and repolarization processes from different observation points: six leads
are recorded with electrodes placed on the limbs (unipolar and bipolar peripheral leads)
and six are obtained with electrodes placed in the precordial region (precordial leads).
By recognizing abnormalities compared to the normal ECG, it is possible to diagnose
numerous cardiovascular diseases: conduction defects, arrhythmias, myocardial infarction,
dysionia, cardiomyopathies, and pericarditis. Correctly and accurately interpreting an
ECG is therefore an indispensable prerogative of cardiology. However, around 300 million
ECGs are recorded every year, making it difficult for cardiologists to meet the demand for
reporting [11].

Furthermore, misdiagnosis, especially by less experienced professionals, can lead to
inappropriate clinical decisions or adverse events for patients. Bogun et al. described the
adverse clinical consequences associated with the misdiagnosis of atrial fibrillation. Starting
anticoagulant treatment when unnecessary is potentially harmful, as it exposes the patient
to an increased risk of bleeding [12]. Therefore, the accurate reading of the ECG is a great
interest topic, and in recent decades, automatic diagnosis has been studied worldwide with
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large databases. The electrocardiogram is an ideal examination for AI, as it is an instrument
that contains countless raw data that can be easily transformed into mathematical and
digital languages. The application of artificial intelligence is an opportunity to support
human intelligence: to help the healthcare provider by pointing out aspects of the images
that deviate from the norm, to automate and speed up diagnosis, and to extract additional
information that cannot be evaluated using classic diagnostic criteria [13].

Initially, machine learning was applied to the automatic diagnosis of ECG abnormal-
ities, but achieved results limited by data quality, with a classification performance of
71.6–74.2% [14].

Substantially greater results have been achieved with deep learning methods and
CNNs. Initially, several studies demonstrated the application of deep learning for the diag-
nosis of AF in single-lead ECGs [15,16]. This capability paved the way for the development
of wearable devices capable of diagnosing AF or cardiac arrhythmia from a single-lead
ECG acquired by photoplethysmography.

The application of CNNs to the analysis of 12-lead ECGs opened new opportunities for
scientific progress in the field of electrocardiography [17]. Deep learning has demonstrated
a superior diagnostic capability compared to cardiologists for the detection of different
categories of arrhythmias. In support, Hannun et al. described the superiority of CNNs
over cardiologists in diagnosing 12 classes of arrhythmias in 12-lead ECGs [18].

A previous study applied a CNN model for the correct interpretation and diagnosis of
21 rhythm classes on 828 ECGs (12-lead of 10 s duration) [19]. The deep learning model was
trained on 135,817 training ECGs (training dataset) and 17,955 validation ECGs (validation
dataset). The interpretation of the ECGs was also performed by clinical cardiologists
divided into three categories of clinical experience. The network consisted of an input
represented by a 5000 × 12 matrix, 15 convolutional layers, and an output formed of a
1 × 21 vector: each element of the vector represented a type of ECG rhythm. Zhu et al.
described that the deep learning model achieved a higher number of accurate diagnoses
(80%) than the average performance of cardiologists (67%, 69%, and 75%, according to their
clinical experience category).

Furthermore, the combination of data obtained from the CNN with expert features
(statistical features, signal procession features, and medical features) further improved the
performance of neural networks [20].

Since 2019, deep learning has made it possible to expand the number of diagnoses
possible from the analysis of heart rhythms using the classical electrocardiogram. By
eliminating evaluations based on coarse patterns, deep learning only analyses data and
draws conclusions that exceed human capacity alone. Specifically, CNNs interpret ECGs
quicker than human evaluation. They also detect conditions that are unrecognizable by
human interpreters. In this way, the ECG becomes a powerful non-invasive biomarker.

Its current fields of application are associated with the diagnosis of arrhythmias
(e.g., atrial fibrillation, ventricular tachyarrhythmias), valvulopathies (aortic stenosis and
mitral insufficiency), heart failure, extracardiac evaluation (hyperkalemia, anemia, health
status), cardiomyopathies (as hypertrophic cardiomyopathies), myocardial infarction, pul-
monary hypertension, and channelopathies. In addition, numerous studies are investi-
gating the ability of AI to predict cardiovascular diseases in order to improve prevention
and early diagnosis and prevent the irreversible progression of cardiovascular diseases.
Fields of study are paroxysmal atrial fibrillation, aortic stenosis, mitral insufficiency, heart
failure with a preserved ejection fraction, and critical patient states (e.g., cardiac arrest and
deterioration) (Table 1).
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Table 1. Recent studies related to AI applied to ECGs.

Field of
Application Authors Disease Detected AUC Sensitivity (%) Specificity (%)

Atrial fibrillation

Attia et al. [21] Afib during sinus rhythm 0.87 79 79

Raghunath et al. [22] New-Onset Afib 0.85 69 81

Dorr et al. [23] Afib using smart watch 0.93 94 98

Guo et al. [24] Afib using smart watch - 93 84

Tison et al. [25] Afib using smart watch 0.97 98 90

Valvulopathies

Cohen-Shelly et al. [9] AS 0.85 78 74

Kwon et al. [26] AS 0.87 80 79

Harmon et al. [27] AS progression - 78 74

Kwon et al. [28] MR 0.84 90 61

Ventricular
dysfunction

Attia et al. [29] HFrEF 0.93 86 86

Adedinsewo et al. [30] HFrEF 0.89 74 87

Vaid et al. [31] LV/RV dysfunction 0.84 76 76

Cardiomyopathies

Rahman et al. [32] HCM 0.85 90 90

Ko et al. [33] HCM 0.96 87 91

Tison et al. [34]

HCM 0.91 - -

PAH 0.94 80 90

CA 0.86 - -

MVP 0.77 - -

Myocardial
infarction

Acharya et al. [35] MI - 95 94

Liu et al. [36] MI - 95 97

Baloglu et al. [37] MI - 99 -

Lodhi et al. [38] MI - 94 86

Chen et al. [39] MI 0,99 - 99

Ischemic
cardiomyopathy Gumpfer et al. [40] Myocardial scar 0.89 70 84

Electrolyte
abnormalities

Galloway et al. [41] Hyperkalemia 0.86 90 58

Lin et al. [42]
Hyperkalemia 0.96 83 98

Hypokalemia 0.93 97 93

Attia et al. [43] Bloodless K+

Determination - - -

4. Atrial Fibrillation

Atrial fibrillation is associated with an increased risk of stroke, heart failure, and
mortality. According to the current ESC 2020 guidelines, the diagnosis is made by finding
AF on a 12-lead ECG, cardiac telemetry, Holter ECG, or implanted loop devices [44].
However, the diagnosis can be elusive because about 33% of patients are asymptomatic
and 25% have atypical symptoms [45]. Furthermore, atrial fibrillation can be intermittent
or paroxysmal; about 15% of patients with a “cryptogenic stroke” have paroxysmal AF [46].
Artificial intelligence-enabled electrocardiography could be a great resource to identify AF
undetected by testing, with great clinical, therapeutic, and prognostic impacts. Some studies
have evaluated the P-wave characteristics of a sinus rhythm ECG to predict the diagnosis
of AF. These features have been defined as the electrocardiographic signature of AF during
sinus rhythm. Attia et al. trained a deep learning model to find such electrocardiographic
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signs, which might not be seen by the human eye. The model proved able to identify
the presence of AF (AUC: 0.87) [21]. An article published in Circulation analyzed more
than 1.5 million 12-lead ECG traces and predicted the new onset of AF at 1 year with a
sensitivity of 69% and a specificity of 81% [22]. The limitations of this field of interest
relate to the therapeutic approach. Currently, the predictive ability of AI-ECG is 21.5%
at 2 years and 52.2% at 10 years [47]. Higher thresholds in the future might justify the
initiation of anticoagulant therapy in patients at high risk of AF onset. The BEAGLE study
(NCT04208971), the first randomized, controlled clinical trial, is underway to validate an
artificial intelligence algorithm capable of identifying patients with a high probability of
AF from ECG analysis [48].

In patients with suspected AF, one strategy may be the implantation of an implantable
loop recorder (ILR). Of these, the most studied is the Reveal LINQ system (Medtronic),
which has an AF detection algorithm based on R-wave irregularities and P-wave dis-
crimination. This algorithm was evaluated in the Reveal XT Performance Trial, which
demonstrated a sensitivity of 96.1% and a specificity of 85.4% [49]. Such devices, how-
ever, are implanted invasively. Hygrell et al. demonstrated that an AI algorithm can
predict AF even on single-lead ECGs in sinus rhythm, especially in older subjects [50].
The development of a deep learning algorithm for recognizing AF from a single-lead ECG
could simplify screening, as single-lead ECGs are easily obtained via wearable devices.
Photoplethysmography is more contemporary and has been used in some wearable devices
including watches, wrist straps, and smartphones. The mechanism is based on a light
directed at the skin and a photo sensor [23,24,51,52]. This technique, combined with a deep
neural network, has been evaluated in several clinical studies to detect AF from smart
watch data. Tison et al. conducted a small demonstration study to evaluate the ability of
passive AF detection by photoplethysmography technology combined with a deep neural
network. The smart watch algorithm achieved a sensitivity of 98% and a specificity of 90.2%
in detecting AF in a cohort of 51 patients [25]. Bumgarner et al. tested an algorithm for
automatic AF detection using an Apple Watch accessory. The Kardia Band (KB) supplied
by AliveCor is a band that can record a single-lead ECG and transmit it to an Apple smart
watch via Bluetooth. In the study, the results obtained by the KB detection algorithm were
compared to physician-interpreted 12-lead ECGs. A total of 100 patients were enrolled
to undergo cardioversion. The KB interpretations showed excellent agreement with the
reported ECGs and demonstrated a sensitivity of 93% and a specificity of 84% in diagnosing
AF [3]. In turn, Wasserlauf et al. compared the accuracy of AF detection using the Apple
Watch algorithm with the Kardia Band in patients with ILR. The CNN detected AF with a
sensitivity of 97.5%, detecting 80 episodes of AF compared to 82 detected by ILR [4].

5. Aortic Stenosis

Aortic valve stenosis (AVS) is the most frequent heart valve disease in the general
population (0.4%) and affects 2% of individuals after the age of 65 years and 12% after
the age of 75 years [53]. The prognosis is poor, and the onset of symptoms is associated
with a survival rate of 50% at 2-year follow-up [54]. At present, the only effective therapy
for severe aortic stenosis is valve replacement by surgery or transcatheter aortic valve
implantation (TAVI), which has made it possible to treat patients who are elderly or deemed
inoperable [55,56]. Currently, the gold standard for the diagnosis and quantification of AVS
is echocardiography [57]. The development of a reliable screening tool to detect significant
AVS is important because most patients with severe AVS are asymptomatic and early
diagnosis is essential to prevent irreversible disease progression and mortality. If significant
AVS could be detected using a conventional 12-lead ECG or a single-lead device, patients
could be referred for echocardiography and early diagnosis. This need also arises from
a growing body of data supporting early treatment even in asymptomatic patients [58].
However, no reliable screening tools currently exist. Classical 12-lead ECG analysis does not
allow for the recognition of aortic stenosis. Electrocardiographic evidence of left ventricular
hypertrophy, using the Sokolow index, is not diagnostic and does not allow for a differential
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diagnosis with other pathologies (e.g., aortic insufficiency) [59]. Recently, the novelty of
artificial intelligence has made it possible to correlate electrocardiographic changes in a
cluster of patients with manifest aortic stenosis or a predisposition for valve disease. Two
studies conducted on geographically and ethnically various populations demonstrated the
great potential of AI applied to ECGs for screening and diagnosing valve disease. Deep
learning algorithms showed that the TP interval and U waves in the right precordial leads
were the most weighted for determining the presence of AVS. Kwon et al. developed
a deep learning algorithm to detect aortic stenosis using 12-lead and single-lead ECGs.
The algorithm for screening aortic stenosis achieved an AUC of 0.86–0.88 and a negative
predictive value >99% [26]. The same authors tested an algorithm for the detection of mitral
insufficiency, with promising results [28].

Cohen Shelly et al. developed a deep learning algorithm capable of recognizing
moderate-to-severe aortic stenosis (AUC: 0.85) in asymptomatic subjects with a high sensi-
tivity and specificity, but, above all, a high negative predictive value (VPN 99%). They also
demonstrated the algorithm’s superiority in recognizing asymptomatic subjects, compared
to physicians able to make a diagnosis based on an auscultation of the murmur (only 39%
of physicians were able to recognize the murmur) [9] (Figure 2).
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Figure 2. A representative electrocardiogram example for true positive is shown. The probability of
moderate or severe aortic stenosis by artificial intelligence electrocardiogram is 0.92 in the presented
case. The blue lines are the “saliency” guiding the selection of attended locations.

This material was originally published in “Electrocardiogram screening for aortic valve
stenosis using artificial intelligence” by Cohen-Shelly Michal et al., edited by the European
Heart Journal, and has been reproduced with permission from Oxford University Press.

A more recent, retrospective study by Harmon et al. also demonstrated the ability
of the AI-ECG algorithm to predict disease progression by analyzing the TP interval and
T/U-wave morphology [27].

6. Ventricular Dysfunction

Left ventricular dysfunction includes different phenotypes: decompensation with a
reduced ejection fraction (LVEF < 40%), decompensation with a moderately reduced ejection
fraction (LVEF 41–49%), and decompensation with a preserved ejection fraction (associated
with the finding of symptoms and signs of decompensation, diastolic dysfunction, and
LVEF > 50%. An estimated 6% of the general population has an undiagnosed, asymptomatic
left ventricular ejection fraction (LVEF < 50%)) [60]. Transthoracic echocardiography (TTE)
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is the gold standard for assessing left ventricular function, but it is an expensive test and
not always easy to perform. The atrial natriuretic peptide assay is a simple screening test
but is invasive, as it requires a blood sample [61].

The 12-lead resting electrocardiogram is known to have low sensitivity and a low
positive predictive value for left ventricular systolic dysfunction. There is currently no
low-cost, non-invasive test for screening left ventricular dysfunction. In 2010, Schlegel
and colleagues evaluated an advanced 12-lead ECG test capable of evaluating seven
electrocardiographic parameters combined into computerized multivariate scores. This
improved the specificity, sensitivity, and positive predictive value of the ECG in recognizing
left ventricular dysfunction [62].

The application of artificial intelligence to ECGs for recognizing changes associated
with ventricular dysfunction could be useful for tracking patients at risk.

Attia et al. trained a neural network with a total of 97,829 ECG–TTE pairs. The
network was shown to correctly recognize patients with left ventricular dysfunction out
of an independent group of 52,870 ECGs. The statistical analysis obtained an AUC of
0.93, a sensitivity of 93.0%, a specificity of 86.3%, and an accuracy of 85.7%. Furthermore,
among “false positive” patients (i.e., with EF judged abnormal by the network, but normal
at TTE), the risk of developing ventricular dysfunction was increased by 10% at 5 years [29].
Its use was also tested for patients presenting to the emergency department with acute
dyspnea. Dyspnea can have multifactorial causes, and the correct identification of the
cause guides the physician towards the right treatment. In the 1606 patients included, the
algorithm correctly diagnosed left ventricular dysfunction with an accuracy of 85.9% for
LVEF < 35% and 86% for LVEF < 50% [30]. Vaid et al. applied a deep learning algorithm to
identify left and right ventricular dysfunction, with encouraging results [31]. A randomized,
controlled clinical trial, the EAGLE study (NCT04000087), is underway to screen for left
ventricular dysfunction by analyzing 12-lead ECGs with deep learning systems [63]. A
recent study also demonstrated the possibility of screening for HFrEF from ECGs, with
very encouraging accuracy data [64]. Unfortunately, at external validation, the accuracy
of the data was lower, with more false positives; specifically, in the ECG subgroups with
tachycardia, atrial fibrillation, and conduction delays, the AUC curves were lower [65].

7. Cardiomyopathies

Hypertrophic cardiomyopathy (HCM) is associated with an annual incidence of cardio-
vascular death (sudden cardiac death, heart failure, and thrombo-embolism) of 1–2% [66].
This value is 10% in the pediatric population, with a risk of sudden cardiac death (SCD) of
1.2–1.5% [67]. According to the recent ESC 2023 guidelines on the diagnosis of hypertrophic
cardiomyopathy, the diagnostic criteria are mainly echocardiographic with a finding of
LV wall thickness ≥15 mm [68]. The screening method to calculate the risk of SCD at
5 years (Class IB) is the “HCM Risk-SCD calculator”. However, early diagnosis through the
detection of electrocardiographic alterations could be useful for asymptomatic patients and
could simplify diagnosis with a non-invasive, quick, and simple tool such as an ECG. More
than 90% of patients have ECG changes, but these do not allow for a differential diagnosis
by the clinician as they are non-specific. A 2015 paper first demonstrated the diagnosis of
HCM by 12-lead ECG by classifying heartbeats using machine learning methods [32].

A recent study evaluated a deep learning algorithm for HCM diagnosis from a 12-lead
ECG. It demonstrated a negative predictive value of 99%, a sensitivity of 87%, a specificity
of 91%, and an AUC of 0.96 [33]. This model applied to the general population could
improve screening for HCM. Tison et al. developed a deep learning model for the detection
of four diseases, such as HCM, pulmonary hypertension (PAH), cardiac amyloid (CA), and
mitral valve prolapse (MVP), using ECG profiles at 12 detection points. The model was
able to discriminate PAH (AUC: 0.94) and HCM (AUC: 0.91) promisingly, while weaker
discrimination was found for CA (AUC: 0.86) and MVP (AUC: 0.77) [34].
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8. Myocardial Infarction and Ischemic Cardiomyopathy

Acute coronary syndromes (ACSs) are associated with high mortality and morbidity,
being the leading cause of death worldwide. Therefore, early diagnosis and medical in-
tervention with appropriate treatment are crucial to reduce the risks for the patient. The
latest ESC guidelines on the management of ACS indicate 12-lead ECG as the first-line
diagnostic tool in patients with chest pain (or equivalent signs/symptoms of angina) to be
performed within 10 min. The main electrocardiographic changes of myocardial infarction
are ST-segment elevation, T-wave inversion, or the appearance of necrotic Q waves. How-
ever, the diagnosis of STEMI is defined by the ECG finding of ST-segment elevation at the
J point in at least two contiguous leads [69]. Several studies have been conducted using
single-lead (II-lead) ECG datasets applying a CNN. Among them, Acharya et al. used an
11-layer CNN to automatically diagnose MI. The results obtained on single-lead ECGs
were an accuracy of 95.22%, a sensitivity of 95.49%, and a specificity of 94.19% [35]. Studies
conducted on 12-lead ECGs enabled the automatic detection and localization of MI by a
CNN [36–38,70,71]. In one of these, Chen et al. trained a CNN to recognize and localize
myocardial infarction from 12-lead ECGs. A total of 15,285 ECGs were used as the training
set and 6552 ECGs as the validation set. Finally, 205 ECGs were used as the testing set and
demonstrated an accuracy of 82.7% [2]. Furthermore, Tadesse et al. were able to implement
the diagnosis with information regarding the time of onset of MI, classifying the event as
acute, recent, or long-standing [72].

Chen et al. proposed an automatic ST-segment elevation detection system using
ECGs performed in an ambulance to speed up diagnosis and support decision making at
triage. The goal was to reduce the time to diagnosis, so the response time, defined as the
time interval between ECG transmission and interpretation, was analyzed. The system
was analyzed and interpreted, with excellent results of an AUC, accuracy, precision, and
specificity of 0.997, 0.992, 0.889, and 0.994. It also demonstrated a reduction in diagnostic
delays, with a response time inferior to that of physicians (37.2 ± 11.3 vs. 113.2 ± 369.4 s,
p < 0.001) [39].

Chronic coronary syndromes must also be diagnosed early. The early initiation of
appropriate treatment helps to prevent the development of myocardial scarring and, sub-
sequently, ischemic heart disease [73]. The gold standard for the diagnosis of myocardial
scarring (MS) is nuclear magnetic resonance imaging (MRI) by identifying scar tissue using
gadolinium. However, the costs of MRI and the small number of specialists for reporting
make the use of this tool in the diagnosis of MS limited. Gumpfer et al. proposed a deep
learning model to detect MS from 12-lead ECGs. ECG and MRI data were collected on
114 patients. The CNN model recognized MS with an accuracy of 78.0%, a sensitivity of
70.0%, and a specificity of 84.3% [40].

9. Electrolyte Abnormalities

One of the main electrolytes involved in the process of cardiac depolarization and
repolarization is potassium (K+). Pathological variations in potassium can be recognized by
analyzing the ECG tracing. Hyperkalemia occurs mainly in cases of renal failure, acidosis,
or poor therapy management. Electrolyte alterations are subtle and difficult to recognize
because they are frequently asymptomatic. Serum potassium dosage allows hyperkalemia
to be classified as mild (5–5.5 mEq/L), moderate (5.5–6 mEq/L), or severe (>6 mEq/L) [41].
Such an increase in extracellular K concentrations (usually, serum changes >6 mEq/L)
is associated with trace alterations such as an increased T-wave voltage (peaking of T
waves), P-wave and PR changes (such as PR shortening), and QRS prolongation. The
risk associated with hyperkalemia is the initiation of ventricular fibrillation and the death
of the patient. According to the ESC 2021 guideline on heart failure in patients at risk
of developing dysionia, especially in patients with renal failure, frequent monitoring of
blood tests should be performed to control and stabilize K+ and creatinine [74,75]. This
indication is not easy to implement, and blood tests are a simple but minimally invasive
tool for the patient. The application of deep learning systems to the ECG can be used to
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screen hyperkalemia and reduce the risk of fatal arrhythmias. Galloway et al. trained a
CNN to recognize pathological potassium levels from the analysis of the ECG trace. They
defined hyperkalemia as a K+ value ≥ 5.5 mEq/L and analyzed more than 1.5 million
12-lead ECGs using a CNN with 11 convolutional layers. The performance of the CNN
proved to be good for the diagnosis of hyperkalemia, with a negative predictive value of
99%, an AUC of 0.853–0.883, and a sensitivity of 88.9–91.3% [41]. Lin et al. applied an
82-layer convolutional deep learning algorithm to detect alterations in serum potassium.
Hypokalemia is associated with lower-than-normal serum potassium levels and ECG
alterations such as PR prolongation, ST-segment depression, a T-wave decrease in voltage
until disappearance or T-wave inversion, QTc prolongation, and U-wave appearance. The
deep learning model performed better than physicians in detecting dysionia and had a
sensitivity result of 84.5–95.6% [42]. Attia et al. described the possibility of potassium
measurements without blood samples, only with the use of single-lead ECGs. This study,
based on T-wave morphology, excluded patients with biphasic, bimodal, or inverted
T waves. Estimates of blood potassium levels were obtained with an average error of
0.5 ± 0.42 mmol/L. This could lead to the development of wireless, remote, continuous,
and non-invasive monitoring technologies with the ability to monitor the trend and send
alerts to patients at risk of fatal arrhythmias, such as renal failure or dialysis [43].

10. Obstacles and Challenges to Overcome in Artificial Intelligence

The potential of AI applied to medicine is numerous, which is why close monitoring
of the system’s results and methodology is necessary. Ethical limitations, raw input data,
incorrect input, overfitting, and a lack of interpretability of the decision-making process
could be obstacles in the routine use of AI systems [76].

As described by Attia et al., the main problems are related to explainability, uncertainty,
and robustness (Table 2) [13].

Table 2. Obstacles and challenges related to AI. Definition of explainability, uncertainty, and robustness.

Explainability Uncertainty Robustness

Obstacle

The inability to monitor the
mechanism of black boxes and
correct the risk of unreasonable

decisions leads to important
ethical problems.

Uncertainty error is related to the use of
raw data, which increases the amount

of noise.
Overfitting occurs when input data are

not generalizable to the entire
population and are more specific than a

single location where they
were collected.

Misinterpretation of
misleading data that are

misclassified.

Challenge

Explainable artificial intelligence
would make the machine’s

decision-making process known,
allowing ethical problems to

be overcome.

The quantification of uncertainty is
crucial to increase confidence in the

results obtained.

Robust model of correct
recognition of contradictory

input for accurate and correct
classification.

Research is focusing on making the mechanism of black boxes explainable so that the
pattern by which inputs generate outputs is known. The inability to monitor and correct the
risk of unreasonable decisions leads to an important ethical problem: who is responsible
for a diagnosis that the medical professional has no way of verifying? One example is the
automatic diagnosis of new continuous heart rhythm monitoring devices. The verification
of a diagnosis for devices that record for 24–48 h is rapid. The verification of a continuous
recording, weekly or monthly, is impossible. The diagnosis of the absence or presence of AF
or other rhythm disturbances implies therapeutic choices based on uncontrolled decision
making. Explainable artificial intelligence would make the machine’s decision-making
process known, allowing ethical problems to be overcome. The quantification of uncertainty
is crucial to increase confidence in the results obtained.
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The uncertainty error is related to the training input data. In particular, the use of raw
data increases the amount of noise. Normally, deep learning provides outputs by analyzing
the input data provided. Chen et al. described safe learning through uncertainty estimation,
which enables a better evaluation of noisy data. Through trained AF detection models, deep
learning has demonstrated a superior classification capability for raw data (ECG performed
in intensive care) [77]. Another problem related to supervision is datasets with large
numbers of ECGs. Including hundreds of thousands, or more, of ECGs, as in most existing
publications, makes it difficult to perform quality control on each individual ECG. Therefore,
the system may present results affected by reduced signal quality. Therefore, noise, missing
leads, and lead reversals could be erroneously incorporated into DNN algorithms. To
overcome this problem, saliency maps were created to make the internal black box process
more understandable. Specifically, heat maps identify the image points being analyzed;
therefore, the experimenter can tell if the artificial intelligence model erroneously focuses
on irrelevant points in an image. But a recent study, published in Nature Machine Intelligence,
shows that saliency heat maps are not yet applicable [78]. Furthermore, the problem of
overfitting can also create incorrect input data. Overfitting occurs because the machine
recognizes features as only random properties. This problem mainly occurs when the input
data are not generalizable to the entire population and are more specific to a single location
where they are collected [79]. In the context of electrocardiography, 12 leads may contain
redundant input data, leading to an overfitting problem. Lai et al. addressed the overfitting
problem associated with 12-lead ECGs. They investigated how to eliminate the redundancy
problem of 12-lead ECGs to improve the classification of abnormalities detected by the
deep learning system. They found an optimal subset of leads that eliminate overfitting and
allow for the correct interpretation and diagnosis of arrhythmias [80].

Robustness refers to the system’s ability to recognize misleading data. The diagnosis of
arrhythmias by cardiologists is linked to gross features in the ECG tracing, such as the lack
of P waves and irregular RR intervals for the diagnosis of AF. While the human eye does not
perceive small variations in the tracing, deep learning recognizes these perturbations and
creates contradictory examples that lead to incorrect rhythm diagnoses [81]. This problem
can undermine the security of the deep learning system.

Systems intended to operate without human supervision must be able to recognize
such perturbations and work well, even with contradictory data. The limitations and
vulnerabilities of deep learning systems do not cast a shadow on their use in clinical
practice but must be recognized to implement their safe use. Deep learning systems and
CNNs need a design based on the safety and reliability of the results obtained, so as to not
run into ethical problems associated with black boxes.

11. Conclusions

The application of artificial intelligence in cardiology is a useful tool to support
professionals and improve the quality of care. Artificial intelligence and machine learning
will not put healthcare professionals out of business; rather, they will enable healthcare
professionals to do their jobs better and leave time for the human–human interactions that
make medicine the rewarding profession we all value. One hypothesis could be the use
of AI for double-checking diagnoses or as a co-pilot in helping cardiologists in clinical
practice. The use of deep learning models for ECG interpretation is a practice that is
growing and evolving greatly. The addition of artificial intelligence to a standard ECG—a
widely available, inexpensive, painless test—transforms it into a powerful tool for reducing
diagnosis time and continuous monitoring with wearable devices and enabling physician
support and disease prediction.

For example, the interpretation of an ECG with the AI could be used to generate
a diagnostic hypothesis, such as left ventricular dysfunction or other pathologies not
detectable with the standard interpretation of the tracing.

The challenge is to optimize such a tool to overcome limitations related to ethical
issues, raw input data, misleading inputs, overfitting, and black boxes. The goal is to
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make the use of deep learning algorithms reliable and safe without human supervision to
enable wide application of such mechanisms that can revolutionize modern medicine in
the prevention, diagnosis, and treatment of disease.
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