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Abstract: Metabolic syndrome (MetS) describes a set of disorders that collectively influence cardio-
vascular health, and includes hypertension, obesity, insulin resistance, diabetes, and dyslipidemia.
All these components (hypertension, obesity, dyslipidemia, and prediabetes/diabetes) have been
shown to modify autonomic function. The major autonomic dysfunction that has been documented
with each of these components is in the control of sympathetic outflow to the heart and periphery at
rest and during exercise through modulation of the arterial baroreflex and the muscle metaboreflex.
Many studies have described MetS components in singularity or in combination with the other major
components of metabolic syndrome. However, many studies lack the capability to study all the
factors of metabolic syndrome in one model or have not focused on studying the effects of how each
component as it arises influences overall autonomic function. The goal of this review is to describe
the current understanding of major aspects of metabolic syndrome that most likely contribute to the
consequent/associated autonomic alterations during exercise and discuss their effects, as well as
bring light to alternative mechanisms of study.

Keywords: MetS; exercise; autonomic function; obesity; hypertension; baroreflex; metaboreflex

1. Introduction
1.1. Metabolic Syndrome: Clinical Presentation and Effects

There are many well-studied metabolic disarrangements that are known to negatively
impact cardiovascular health such as obesity, hyperlipidemia, insulin resistance, diabetes,
and hypertension. When present collectively, these cardiovascular and metabolic alterations
comprise an entity termed metabolic syndrome (MetS). The diagnostic criteria for MetS
defined by the National Heart, Lung, and Blood Institute are as follows: obesity, low HDL,
elevated blood pressure, elevated fasting glucose, and high triglycerides (Table 1).

Table 1. Diagnostic Criteria of Metabolic Syndrome.

Component Range

Waist Circumference >102 cm for males or >88 cm for females (>80 cm for
Asian females)

HDL Cholesterol <40 mg/dL for males and <50 mg/dL for females

Blood Pressure >130 mmHg systolic or >85 mmHg diastolic

Fasted Blood Glucose ≥100 mg/dL

Triglycerides ≥150 mg/dL

The diagnosis of MetS is made when three out of five diagnostic criteria are present.
The likelihood of being diagnosed with MetS is increasing at an alarming rate, especially
considering that 573 million individuals are projected to be obese by 2030 [1,2], and about
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half of the U.S. population already suffers from some form of hypertension [3]. Both obesity
and hypertension modify autonomic function, manifesting as exaggerated muscle meta-
boreflex responses and altered baroreflex function [4–23]. While obesity and hypertension
are only two of the risk factors of MetS, diabetes, dyslipidemia, and insulin resistance all
play a role, either through modification of sympathetic function [6,24–28] or through the
development of atherosclerotic disease and alterations in metabolic homeostasis. Indeed,
obesity and hypertension likely provide common soil for the development of diabetes and
coronary vascular disease [29]. All these risk factors could enhance metabolite-sensitive
reflexes, such as the muscle metaboreflex, or induce attenuation of baroreflex responsivity
and sympathetic control. Exaggeration of muscle metaboreflex responses and/or attenua-
tion of the arterial baroreflex, which buffers muscle metaboreflex responses, likely leads to
exercise intolerance and potentially cardiovascular complications during exercise. Thus, the
focus of this article will be to discuss the current and potential effects of MetS components
on the neural control of cardiovascular function during exercise, with a particular focus on
arterial baroreflex and muscle metaboreflex function.

1.2. Current Challenges to Animal Models of Metabolic Syndrome

Each of the major components of MetS, namely obesity, pre-diabetes, and hypertension,
have been shown to independently influence sympathetic control. Hypertension in isolation
significantly alters sympathetically-mediated arterial baroreflex [14,30–32] and muscle
metaboreflex responses [14,15,17–19,32] during exercise. The impact that obesity alone
plays is less understood, having been shown to either inhibit or enhance sympathetic
activity [4,5,23,33,34]. Diabetes, when uncontrolled, has been shown to induce varying
levels of neuropathy that, in turn, induce alterations in autonomic function. However,
others have found that insulin alone can be a potent initiator of sympathetic responses prior
to the development of type 2 diabetes [24,35,36]. Long-term dyslipidemia and triglyceride
storage have been linked to the development of peripheral artery disease, which can initiate
changes in autonomic function through physical alterations in the peripheral vasculature
such as the development of atherosclerotic lesions and arterial stiffening which, in turn,
can enhance sympathetically mediated responses to high metabolic load. Thus, each MetS
component can independently inflict alterations in autonomic function, which ultimately
provides a difficult challenge to maintain exercise tolerance and performance.

Adding an additional degree of complication to the study of autonomic function in
MetS is that the observed phenotype of MetS patients is not uniform in their develop-
ment or presentation. For instance, some individuals may be diagnosed with MetS using
the minimum three criteria, while others may have four or all five components of MetS.
Furthermore, within these varying diagnoses, the criteria in which a diagnosis of MetS
is met can vary as well, some patients may exhibit hypertension, elevated triglycerides,
and elevated fasting glucose, whereas another patient diagnosed with MetS can exhibit
obesity, dyslipidemia, and elevated fasting blood glucose. Thus, the interplay between
each of the components that compromise the phenotype of each MetS patient are important
considerations in the understanding of alterations in autonomic function. Thus, with each
MetS component having the potential to contribute to altered autonomic states several
questions arise: First, which components, if any, are the most potent effectors in altering
autonomic function? Second, does the accumulation of multiple components exert additive,
or redundant influences on autonomic dysfunction? And finally, how might the removal of
select MetS components influence the observed autonomic phenotype?

These questions are difficult to answer. MetS is challenging to study in animal models
due to the complexity of the disease processes. Although animal models of MetS can closely
mimic the risk factors and symptoms observed in humans, often, they do not consider the
multifactorial entities that can lead to the development of the syndrome. In other words,
beyond human studies, it may be inaccurate to say that animal models study “metabolic
syndrome”, but rather that they fragment the disorder into its parts: hypertension, hyper-
tension and insulin resistance, obesity and prediabetes-diabetes, or any other combination
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or singular aspect of the syndrome. The isolation of these MetS components is most com-
mon in monogenic or pathologic-bred rodent models, wherein aspects of the disease can
be induced and observed in a more controlled manner without confounding the effects of
other factors. While the monogenic models can control for various factors such as genetic
predispositions and differences in disease severity, these models do not translate well into
human models, as MetS is a multifactorial condition that varies in severity, genealogical
interaction, as well as symptom presentation (i.e., the order in which symptoms originate or
are added). The diet-induced obesity (DIO) models more closely mimic human models, as a
surplus of caloric intake and an unhealthy diet drives the development of obesity and other
symptoms such as diabetes and dyslipidemia and in some cases even hypertension [37].
However, this approach does not always lead to a true MetS phenotype in every animal
model, and most studies that utilize diet approaches do not begin their study until the
entirety of desired components have arisen. The phenotypic differences in the production
of MetS models are driven by variability within the choice of diet to achieve the same end
goal of utilizing caloric excess or glucose metabolism manipulation to elicit the components
of MetS. de Moura e Dias et al. [38] discussed this variability in a literature review regarding
the range of diets used to achieve MetS. For example, in some of these diets, lipids from
calories ranged between 41–60%, and the choice of lipids in high-fat diets was saturated
fatty acid in some studies but not in others [38]. It has also been reported that MetS can be
induced with a hypercholestrolemic diet (with various percentages of highly saturated fat,
cholesterol, and other fat), sucrose, and fructose [39]. It is important to note that these diets
may not induce all the criteria that comprise MetS. For example, they may induce obesity or
diabetes but not hypertension—a condition known to significantly alter autonomic function
at rest and during exercise [37]. Only a select number of investigations have been able to
successfully induce a comprehensive animal model of MetS, primarily by implementing
variations or combinations of established diets [37]. Furthermore, in most studies, the goal
is to study the final phenotype of MetS and not evaluate the various components of the
syndrome as they arise to evaluate their overall contributions to the disease. In addition to
these limitations within the current studies, the evaluation of autonomic function has been
limited even in models that utilized MetS phenotypes that encompassed all components.

This variability in diet to achieve the end goal of inducing obesity, while useful
in further understanding the complex pathophysiology of MetS, does not realistically
mirror what occurs in humans nor does it permit the understanding of how the autonomic
alterations induced by these components interact with each other. This is because the
disease is not a frank appearance of symptoms all at once, but rather, an accumulation of
metabolic disarrangement that leads to the development of factors over time. Therefore,
this review makes a call for future research to move beyond evaluating the frank syndrome
and more thoroughly examine the development of MetS characteristics during the diet-
feeding process to determine each symptom’s contribution to the overall dysfunction of
the syndrome.

2. Metabolic Syndrome and Hypertension

Hypertension is an important risk factor for MetS, with some studies suggesting a
higher prevalence of MetS in hypertensive males and lower in females [40]. Although
hypertension is a major factor regarding MetS, not all initial diagnoses of MetS contain
hypertension as a component, and, in some cases, it is developed later as syndrome severity
increases [40–46]. There are many suggested mechanisms that explain how components of
MetS can induce hypertension, sometimes prior to an official diagnosis of MetS. Aggrega-
tion of adipose tissue with weight gain and obesity leads to the release of adipocytokines,
including leptin, tumor necrosis factor (TNF)-α, resistin adiponectin, angiotensinogen, and
fatty acids [47]. These affect vascular function through proinflammatory actions and induce
oxidative stress, eventually contributing to the development of hypertension. Elevations
in sympathetic activity combined with a hyperadrenergic state of inflammation and obe-
sity have been shown to contribute to increases in blood pressure [48], and thus, may be
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the pathway by which initial symptoms of MetS lead to the development of additional
components such as hypertension.

Conversely, some data suggests an almost identical whole-body sympathetic activity
between obese and lean normotensive patients, suggesting that the initial symptoms of
MetS may not be sufficient to induce neurogenic hypertension [10,21,23,49]. However,
when these same models are assessed for regional alterations in norepinephrine spillover,
differences are observed [10]. Regional differences have been shown to be important, as
certain types, such as rearrangement of renal NE spillover in the context of obesity, may be
a driving factor of hypertension in the early stages of the development of MetS [10].

Sympathetic overactivation is present within the context of hypertension in MetS [8,11,50].
Whether hypertension is the initial cause or an amplifying symptom of this phenomenon—
or both—is yet to be determined. However, evidence does show that patients with MetS
have increased sympathetic activity even without hypertension, and compared to hyper-
tension alone [11]. Interestingly, as reviewed by Esler et al. [51], muscle-sympathetic nerve
activity in patients with hypertension also seems to be further exaggerated as more compo-
nents of MetS are present, indicating a compounding influence on disease progression.

Considering both hypertension and MetS manifest negative effects on cardiovascular
health, it is important to recognize any prognostic value that may arise from understanding
their relationship to one another. Schillaci et al. [43] showed that in association with high
blood pressure, hypertensive subjects with MetS had an augmented cardiovascular risk, i.e.,
MetS was an independent risk factor for adverse cardiovascular events. This has also been
shown in hypertensive patients at low-to-medium risk, where patients with hypertension
and MetS were at a higher cardiovascular risk than patients with hypertension alone [52].
Being that MetS-related cardiovascular risk increases with the diagnosis of hypertension,
the implications for strenuous bouts of activity are also of concern, as hypertension alone is
known to significantly alter cardiovascular responses to exercise and increase the risk of
cardiovascular ischemic events.

3. Autonomic Function: Hypertension

Both hypertension and MetS have been linked to autonomic dysfunction and exercise
intolerance, [14–19,22,23,32,53]. Hypertension has been studied extensively in the context
of exercise; hypertension modifies the muscle metaboreflex and the arterial baroreflex as
well as their interactions [15,17–19,32,54,55]. Studies in humans have shown that activation
of the muscle metaboreflex via post-exercise circulatory occlusion (which entraps metabo-
lites in muscle during the recovery from exercise) evokes a larger increase in peripheral
sympathetic activity [56,57] in hypertensive individuals. Similar conclusions were drawn
using a decorticate rat model and electrically induced static muscle contraction or arterial
infusion of substances that activate skeletal muscle metabolite-sensitive afferents [17,58–61].
In conscious dogs as well as human subjects, muscle metaboreflex activation during sub-
maximal dynamic exercise increases arterial pressure predominately via reflex increases
in cardiac output via substantial increases in heart rate, left ventricular inotropic state,
and central blood volume mobilization despite large increases in ventricular afterload
and arterial elastance [62–68]. After induction of hypertension, the ability to raise cardiac
output is markedly reduced and the reflex shifts toward increased peripheral vasoconstric-
tion [18]. Even the coronary circulation is vasoconstricted due to the heightened increase in
sympathetic activity [18]. After the alpha adrenergic blockade, this metaboreflex-induced
coronary vasoconstriction in hypertension is reversed to vasodilation and the ability to raise
the inotropic state and cardiac output is returned to normal [18]. In contrast, the strength of
the arterial baroreflex is reduced in hypertension [12,30,32,54,69–71]. The arterial baroreflex
buffers the muscle metaboreflex thereby limiting the rise in arterial pressure [72]. This
buffering occurs via arterial baroreflex inhibition of metaboreflex-induced peripheral vaso-
constriction [73]. After arterial baroreceptor denervation, muscle metaboreflex activation
induces substantial increases in both cardiac output and peripheral vasoconstriction which
elicits marked increases in arterial blood pressure [73,74]. With the reduction in baroreflex
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function in hypertension, the larger sympatho-activation during metaboreflex activation
could stem from reduced baroreflex buffering of the metaboreflex-induced increases in
peripheral sympathetic activity. Thus, any interventions that improve baroreflex function
(e.g., exercise training) [31,69,75–81], could serve to limit the rise in sympathetic activity
during exercise and thereby lessen cardiovascular risk factors in hypertensive individuals.

Similar effects during exercise are observed regarding the impact of MetS on muscle
metaboreflex activation, in which an enhanced vasoconstrictor response is observed similar
to what has been seen in hypertension [22,23,53,82]. Furthermore, studies assessing the
impact of obesity have shown that obesity alone does not significantly alter hemodynam-
ics [23]. Thus, symptoms such as hypertension likely play a significant role in the autonomic
alterations induced by MetS.

4. Metabolic Syndrome and Impaired Glucose Control

Elevated blood sugar is one of the diagnostic criteria of MetS. This is especially relevant
in the context of the modern diet and eating habits, particularly as the 2017–2018 NHANES
Study by the USDA showed that U.S. adults consume an estimated 17 tablespoons of
added sugars per day. Insulin resistance has been implicated in playing a role in the
development of MetS [83]. This means that insulin resistance increases cardiovascular risk
and promotes the progression of cardiovascular disease [44]. Glucose intolerance is also
correlated with impaired lipolysis [84] which may lead to alterations in cholesterol and
free fatty acid concentrations observed in MetS. The Centers for Disease Control estimates
that 90% of patients with diabetes meet the criteria for overweight or obesity and the
relationship between insulin resistance, obesity, and MetS is an important one, especially
with abdominal obesity also being one of the diagnostic criteria of MetS.

Type 2 diabetes is one of the more concerning factors of MetS similar to that of
hypertension as once the process of glucose and insulin dysregulation begins the ability to
appropriately correct toward baseline levels of glycemic control diminishes rapidly [85,86].
The damage initiated to pancreatic beta cells through the development of type 2 diabetes is
irreversible [27,85,87–90], and unfortunately lays the groundwork for the development of
other factors of MetS likely through the effects of insulin [6,26,36,91,92]. The only current
therapies available for type 2 diabetes are mechanisms to control the levels of insulin
production and effectiveness or reduction in glycemic load through pharmaceutical actions,
exercise, and diet. Although glycemic control seems the best mechanism for enhancing
the function of residual insulin production and action, for many, diet and exercise do not
suffice or are not well tolerated either due to poor adherence to glycemic control plans,
or exercise intolerance. Thus, pharmaceutical intervention is typically combined with
diet and exercise as a primary treatment mechanism. To what degree type 2 diabetes or
even prediabetes contributes to the development of MetS, and subsequent sympathetic
dysregulation is unknown, as both conditions have the propensity to be precursors and
developed components of MetS as the disease progresses. What is known is that insulin
regulation seems to be a key factor.

5. Autonomic Function: Type 2 Diabetes

The effects of insulin resistance do not end with diabetes and obesity as discussed
above since essential hypertension is linked to insulin resistance [92,93]. Considering that
hypertension is partially a result of sympathetic overactivation, it is unsurprising that
insulin plays a role in modulating sympathetic centers in the brain. Low plasma levels of
insulin in a fasting state activate inhibitory pathways that suppress sympathetic centers in
the brain stem which have been active chronically. This results from reductions in glucose
metabolism in insulin-dependent hypothalamic neurons [94]. Thus, in conditions such
as insulin resistance or early type 2 diabetes, increased insulin levels likely contribute to
enhanced sympathetic activity at rest and during exercise and may play a potentiating role
in the development of hypertension in MetS.
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Type 2 diabetes has been shown to significantly modulate muscle metaboreflex-
induced peripheral vascular responses by way of enhancing muscle sympathetic nerve
activity and the peripheral vasoconstrictor response similar to what is observed in hyper-
tension [16,95–97]. Furthermore, insulin itself, either in the context of diabetes development
or via hyperinsulinemia, also exerts an effect on autonomic reflexes, such as the arterial
baroreflex [98,99]. Pricher et al. [100] reported that lateral ventricular insulin infusion in
rats increased baroreflex control of both heart rate and lumbar sympathetic nerve activity.
Insulin infusion altered the baroreflex within 60–90 min, and a fourth ventricle infusion had
no effect on the baroreflex. Thus, they concluded that insulin modulates baroreflex control
of lumbar sympathetic nerve activity and heart rate at the level of the forebrain [100]. Ryan
et al. [101] showed that in humans, cerebral blood flow possibly mediates the relationship
between baroreflex sensitivity and insulin resistance. The regions in the central autonomic
network include forebrain regions such as the pregenual anterior cingulate cortex and
insula [101–103]. Other studies provided insulin resistance as a possible mechanism for
impaired baroreflex gain [25,104]. Such findings make it clear that patients with MetS who
develop insulin resistance and diabetes can also develop autonomic dysregulation. This in
turn has various ramifications on cardiovascular health and exercise capacity.

6. Metabolic Syndrome and Obesity

Obesity is a core element in the diagnostic criteria of MetS, abdominal obesity more
so than body mass index. With the increase in obesity, there has been an evident increase
in the prevalence of MetS [105]. It is well established that obesity is linked to the many
other risk factors that make up MetS, including hypertension, insulin resistance, and
hyperlipidemia [27]. Visceral obesity is important to consider when discussing obesity as it
has been shown that it correlates with greater muscle sympathetic nerve activity [106,107].
This suggests that visceral or central adiposity may be mechanisms by which sympathetic
activity is enhanced and may contribute to the development of additional components of
MetS such as insulin resistance. Bergman et al. [108] evaluated whether free fatty acids in
visceral adipose tissue are a culprit in the development of insulin resistance and MetS, and
whether the anatomical localization of the visceral fat has any significance when it comes to
the pathogenesis of MetS. Using a canine model, they concluded that fat-feeding-induced
visceral adiposity did lead to primary insulin resistance of the liver [108]. The observed
increase in measured free fatty acids, presumably coming from visceral fat, could partially
explain the insulin resistance observed in non-diabetic individuals. In humans, Jensen
et al. [109] showed that in lean, obese, non-diabetic, and diabetic humans, non-visceral fat
in the upper body contributed to most measured free fatty acids. In other words, the excess
availability of free fatty acids in the systemic circulation was not mainly from visceral fat.

Whether energy homeostasis complications occur from abdominal or visceral obesity
primarily has yet to be determined; however, in either instance, obesity is one of the primary
symptoms of MetS and likely one of the first stages of the disease. Being that obesity is
typically a condition related to lifestyle and eating habits it provides a low-hanging fruit so
to speak for treatment options for the prevention of MetS.

7. Autonomic Function: Obesity

Although obesity may be the easiest symptom of MetS to deal with and its subse-
quent treatment may be a major mechanism in preventing the development of further
MetS symptoms it is not without consequences regarding changes in autonomic func-
tion [23,49]. For instance, obesity-related metabolic derangements do seem to influence
pressor responses [49]. In a study involving normotensive obese females, Prud’homme
et al. [49] reported a significant relationship between systolic blood pressure measured
during submaximal exercise and various cardiovascular disease risk factors, such as choles-
terol levels and waist–hip–ratio. This exaggerated blood pressure response could partially
be explained by increased circulating catecholamines in obese patients [34]. The increased
sympathetic activity in obesity could also explain the observed elevation in blood pres-
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sure [110,111]. In addition to being combined with other factors, obesity has also been
shown to independently modify autonomic reflexes. Most notably during exercise, obe-
sity influences autonomic function via increased sympathetic outflow [9] and enhanced
vascular resistance [20,22] during muscle metaboreflex activation, in addition to changes
to baroreflex sensitivity [5,33]. Furthermore, these changes are not solely related to each
individual autonomic reflex, as it is known that muscle metaboreflex pressor responses
are buffered by the arterial baroreflex [72,74]. Studies by Dipla et al. [21] and Latchman
et al. [112] also showed alterations in both baroreflex function and metaboreflex function in
young obese boys relative to their healthy counterparts, suggesting that the effect of obesity
is not likely tied to only one autonomic blood pressure control mechanism. Therefore, aside
from the physical challenges of exercising with obesity, this evidence suggests that the
pathophysiology of obesity contributes significantly to autonomic dysfunction, particu-
larly during exercise. Therapeutic interventions to blunt this pressor response in obese
patients could prove beneficial when considering treatments. This was shown by Derella
et al. [113], where pressor response to acute stress was blunted with dual endothelin A/B
receptor antagonism.

8. Effect of Metabolic Syndrome on Autonomic Dysfunction

Sympathetic activity is likely significantly involved in the risk factors of MetS. How-
ever, this involvement could have many implications for the integrity of the autonomic
nervous system (ANS) and autonomic reflexes. A longitudinal study performed by Licht
et al. [114] showed that elevated sympathetic activity does indeed predict metabolic de-
rangements, as the number of MetS components increased over that time period. This
indicates that ANS dysregulation could be a predisposing factor to the development of
MetS [8,114–116]. However, there is also evidence that alterations to the ANS do occur in
the setting of MetS and this could potentially be a result of the interplay within the severity
of MetS components and/or the addition of components [117].

The sympathetic and parasympathetic nervous systems play an important role in
metabolic hemostasis. The sympathetic ANS stimulates hepatic gluconeogenesis while the
parasympathetic ANS antagonizes the effects of the sympathetic ANS by promoting glucose
storage in the liver and inhibiting hepatic gluconeogenesis [55,118]. Thus, alterations in
the total output of either branch of autonomic control likely drive the development of
pathologies towards the full diagnosis of MetS through changes in energy homeostasis and
energy storage. These changes likely initially occur as a result of lifestyle and dietary choices
leading to greater levels of circulating glucose and lipids, which initiate inflammatory
pathways that perturb sympathetic homeostasis via changes in blood pressure, insulin, or
other factors, and therefore alter sympathetic mediated reflexes.

This ANS imbalance impacts not only metabolic hemostasis and hypertension but also
the arterial baroreceptor reflex, leading to orthostatic intolerance and exercise intolerance.
Elderly patients with MetS and insulin resistance were found to have reduced baroreceptor
sensitivity, suggesting a cardiovascular autonomic imbalance [119]. As Zanoli et al. [120]
pointed out, clarifying the role of the neural baroreflex pathway is important in subjects with
MetS likely because blood pressure, vascular pathologies, or neuropathy seen in diabetes
can have different effects on baroreflex function. Keeping in mind that these pathologies
and risk factors are core in the diagnosis of MetS. Furthermore, Zanoli et al. [120] found
that baroreflex function is reduced in patients with MetS and this coincided with higher
blood pressures, especially as more components of MetS are present.

These changes in baroreflex function inform us that autonomic reflex dysregulation
takes place alongside metabolic derangements. It is also clear that the interactions are
complex and could be bidirectional. However, it is difficult to elucidate the order of
these events. For example, does MetS arise because some individuals are predisposed to
autonomic dysregulation and increased sympathetic activity? This may not be completely
the case because it does not fully explain obesity, elevated blood sugars, high triglyceride
levels, etc., all of which are evaluated when making the diagnosis of MetS. Adding exercise
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to the equation is necessary for the discussion as it is one of the key components in the
clinical battle of MetS, along with a healthy diet and lifestyle. As mentioned, there is
already evidence of baroreflex alterations in patients with MetS. In addition, a large study
by Sharman et al. [54] noted the association between exaggerated exercise responses in
patients with impaired carotid baroreflex sensitivity. While the population in the study did
not have MetS, the interaction between the baroreceptor reflex, blood pressure, and exercise
reminds us that the individual components of MetS ought not to be studied in isolation.

With alterations to autonomic reflexes in MetS, it is unsurprising that exercise capacity
may be compromised. Aside from the physical limitations of exercise in obesity, augmented
reflex-mediated increases in sympathetic activity can also limit exercise tolerance. With
muscle metaboreflex activation sympathetic tone is raised to the periphery which includes
the active muscle from which the reflex originated [62,121]. This creates a positive feedback
amplification of sympathetic activity which is even greater in pathophysiological states
when baroreflex function is depressed, such as in heart failure [122,123]. Reflex vasocon-
striction within the active skeletal muscle would lower oxygen delivery, causing further
metaboreflex afferent activation which can increase the sensation of fatigue [124–128].
These findings could explain exercise limitations in patients with obesity and MetS, al-
though further investigation is required to account for the role of other risk factors that
comprise the syndrome. For example, muscle metaboreflex activation in patients with type
2 diabetes was shown to result in an exaggerated vasoconstriction [95]. Thus, the pressor
response in these patients relied less on cardiac output and more on vasoconstriction and
this could also include enhanced vasoconstriction of the active skeletal muscle. While
these studies are important in furthering our understanding of the subject, they study only
fragments of MetS. It is critical to examine how MetS affects autonomic reflexes, both with
and without exercise.

9. Metabolic Syndrome Known vs. Unknown Syndrome Component Interactions and
Autonomic Function

The two primary models evaluating autonomic function in MetS are human and rat
models wherein the former is comprised of multiple variations of MetS components and
the latter typically is comprised of four or five of the components of MetS that typically
include hypertension. One of the major issues regarding both primary models is the lack of
study of the development of components of MetS as each component itself likely plays a
role in enhancing or altering autonomic function.

In humans, MetS is a diverse array of components that compromise the syndrome as
a whole, and within each collection of components, there are autonomic alterations that
arise that are not always uniform. For instance, prior to the development of frank MetS,
an autonomic function may be perturbed by obesity, and then the addition of hyperten-
sion enhances autonomic dysfunction [4,55,110,129]. Conversely, although hypertension
and obesity have both been implicated in autonomic imbalance, studies assessing all
of the components of MetS show that they correlate with reduced heart rate variability
(HRV) [130], and further, that the highest interaction was between alterations in HRV and
plasma glucose levels, suggesting that glucose control has the largest effector of HRV, or
that a secondary factor mediates this relationship by exerting significant influences on both
factors [131]. Like the previous HRV studies, most multi-component assessments of MetS
populations have found that individuals with more existing components of MetS have
greater impairment in autonomic function [50,132–135].

The studies cited above, including the HRV studies, have not classified the phenotypes
of MetS, rather they classified subjects based on the number of existing components of
MetS or evaluated subjects based on singular components with a given autonomic variable.
Few models have taken the approach of examining the changes in different phenotypic
expressions of MetS, or how within one subject a combination of components influences
overall autonomic function. One recent study sought to evaluate individual component’s
contributions to autonomic dysfunction as well as evaluate the phenotype in MetS during
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exercise and found that the autonomic alterations during exercise could not be explained
primarily by any of the three components observed in their phenotypic population [117],
thus suggesting it is the amalgamation of components in total as well as potentially other
factors that contribute to altered autonomic activity in MetS. Thus, even within studies look-
ing at the severity of the syndrome itself relative to changes in autonomic function across
conditions, there are limitations in identifying which aspect of a given MetS phenotype
contributes the most to autonomic imbalance.

Overall, the current greatest limitation to determining the primary effector or effectors
of changes in parasympathetic and sympathetic activity at rest and during exercise in MetS
is the lack of the ability to assess component interactions within the syndrome itself, as well
as a current lack of models that evaluate the development of MetS. However, this is not
to say that these associations are impossible to determine. Study design regarding MetS
observations can be adjusted to enable the assessment of components as they arise or to be
able to compare different phenotypic expressions of MetS components and relate changes
in autonomic function across these different phenotypic groups.

10. Conclusions and Future Directions

Most studies using animal models of MetS did so by isolating select MetS components.
However, the complexity of the syndrome and the involvement of many factors suggests a
possible common underlying pathogenesis that can better explain why the presentation
and etiology of MetS varies in humans. Furthermore, individual factors may interact in
complex fashions which may mask individual effects especially when these pathologies
develop with different time courses [136]. The diagnostic criteria of MetS are multifactorial,
yet not every patient with MetS has the same combination which further complicates
understanding of the consequence of MetS. The variation, even among individual risk
factors, makes it difficult to elucidate the pathophysiology of this syndrome, as we lack
an in-depth understanding of how these individual risk factors interact with each other as
well as together as a whole. Further studies designed to elucidate these interactions are
likely critical to determining mechanistic treatments for the syndrome.

Exercise is a significant and under-evaluated part of the equation. Exercise is known
to have numerous health benefits on cardiovascular health and metabolic well-being.
However, exercise itself can lead to exaggerated sympathetic activation when performed
in various disease states. Thus, exercise prescriptions should be tailored to maximize the
benefits while minimizing the risks. The diagnostic criteria of MetS include risk factors that
are measurable and are present and, in many cases, can be prevented. Further studies in
patients at risk for, already developing, or already diagnosed with MetS at rest and during
exercise are crucial to the development of therapeutic interventions.
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