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Abstract: The advent of artificial intelligence (AI) in medicine has transformed various medical
specialties, including orthodontics. AI has shown promising results in enhancing the accuracy
of diagnoses, treatment planning, and predicting treatment outcomes. Its usage in orthodontic
practices worldwide has increased with the availability of various AI applications and tools. This
review explores the principles of AI, its applications in orthodontics, and its implementation in
clinical practice. A comprehensive literature review was conducted, focusing on AI applications
in dental diagnostics, cephalometric evaluation, skeletal age determination, temporomandibular
joint (TMJ) evaluation, decision making, and patient telemonitoring. Due to study heterogeneity, no
meta-analysis was possible. AI has demonstrated high efficacy in all these areas, but variations in
performance and the need for manual supervision suggest caution in clinical settings. The complexity
and unpredictability of AI algorithms call for cautious implementation and regular manual validation.
Continuous AI learning, proper governance, and addressing privacy and ethical concerns are crucial
for successful integration into orthodontic practice.

Keywords: orthodontics; artificial intelligence; deep learning; cephalometric analysis; radiology;
CBCT; skeletal age; treatment planning

1. Introduction

Artificial intelligence (AI), a term first introduced in 1955 by John McCarthy, describes
the ability of machines to perform tasks that are classified as intelligent [1]. During these
70 years, there have been cycles of significant optimism associated with the development of
AI, alternating with periods of failure, reductions in research funding, and pessimism [2].
The 2015 victory of AlphaGo, a Google-developed AI application, over the “GO” world
champion represented a breakthrough [2]. This AI success over a human player sparked
further development and interest, which was raised by the introduction of the Chat-GPT
in 2022. These events served as precursors to the remarkable growth of AI applications in
various fields, including everyday life and medicine [2].

AI algorithms have already proven effective in various medical specialties, surpassing
the capabilities of experienced clinicians [3–7]. These algorithms enable the analysis,
organization, visualization, and classification of healthcare data. The development of AI
algorithms in medicine has gained momentum in recent years, particularly in radiology,
where medical imaging accounts for approximately 85% of FDA-approved AI programs
(data for 2023) [8].
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In the field of diagnostic imaging, AI can be categorized into three main domains:
operational AI, which enhances healthcare delivery; diagnostic AI, which aids in the in-
terpretation of clinical images; and predictive AI, which forecasts future outcomes [9].
Currently, the primary goals of AI in diagnostic imaging are to detect and segment struc-
tures and classify pathologies [10]. AI tools can analyze images obtained from various
imaging modalities, ranging from X-ray to MRI [11–15].

Orthodontics, with its emphasis on cephalometric analysis and pretreatment imaging,
is particularly well suited for the implementation of AI. However, AI is also being utilized
in orthodontics for applications beyond cephalometric analysis. The literature on the use of
AI in orthodontics can be divided into five main areas: diagnosis and treatment planning,
automated landmark detection and cephalometric analysis, assessment of growth and
development, treatment outcome evaluation, and miscellaneous applications [16].

The number of AI companies in the healthcare industry has experienced a remarkable
increase, indicating significant growth in commercial prospects for AI [9]. AI tools are
no longer limited to researchers and scientists involved in research and development
projects. They are now accessible through commercially available web-based products
as well. In orthodontics, the adoption of AI has led to the creation of various AI-based
programs, such as WeDoCeph (Audax, Ljubljana, Slovenia), WebCeph (Assemble Circle,
Seoul, Republic of Korea), and CephX (ORCA Dental AI, Las Vegas, NV, USA). These
systems can automatically identify cephalometric landmarks, compute angles and distances,
and generate cephalometric reports with significant findings. AI programs are now easily
accessible on mobile devices, making AI tools widely available and promoting equal access
for all interested users. As a result, orthodontic practices and scientific researchers utilizing
AI applications have notably increased. However, this accessibility has also sparked
concerns about patient safety, especially when AI is used for diagnosis and treatment.

The main objectives of this article are as follows: elucidate the principles of AI, outline
its applications in the diagnostic process of modern orthodontic practices, and discuss the
concerns associated with the implementation of AI algorithms in clinical practice.

2. Materials and Methods
2.1. Search Strategy

To conduct this review, literature searches for free text and MeSH terms were per-
formed using several search engines: Medline (PubMed), Web of Science, Scopus, and
Google Scholar. The search engines were used to find studies that focused on the appli-
cation of AI in orthodontics. The last search date was 20 December 2023. For Google
Scholar, the search was restricted to the first 100 most relevant articles published over
the last 10 years. The search was preceded by a presearch to find the best search terms.
The keywords used in the search strategy were as follows: “artificial intelligence”, “or-
thodontics”, “deep learning”, “neural networks”, “automatic detection”, “automated”,
“caries”, “periapical lesion”, “periapical lucency”, “CBCT”, “vertebral maturation”, “skele-
tal age assessment”, “temporomandibular joint”, “temporomandibular joint disorders”,
“osteoarthritis”, “extraction decision making”, and “cephalometric landmarks identifi-
cation”. The cited articles explored the subject of AI applications in orthodontics and
dentistry: dental diagnostics, cephalometric analysis, TMJ evaluation, determination of
skeletal age, and treatment planning.

2.2. Eligibility Criteria

The following inclusion criteria were employed for this review: (1) a randomized
clinical trial (RCT), (2) a cohort study, (3) a case–control study, (4) articles published in the
last 10 years, and (5) articles published in English.

The following exclusion criteria were applied: (1) case reports; (2) abstracts and author
debates or editorials; and (3) papers not related to practical implementations of AI programs
in dentistry, particularly in orthodontics.
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2.3. Data Extraction

Titles and abstracts were independently selected by two authors (NK and WK) follow-
ing the inclusion criteria. The full text of each identified article was then analyzed to verify
whether the article was suitable for inclusion. Whenever disagreement occurred, it was
resolved by discussion with the third author (JJO). The authorship, year of publication, type
of each eligible study, and relevance of the study for the application of AI in orthodontics
were extracted by one author (NK) and examined by another author (WK).

3. Results and Discussion

There were 509 potential articles identified. After the removal of 183 duplicates,
226 titles and abstracts were assessed. Then, 89 papers were excluded because they did
not meet the inclusion criteria and were not related to the topic of this review. All the
remaining 139 papers were retrieved and analyzed to conduct this review.

3.1. AI Categories

AI can be classified into two main categories: symbolic AI and machine learning
(ML) [17]. Symbolic AI involves structuring an algorithm in a way that is easily under-
standable to humans. This approach, known as Good Old-Fashioned AI (GOFAI), was
dominant in AI research until the late 1980s. Symbolic AI is still useful when problems have
limited outcomes, computational power is limited, or human interpretability is important.
However, in healthcare, the efficiency of the GOFAI is low due to the complexity of the
problems, multiple variables, and limited sets of rules [18]. Therefore, advancements in
technology and computer sciences have led to the emergence of more powerful iterations
of AI that are replacing the GOFAI in medical applications. Figure 1 provides a schematic
representation of AI.
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3.1.1. Machine Learning

Machine learning (ML) is the predominant paradigm in the field of AI. Coined by
Arthur Samuel in 1952, ML differs from symbolic AI because it relies on models learned
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from examples rather than predefined rules set by humans [19]. By utilizing statistical
and probabilistic techniques, machines can enhance their performance by learning from
previous models and adapting their actions when new data are introduced. This can
involve making predictions, identifying new patterns, or classifying new data.

ML methods can be categorized into three types based on the learning approach and
desired outcome. The first type is supervised learning, which is used for classification
or prediction tasks where the outcome is already known. In this case, the algorithm
learns from a labeled dataset and generalizes its knowledge to make accurate predictions
with respect to unseen data. The second type is unsupervised learning, which aims to
discover hidden patterns and structures in data without any prior knowledge of the
outcome. This type of learning is useful for tasks such as clustering and anomaly detection.
Finally, reinforcement learning involves a machine in the development of an algorithm
that maximizes a predefined reward based on previous versions of the machine. This type
of learning is often used in scenarios where an agent interacts with an environment and
learns through trial and error [20].

3.1.2. Deep Learning

Deep learning (DL) is a subset of ML that involves machines independently comput-
ing specific characteristics of an input. DL builds upon artificial neural networks (ANNs)
developed in the 1990s. Recent advancements in computational technology have allowed
researchers to construct more complex neural networks, referred to as “deeper” networks,
to handle increasingly challenging tasks. In the field of medical imaging, DL algorithms
predominantly utilize convolutional neural networks (CNNs) with high diagnostic accu-
racy [21–23].

DL differs from traditional ML methods because it enables machines to automatically
extract relevant features from input data. Unlike traditional ML, DL models do not rely on
human engineers to manually point these features. DL algorithms can learn and identify
patterns directly from raw data, eliminating the need for time-consuming feature identi-
fication and extraction [23]. This capability has proven particularly valuable in imaging,
where DL tools have shown superior diagnostic accuracy compared to experienced read-
ers [21,24,25]. However, DL is not limited to image analysis tasks. It has shown promise in
various other applications, such as medical disease diagnosis and personalized treatment
recommendation [26–29].

3.2. AI Applications in Orthodontics
3.2.1. Dental Diagnostics

The use of medical imaging methods is essential in dental patient care because they
aid in the clinical diagnosis of pathologies related to teeth and their surrounding structu-
res [30–32]. Radiological methods, such as orthopantomograms (OPGs) and cone-beam
computed tomography (CBCT), play crucial roles in orthodontic diagnosis, treatment
planning, and monitoring [33–35]. However, with the increasing number of radiological
examinations being performed [36], there is a need for a comprehensive tool to support the
process of radiological diagnosis. In response to this demand, multimodular diagnostic
systems based on AI have emerged.

One such AI-based system, developed by Diagnocat Ltd. (San Francisco, CA, USA),
utilizes CNNs and provides precise and comprehensive dental diagnostics. The system
enables tooth segmentation and enumeration, oral pathology diagnosis (including pe-
riapical lesions and caries), and volumetric assessment. Several scientific papers have
validated the diagnostic performance of this program, demonstrating its high efficacy and
accuracy [37–41]. A study by Orhan et al. [37] reported that the AI system achieved 92.8%
accuracy in the detection of periapical lesions in CBCT images and showed no statistically
significant difference in volumetric measurements compared to manual methods. Similarly,
a study evaluating the diagnostic accuracy of the program for periapical lesion detection on
periapical radiographs (PRs) yielded comparable results [38]. However, conflicting results
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have also been reported, particularly regarding the accuracy of AI in the assessment of
periapical lesions in OPGs [42].

In a recent study by Ezhov (2021) [43], the overall diagnostic performance of two
groups, one aided by AI and the other unaided, was compared in oral CBCT evaluation.
The AI system used in this study included modules for tooth and jaw segmentation, tooth
localization and enumeration, periodontitis, caries, and periapical lesion detection. The
results showed that the AI system significantly improved the diagnostic capabilities of
dentists, with higher sensitivity and specificity values observed in the AI-aided group than
in the unaided group (sensitivity: 0.8537 vs. 0.7672; specificity: 0.9672 vs. 0.9616).

Several systematic reviews and meta-analyses have been conducted on the utilization
of AI for identifying caries and periapical lucencies [44–55]. In a recent comprehensive study
by Rahimi [54], the accuracy of classification models for caries detection was evaluated
across 48 studies. The reported diagnostic accuracy varied significantly based on the
imaging modality, ranging from 68% to 99.2%. The diagnostic odds ratio, which indicates
the effectiveness of the test, also varied greatly from 2.27 to 32,767 across studies. The
study concluded that deep learning models show promise for caries detection and may aid
clinical workflows. One of the earliest meta-analyses conducted in 2019 on the computer-
aided detection of radiolucent lesions in the maxillofacial region [46] yielded a pooled
accuracy estimate of 88.75% (95% CI = 85.19–92.30); however, only four studies were
included. A more recent meta-analysis by Sadr [52] included 18 studies and revealed
that the pooled sensitivity and specificity were 0.925 (95% CI, 0.862–0.960) and 0.852 (95%
CI, 0.810–0.885), respectively. The authors concluded that deep learning showed highly
accurate results in detecting periapical radiolucent lesions in dental radiographs. These
findings suggest that multimodal AI programs may serve as first-line diagnostic aids and
decision support systems, improving patient care at multiple levels. Figure 2 shows a
sample of the Diagnocat report.
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as well as changes in the remaining teeth, primarily consisting of attrition and the presence of dental
fillings. The program has recommended further consultations as necessary.
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3.2.2. Cephalometric Analysis

Cephalometric analysis (CA) is an important diagnostic tool in orthodontics that
has been in use since 1931 [56]. Over the years, advancements in technology have rev-
olutionized CA by replacing manual assessments with digital software. This approach
simplifies the measurement process and provides an automatic display of the analysis
results. Automated CA has been shown to be more stable and repeatable than manual
analyses, which rely heavily on operator-dependent landmark identification and often
exhibit significant variability [57–60]. Accurate and repeatable landmark identification is
crucial for reliable CA outcomes. Several studies have demonstrated the effectiveness of AI
in identifying cephalometric landmarks. Although lateral radiography remains the most
commonly used method in CA, recent AI advancements have sparked renewed interest in
the use of cone-beam computed tomography (CBCT) [61].

The effectiveness of AI in identifying cephalometric landmarks has been studied since
1998 [62]. Numerous studies have used various automated methods and have consistently
achieved high accuracy in landmark identification [59,60,63–72]. A recent study by Hwang
et al. (2020) [60] concluded that automated cephalometric landmark identification can
be as reliable as an experienced human reader. Similarly, Kim et al. [65], Lee et al. [71],
and Dobratulin et al. [63] achieved landmark definition accuracies between 88% and 92%
using AI. These authors also found that, compared with manual methods, AI methods
demonstrated greater accuracy in landmark identification and reduced the time and human
labor required. In other studies conducted by Hwang et al. [59] and Yu et al. [70], the authors
found no statistically significant differences between the results of automated cephalometric
analysis and those calculated via manually identified landmarks. Additionally, AI has been
shown to significantly improve the workflow of practices, reducing analysis time by up to
80 times compared to manual analysis [72]. Figure 3 shows the definitions of the sampled
cephalometric landmarks.
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WebCeph (B) on an 18-year-old male. The results of Downs cephalometric analysis superimposed on
tracings (B). Measurements outside the standard range marked in red and with asterix *.

The utilization of CBCT in CA was first reported in the 2000s [73], but its use has
remained limited due to inefficiency and time constraints. However, recent advancements
in AI have revived interest in CBCT-based CA. Several studies [74–81] have shown that AI
techniques are accurate and efficient for automatically identifying and analyzing landmarks,
surpassing manual approaches. Kim et al. [80] found that the repeatability of artificial
neural networks was higher than achieved by human reades, while Muraev et al. [81]
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reported that artificial neural networks (ANNs) performed as well as or better than inexpe-
rienced readers in identifying landmarks. However, Bao et al. (2023) [82] recently revealed
that manual tracing is still necessary to increase the accuracy of automated AI analysis,
indicating the importance of manual supervision.

Meta-analyses have generally shown high accuracy in identifying cephalometric
landmarks [83–89]. However, the results are strongly dependent on predefined thresholds,
with lower accuracies reported at a 2 mm threshold [83,85,88]. Serafin et al. [89] conducted
a study in 2023 and reported a mean difference of 2.44 mm between three-dimensional (3D)
automated and manual landmarking. A meta-regression analysis indicated a significant
association between publication year and mean error, suggesting that recent advances in
deep learning (DL) algorithms have significantly improved landmark annotation accuracy.
Overall, AI tools have shown promising results in automated cephalometric analyses, but
caution is advised due to potential biases in evaluated studies [83–85,87].

3.2.3. Determination of Skeletal Age

Growth and maturation play crucial roles in orthodontics because they directly im-
pact the effectiveness of orthodontic treatments, which are often timed to coincide with
periods of rapid growth and developmental changes in facial structure. Previous studies
have demonstrated that tailoring treatments to align with the patient’s growth phases
can enhance treatment outcomes [90,91]. Additionally, some studies suggest that dental
maturation is linked to the patient’s skeletal class [92]. Accurately assessing the rate of
growth and stage of facial development is crucial in orthodontic treatment to achieve long-
term results and minimize post-treatment changes caused by ongoing facial growth [93].
However, growth dynamics during adolescence differ greatly among individuals, making
it insufficient to rely solely on chronological age for estimating the amount of remaining
growth [94,95].

Skeletal age, which can be assessed using cervical vertebral maturation (CVM) or wrist
X-rays, is a more suitable parameter for evaluating individual growth [90,96–99]. While
wrist X-rays are contraindicated in standard diagnostic orthodontic routines, the CVM
can be assessed using lateral cephalometric X-rays [33]. In recent years, there has been a
growing body of scientific evidence supporting the diagnostic accuracy and effectiveness
of AI in assessing skeletal age based on both wrist X-rays and CVM [100–105]. Despite
the proven diagnostic accuracy of AI in skeletal age assessment, particularly with wrist
X-rays and even index finger X-rays, concerns remain regarding the accuracy of CVM-based
models [106,107]. Studies on this topic have yielded varied results, with agreement rates
with human observers ranging from 58% to more than 90% [107–112]. Seo et al. (2021)
reported that CNN-based models achieved more than 90% accuracy in CVM assessments,
suggesting that automatic diagnosis using lateral cephalometric radiographs can accurately
determine skeletal maturity [109]. However, exercise caution is important when evaluating
the results of AI in CVM assessments. Other studies have reported notable discrepancies,
particularly during crucial orthodontic treatment stages around the growth peak, when
accuracy tends to decrease [95,110].

Caution is advised when interpreting AI-assisted CVM assessment studies due to the
limited number of expert readers used to establish the gold standard for evaluation. Errors
made by these readers may have influenced the study results and subsequently impacted
the performance of the AI algorithm [104]. The lack of scientific evidence in meta-analyses
highlights the need for a broader examination of the role of AI in CMR. A recent systematic
review by The Angle Orthodontist reported that the model accuracy for test data ranged
from 50% to more than 90%. The authors emphasized the importance of conducting new
studies to develop robust models and reference standards that can be applied to external
datasets. While these findings are encouraging, we anticipate that future advancements in
AI technology will enhance the diagnostic accuracy of CMR tools, potentially making them
comparable to wrist X-ray assessments for skeletal maturity.
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3.2.4. TMJ Evaluation

Osteoarthritis (OA) is a condition that affects joints and is characterized by the gradual
deterioration of joint cartilage, bone remodeling, and the formation of osteoproliferative
bodies [113]. Temporomandibular joint osteoarthritis (TMJOA) is a specific type of tem-
poromandibular disorder that can cause significant joint pain, dysfunction, and dental
malocclusion and a decrease in overall quality of life [113]. The examination of TMJ func-
tion and morphology is crucial in orthodontic and dental treatments [114]. TMJOA is one
of the causes of malocclusion and facial asymmetry [115,116]. Radiographic examination,
such as OPG/CBCT, confirms the presence of TMJOA by revealing bony changes [117],
while MRI is the preferred modality for evaluating joint discs [114].

Recent studies have demonstrated the high diagnostic performance of AI in detecting
and staging TMJOA [117–121]. These studies have shown the potential for automated,
detailed assessment of joint morphology using various imaging techniques, including
OPG, CBCT, and MRI. Therefore, the authors anticipate that the use of AI systems for TMJ
diagnostic imaging will contribute to future research on early detection and personalized
treatments for OA.

The few reviews and meta-analyses conducted on this topic showed the overall
moderate-to-good accuracy of the tested models in TMJOA detection [122–126]. The
2023 study by Almasan [123] showed that the pooled sensitivity and specificity of AI in
panoramic radiograph TMJOA detection accounted for 0.76 (95% CI 0.35–0.95) and 0.79
(95% CI 0.75–0.83), respectively. Similar results related to this topic were reported by
Xu [126], who reported a pooled sensitivity, specificity, and area under the curve (AUC) of
80%, 90%, and 92%, respectively. A more comprehensive study carried out by Jha et al. [125]
analyzed 17 articles for the automated diagnosis of masticatory muscle disorders, TMJ
osteoarthrosis, internal derangement, and disc perforation. The results of the meta-analysis
showed the high diagnostic accuracy of the tested AI models, with accuracy and specificity
ranging from 84% to 99.9% and 73% to 100%, respectively.

3.2.5. Extraction Decision Making

One of the most challenging issues during orthodontic treatment is deciding whether
extraction is mandatory in a particular case. A variety of factors associated with the identi-
fied orthodontic defect, patient preferences, expected outcomes, sociocultural factors, and
the professional position of the orthodontist influence the patient’s attitude toward the
proposed orthodontic extraction therapy [127–129]. On the other hand, decisions related
to extractions are influenced by the experience, training, and philosophy of the orthodon-
tist [130–133]. All these factors render the extraction decision during orthodontic treatment
very challenging, even for an experienced practitioner. Furthermore, conclusions regard-
ing the treatment undertaken can greatly vary among experts, especially in borderline
cases [134–137].

Several AI tools have been introduced in recent years to support therapeutic deci-
sion making in orthodontics [94,138,139]. Initial studies on extraction decision aids have
shown promising results, with AI algorithms achieving over 80% agreement with expert
decisions [140–144]. Xie’s study (2010) [144] revealed an 80% concurrence in extraction
decisions between AI and experts, although only 20 cases were analyzed. Jung and King
evaluated an ANN system [142], which achieved a 93% success rate in diagnosing extrac-
tion versus nonextraction cases based on 12 cephalometric variables and an 84% success
rate for the detailed diagnosis of specific extraction patterns.

Similar results were achieved by Li et al. (2019) [143], who reported a 94% accuracy
for extraction versus nonextraction predictions, 84.2% for extraction patterns, and 92.8%
for anchorage patterns. These studies identified several features that are important in
predicting treatment efficacy, such as crowding of the upper arch, position of anterior teeth,
lower incisor inclination, overjet, overbite, and capability for lip closure. However, it is
important to note that these studies have significant limitations that may introduce bias.
For instance, the AI systems were trained using examples provided by a limited number of
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experts, which may reflect the treatment philosophies of those experts without considering
the validity of those approaches. Additionally, important dental findings, such as large
dental fillings, periapical lesions, periodontal damage, previous endodontic treatment, and
missing teeth, were not considered [129,141–144].

Given these limitations, it is important to acknowledge that making a definitive de-
cision on whether to proceed with orthodontic extraction therapy is often challenging,
especially in borderline cases. Clinicians need to carefully evaluate the advantages and
disadvantages of each treatment approach and consider the overall clinical situation. Ad-
ditionally, the use of extraction decision-making tools in clinical practice carries the risk
of being influenced by a specific treatment philosophy, which could impact patient care.
Practitioners should strive to develop individualized treatment plans for their patients and
not be influenced by rigid treatment “philosophies” [128].

3.2.6. Orthognathic Surgery Decision Making and Planning

Despite significant developments in orthodontics and surgery, there is a lack of clearly
established criteria for qualifying patients for surgical procedures. This issue becomes
particularly problematic in borderline cases, where the orthodontist faces the decision
of whether to refer the patient for surgical treatment or camouflage treatment [145,146].
The primary issue that determines the further fate of a patient is the identification of
patients who benefit from orthognathic surgery. The diagnosis of a surgical case is usually
confirmed via lateral cephalograms, which are the primary method for assessing sagittal
skeletal deformities. The effectiveness of both the AI and ML algorithms has already been
proven to identify orthognathic surgery diagnoses with over 90% accuracy [117,147–150].
One interesting study carried out by Jeong et al. [151] evaluated soft tissue profiles based
on facial photographs. The evaluated CNN yielded 89% accuracy in correctly classifying
surgical cases [151].

There is a limited yet promising body of literature that assesses the performance of
AI in orthognathic surgery treatment planning [140,152,153]. Knoops et al. conducted a
study in which they applied a 3D morphable model (3DMM) to automatically diagnose
patients, categorize their risk levels, and generate simulations for orthognathic surgery
treatment plans [153]. This approach achieved a sensitivity of 95.5% and a specificity of
95.2%, with an average accuracy of 1.1 ± 0.3 mm. Additionally, the positive and negative
predictive values were 87.5% and 98.3%, respectively [153]. Chung et al. proposed a
technique for the automatic alignment of CBCT images with optically scanned models
using a DeepPose regression neural network [152]. This method surpassed the accuracy of
previously top-performing techniques by 33.09% [152]. In a previously mentioned study by
Choi et al., a model accurately predicted the need for surgery and provided an extraction
plan for surgical patients, achieving an accuracy ranging from 88% to 97% [140].

However, it is important to mention that the research discussed above is subject to the
same limitations mentioned in the chapter on extraction decision making. These limitations
stem from the lack of strict guidelines, which results in a heavy reliance on expert decisions
and opinions. A systematic review conducted by Smith et al. [154] further supports this
notion by indicating that the results of current studies cannot be easily generalized due to
their significant heterogeneity. The authors carefully concluded that AI might be a useful
tool in planning orthognathic surgery. However, additional studies are needed.

It is worth noting that the abovementioned research shares the same limitations as
those discussed in the extraction decision-making chapter, primarily due to the absence
of clear guidelines. This leads to a heavy dependence on expert decisions and opinions.
A systematic review by Smith et al. [154] further highlighted the significant heterogeneity
among current studies and the difficulty in generalizing their results. The authors cautiously
concluded that AI could be a valuable tool in orthognathic surgery planning, but further
research is necessary.
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3.2.7. Treatment Outcome Prediction

Orthodontists face the challenge of selecting the most appropriate treatment strategy
for each patient based on their individual expectations, socioeconomic conditions, cul-
tural background, and skills. However, procedures such as extractions and orthognathic
surgeries are irreversible and can result in permanent patient dissatisfaction. Therefore,
accurately predicting treatment outcomes is crucial for both practitioners and patients.
Fortunately, a growing body of literature demonstrates the effectiveness of AI in predicting
orthodontic and orthognathic treatment outcomes [155–163].

The model proposed by Park et al. [161] achieved high accuracy in predicting treatment
outcomes for Class II patients, with a mean error of 1.79 ± 1.77 mm. In a recent study by
Tanikawa et al. [163], a DL model was used to predict the 3D outcomes of orthodontic and
orthognathic treatment in Japanese patients, resulting in mean errors of 0.69 ± 0.28 mm and
0.94 ± 0.43 mm for the orthodontic and surgical patient groups, respectively. Similarly, Park
et al. [160] evaluated a DL algorithm that accurately predicted treatment outcomes in terms
of 3D facial changes, with a mean prediction error of 1.2 ± 1.01 mm. Other studies have also
achieved high accuracies in predicting facial symmetry in orthognathic patients [156,158]
and 3D facial soft tissue changes in cleft patients after orthognathic surgery [164].

In addition to treatment outcomes, AI has also been used to predict patients’ experi-
ences during clear aligner treatment. Xu et al. [159] developed a system that achieved close
to 90% prediction accuracy in predicting patients’ pain, anxiety, and quality of life. This
study highlights the importance of considering patient experience and shifting the focus
from solely cosmetic or functional outcomes.

A recent scoping review [165] revealed that AI models are not only efficient but
also outperform conventional methods in orthognathic treatment planning and outcome
prediction. This review highlighted the reliability and reproducibility of these models,
suggesting their potential to improve clinical outcomes, especially for less experienced
practitioners. However, a recent meta-analysis [166] emphasized the need for caution and
restraint when adopting AI advancements in orthodontics.

3.2.8. Patient Monitoring

The COVID-19 pandemic has brought attention to the importance of social distancing,
remote work, and telemedicine [167]. Orthodontic treatment typically lasts approximately
20 months [168] and requires regular progress monitoring and potential complications.
Traditional methods of monitoring can be time-consuming and repetitive. However, recent
advancements in orthodontics, such as self-ligating systems and aligners, along with
the implementation of telemedicine, have led to the development of dental monitoring
(DM) [169].

The DM system consists of three integrated platforms: a mobile app for patients, a
web-based Doctor Dashboard®, and a movement-tracking algorithm that analyzes pictures
taken by the patient. The goal of DM is to reduce in-office visits, detect aligner incidents and
misfitting, and personalize treatment for each patient [170]. Several studies have already
demonstrated the value of DM in orthodontic treatment, including reducing chairside time,
improving patient compliance [171,172], early detection of orthodontic emergencies [173],
reducing orthodontic relapse [174], remote monitoring of aligner fit [169,174,175], and
improving oral hygiene status [176]. Interestingly, Homsi et al. [177] reported that digi-
tally reconstructed models obtained remotely were as accurate as those obtained through
intraoral scans.

However, the implementation of AI in remote care for orthodontic patients is still
an underexplored topic with limited evidence. A recent systematic review [178] showed
that DM showed promise in improving aligner fit and reducing the number of in-office
visits during ongoing orthodontic therapy. These findings emphasize the need for further
research in this area.
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3.3. Implementation Considerations

While the potential of AI to improve patient management in orthodontics is vast, its
impact has been proven in only a limited number of cases. Most of the literature on this
subject consists of retrospective studies without support from large randomized controlled
trials. However, we might expect such studies in the coming years due to the exciting
nature of this topic and the increasing supply of AI solutions. Financial investments and
the number of introduced AI technologies are rapidly growing; in 2022, there were 69 new
FDA-approved products associated with USD 4.8 billion in funding. By 2035, product-year
funding is projected to reach USD 30.8 billion, resulting in 350 new AI products [8].

Despite many optimistic studies demonstrating the high performance of AI algorithms
in a variety of tasks, the further incorporation of AI algorithms into everyday clinical
practice remains a matter for the future. Most of the aforementioned programs were
introduced within the past 2–3 years. On average, 17 years are required for medical
innovations to be implemented in clinical practice [179,180]. The process of implementing
AI in workflows and clinical practice requires meeting a number of requirements to ensure
sufficient clinical quality and patient safety. As indicated by Pianykh [9], there are still
important issues to overcome. The first issue is the lack of reproducibility. AI models are
typically developed using limited and specific datasets, which makes it challenging for
them to perform well on a wide range of data. The second issue is the lack of adaptivity.
Existing AI models are not designed to constantly adjust to changes in their environment.
The third issue is the absence of robust quality control mechanisms for AI, which increases
susceptibility to data errors, outliers, and sudden shifts in trends. Finally, there is a lack of
integration between AI algorithms and workflows, which prevents them from effectively
adapting to changes in the data environment. To address these issues, continuous learning
AI needs to be developed. This approach enables the AI tool to adapt continuously to
changes in the data [9]. With continuous learning, AI algorithms can make live adjustments,
preventing performance deterioration over time. Like in any technology used in medicine,
there is a need for a sufficient AI governance process to maintain the quality of results and
ensure patient safety [181,182]. The need for continuous evaluation of algorithm quality
should be kept in mind to prevent degradation in performance and to allow appropriate
early intervention. Moreover, privacy issues, safety concerns, and health inequities (such
as AI algorithms that exacerbate racial or income disparities) are a few more general issues
related to the application of AI in medicine, and they have recently been highlighted in
The Lancet [183]. While a wide range of AI products are available, scientific evidence
regarding their validation and effectiveness in general medicine and specific fields such as
orthodontics remains limited [184].

Despite the availability of a wide range of products, there is still limited scientific
evidence regarding the validation and effectiveness of AI products in general medicine and
narrow fields such as orthodontics [184]. Despite the generally optimistic results of various
AI tools, the issues highlighted above underscore the necessity of exercising considerable
caution when introducing AI into daily practice.

4. Conclusions

Undoubtedly, AI has the potential to revolutionize medicine, particularly in the field of
diagnostic imaging, including orthodontics. The continuous advancement of AI algorithms
that support pretreatment diagnostic processes allows the visualization of outcomes and
facilitates decision making during treatment, placing orthodontics among the disciplines
benefiting the most from the introduction of AI technology. However, due to the high
complexity and associated unpredictability of AI, these tools should be treated with caution,
and their results should be regularly and manually validated.
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