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Abstract: The ketogenic diet (KD) is a high-fat, low-carbohydrate diet that mimics the physiological
state of fasting. The potential therapeutic effects in many chronic conditions have led to the gaining
popularity of the KD. The KD has been demonstrated to alleviate inflammation and oxidative stress,
modulate the gut microbiota community, and improve metabolic health markers. The modification
of these factors has been a potential therapeutic target in serious mental illness (SMI): bipolar
disorder, major depressive disorder, and schizophrenia. The number of clinical trials assessing the
effect of the KD on SMI is still limited. Preliminary research, predominantly case studies, suggests
potential therapeutic effects, including weight gain reduction, improved carbohydrate and lipid
metabolism, decrease in disease-related symptoms, increased energy and quality of life, and, in some
cases, changes in pharmacotherapy (reduction in number or dosage of medication). However, these
findings necessitate further investigation through larger-scale clinical trials. Initiation of the KD
should occur in a hospital setting and with strict care of a physician and dietitian due to potential
side effects of the diet and the possibility of exacerbating adverse effects of pharmacotherapy. An
increasing number of ongoing studies examining the KD’s effect on mental disorders highlights its
potential role in the adjunctive treatment of SMI.

Keywords: ketogenic diet; nutritional intervention; bipolar disorder; major depressive disorder;
schizophrenia; nutritional psychiatry; psychiatric disorders; mental health; serious mental illness

1. Introduction

The ketogenic diet (KD) is a high-fat, adequate-protein, and low-carbohydrate diet [1].
With the reduced intake of glucose, fat becomes an energy substrate, leading to increased
ketogenesis. Oxidation of fatty acids in the mitochondria produces large amounts of energy
with acetyl coenzyme A (acetyl-CoA) production. The efficiency of the Krebs cycle is re-
duced, and the production of mainly three ketone bodies is increased: acetoacetate, acetone,
and β-hydroxybutyrate [2,3]. Thus, following the KD leads to intensified production of
ketones, which become the main source of energy for the central nervous system [3] and
can provide up to 60–70% of the brain’s energy requirements [4,5]. The metabolic state
during the KD is described as “nutritional ketosis”. There are many modifications of KD [1].
The classic KD contains 80% fat, dominated by long-chain fatty acids, 15% protein, and 5%
carbohydrates [3]. The high-protein KD (Modified Atkins Diet: MAD), known as the Atkins
diet, is less restrictive than the traditional KD. The MAD contains 15% carbohydrates with
unlimited protein and fat, which makes compliance easier for the patient [3,6]. Meanwhile,
reducing long-chain fatty acids and increasing medium-chain fatty acids accelerates triglyc-
eride absorption. This increases the amount of produced ketone bodies per kilocalorie and
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improves mitochondrial metabolism [1,7,8]. The very low-calorie KD (VLCKD) limits daily
carbohydrate intake to 20–50 g or less than 10% of the macronutrients in a 2000 kcal per
day [9]. Another modification includes the use of low-glycemic-index products in a high-fat
diet [10,11]. In the cyclic KD (CKD), periods of the KD and the high-carbohydrate diet are
alternated [12]. A growing number of studies highlight the positive effects of the KD on
the composition of the gastrointestinal microbiome [13], mitochondrial activity [14–16],
neurotransmitter synthesis, and inhibition of neurodegenerative processes [17], as well as
modulating oxidative stress and inflammation [18–21]. At the same time, the increase in
the amount of ketone bodies contributes to the “sparing” of glucose. As a result, it can be
used to a greater extent in protective antioxidant or glycogenesis processes [22–24]. The
use of a KD can potentially improve the response to treatment and reduce the symptoms of
serious mental illness (SMI): bipolar disorder (BD) [15], schizophrenia (SZ) [25], and major
depressive disorder (MDD) [26]. More and more evidence highlights the importance of
nutrition in maintaining mental health. Many mechanisms engaged in the pathophysiology
of mental illness are affected and modulated by nutrition [27]. Based on these experiences,
nutritional psychiatry has been created [28]. Dietary patterns, nutrients, and food products
have potential positive effects on mental health outcomes, including the Mediterranean
diet; high intakes of vegetables, fruits, and other plant-based products; fermented foods;
unsaturated omega-3 fatty acids; vitamin D; zinc, folate, or probiotics; and many others [27].
Mechanisms such as brain glucose hypometabolism, increased oxidative stress and inflam-
mation, dysfunction in neurotransmitter synthesis, and mitochondrial metabolism have
been described in the pathogenesis of mental disorders [17,29]. The KD leads to improved
carbohydrate and lipid metabolism, which may inhibit the metabolic disturbances that
may occur with many antidepressants and antipsychotic medications [15,30]. In 2018, the
International Study Group established the KD as an effective nonpharmacologic intervention
for epilepsy. The study, published in 2024, suggests that for the protocols aimed at achieving
ketosis as a partial mechanism of therapeutic action, the phrase “ketogenic diet therapy”
should be used. There are many indications that the KD may become part of the treatment
for many conditions beyond neurological diseases [31]. Therefore, the aim of the study is
to determine the potential therapeutic effect of KD in SMI.

2. Materials and Methods

The studies included in the narrative review were selected from the PubMed, Google
Scholar, and Scopus databases from repository inception to 23 March 2024. To collect model
and human studies that evaluated the impact of the KD on MDD, BD, and SZ, the following
keywords were used: “ketogenic diet”, “ketosis”, “ketone bodies”, “low carbohydrate
diet”, “Atkins diet”, “LCHF”, “KLCHF”, “LC/KD”, “serious mental illness”, “psychiatric
diseases”, “schizophrenia”, “major depressive disorder”, and “bipolar disorder”. The study
selection was as follows: (1) clinical trials, meta-analyses, animal model research, and case
reports were included; (2) articles not written in English, conference abstracts only, review
articles, duplicated papers, or papers that do not relate to BP, MDD, or SZ were excluded.

3. Therapeutic Effect of the Ketogenic Diet in Schizophrenia
3.1. Etiopathogenesis and Potential Role of the Ketogenic Diet

Several mechanisms take place in the process of SZ that lead to impaired synaptic com-
munication. The frequent remodeling of synapses and neurons is very energy intensive,
while the brain’s main energy substrate is glucose. Glucose is converted into adenosine
triphosphate (ATP) through glycolysis in the cytoplasm, the tricarboxylic acid (TCA) cy-
cle, and oxidative phosphorylation in the mitochondria [32]. The greatest part of ATP
energy is needed to reverse ion movements that cause postsynaptic responses [33]. Glu-
cose metabolism produces glutamate and gamma-aminobutyric acid (GABA). Deficits in
glucose and synaptic energy supply can disrupt communication and cause abnormal brain
function and behavior [34]. The dysregulation of systemic glucose metabolism is observed
in SZ [35], and transcriptomic, proteomic, and metabolomic studies have repeatedly shown
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the glycolysis pathway as being disturbed in both the brain and cerebrospinal fluid of
patients with SZ [36–38]. Chouinard et al. demonstrated abnormal brain bioenergetics
in individuals with SZ using 31P magnetic resonance spectroscopy [39]. A variety of
glycolysis-related enzymes have been identified to be dysregulated in SZ [38,40] and its
translational animal models, including pharmacological and genetic glutamate/NMDA
receptor hypofunction models [36,41,42]. In first-onset, antipsychotic-naive patients with
SZ, systemic glucose metabolism anomalies can lead to hyperglycemia, decreased glu-
cose tolerance, and increased resistance to insulin [43–45]. These findings indicate that
a metabolic-based treatment that bypasses damaged glycolytic pathways and impaired
mitochondrial activity may have beneficial therapeutic effects [35]. By bypassing glycolysis,
providing alternative energy substrates in the form of ketone bodies, and resetting the
processes underlying glucose and energy metabolism, the KD positively impacts normal-
ization of brain energy metabolism [46–48]. Additionally, it inhibits histone deacetylases
and promotes metabolic regulation [35]. The KD improves neuronal function by lower-
ing glutamate toxicity, increasing GABA inhibitory tone, and decreasing reactive oxygen
species (ROS) production [49]. The mechanisms of action of the KD also include optimizing
mitochondrial metabolism and neurotransmitter function, strengthening neural network sta-
bility, and improving oxidative stress and inflammation. The metabolic, neuroprotective, and
neurochemical impacts of the KD may give symptomatic relief to people with SZ [17,50].

Moreover, in recent years, the gut microbiota diversity of patients with SZ has been
compared to gut microbiota of healthy individuals. In comparison to the healthy gut, facul-
tative anaerobic bacteria such as Lactobacillus fermentum, Alkaliphilus oremlandii, Cronobacter
sakazakii/turicensis, and Enterococcus faecium were identified among individuals with SZ [51].
Authors suggest that a personalized and targeted modulation of intestinal microbial diver-
sity by prebiotics (non-digestible fiber) might be a treatment option for management of
SZ [52]. The KD considerably impacts the variety and count of the gut microbiome, which
is linked to reduced blood glucose levels and increased blood ketone levels [53].

The etiopathogenesis of SZ and the potential role of the ketogenic diet In its treatment
are summarized in Figure 1. An overlapping mechanism of the pathogenesis of SMI and
the therapeutic mechanism(s) of the KD on SMI should be considered.
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Figure 1. Possible effects of a ketogenic diet therapy in schizophrenia.

3.2. Animal Model Studies

In 2015, Kraeuter et al. showed for the first time that a KD can regulate abnormal
behaviors in an animal model of SZ. In mice, three weeks of KD prevented agitation, stereo-
typy, and impaired sociability and working memory caused by an acute NMDA receptor
hypofunction. These behaviors are comparable to the positive, negative, and cognitive
symptoms of SZ [35]. KD successfully reestablished impaired hippocampal inhibitory
circuits involved in auditory sensory gating in DBA/2 mice, a model applicable to SZ [49].
Authors applied an evolutionary-conserved schizophrenia-like behavioral endophenotype,
impaired sensorimotor gating, as measured by prepulse inhibition of startle (PPI) [35]. Male
C57BL/6 mice were fed a KD for seven weeks and tested for PPI at 3 and 7 weeks, with
and without a significant digestible energy deficit. They found that the KD successfully
prevented MK-801-induced PPI impairments at 3 and 7 weeks, regardless of the presence



J. Clin. Med. 2024, 13, 2819 4 of 29

or absence of a digestible energy deficit. Moreover, there was no link between PPI and
body weight fluctuations. The results support the therapeutic effect related to the state
of ketosis and not energy restriction in SZ [35]. KD-fed mice demonstrated metabolic
adaptation by body weight reduction, higher β-hydroxybutyrate levels, and lower glu-
cose levels. This study did not explore the potential mechanisms of action. However,
the authors claim that the KD may help normalize pathophysiological processes in SZ
in several ways. Another study investigated how the KD affects hippocampal P20/N40
gating in DBA/2 mice [49]. The animals with the greatest ketone levels exhibited the lowest
P20/N40 gating ratios. The KD appears to successfully target sensory gating deficiencies,
making it a promising subject for further research in SZ [54]. Antipsychotic medications,
such as olanzapine (OLZ), are used to treat schizophrenia and a rising spectrum of other
“off-label” diseases. A single dose of OLZ generates significant blood glucose increases
within minutes of therapy [55–57]. According to a study by Shamshoum et al., fasting or
short-term ingestion of a KD protects against OLZ-induced hyperglycemia, regardless of
changes in whole-body activity of insulin, and is associated with a reduced rise in serum
glucagon [54,58–60]. However, rapidly increasing circulating ketone body concentrations
with β-hydroxybutyrate or oral ketone esters did not replicate the effects of fasting or
the KD. Overall, data indicate that fasting and short-term KD intake can protect against
acute AP-induced changes in glucose homeostasis, whereas interventions that enhance
circulating ketone bodies do not have the same protective benefits [54].

3.3. Clinical Trials and Case Studies

In 1965, researchers noticed numerous variances and/or abnormalities in the carbo-
hydrate metabolism of patients with SZ. They hypothesized that improving glucose
metabolism might alleviate symptoms associated with disease. Pacheco et al. conducted a
pilot study since the KD would possibly mimic those effects and could be administered
safely to patients [61]. Despite the small number of participants, they observed improve-
ments in positive and negative symptoms of SZ in the examined group of patients. Sethi
et al. undertook a four-month pilot trial to see how a KD affected individuals with SZ and
BD with co-occurring metabolic abnormalities [62]. Individuals who followed the program
lost body weight (12%) and reduced their body mass index (BMI) (12%), waist circumfer-
ence (13%), and visceral adipose tissue (36%). A 27% decrease in the homeostasis model
assessment-estimated insulin resistance (HOMA-IR) and a 25% drop in triglycerides were
observed. In individuals with SZ, the severity of symptoms was reduced (32% drop in Brief
Psychiatric Rating Scale scores). Moreover, a case report by Palmer et al. presents two pa-
tients with SZ treated with the KD for 5 and 12 years [63]. The first patient, an 82-year-old
female, saw a significant decrease in psychotic symptoms after 2 weeks of following the KD.
During the next few months, she decided to discontinue all of her medications. Her mood
improved considerably, and she stopped having suicidal thoughts. Her hallucinations
subsided totally. The second patient was a 39-year-old female with a history of depression,
anxiety, anorexia nervosa, hallucinations, and psychosis. During her treatment, she took
several drugs, including haloperidol, clozapine, ziprasidone, risperidone, quetiapine, aripipra-
zole, olanzapine, sertraline, paroxetine, citalopram, fluoxetine, duloxetine, and venlafaxine.
Within one month of the KD, she experienced total clearance of psychotic symptoms. She
was taken off haldol-decanoate after a year of treatment and has been free of psychotic
symptoms for the past five years without antipsychotic medication. The patient remains on
a KD [63]. Kraft et al. reported the unexpected remission of long-standing SZ symptoms
in a 70-year-old female patient after beginning a KD [64]. She experienced both auditory
and visual hallucinations, which have appeared since the age of seven. The hallucinations
stopped after 19 days despite no changes in her medicine. Over 12 months, the patient has
maintained a low-carbohydrate KD without a recurrence of symptoms, and her excessive
weight has been reduced.

The studies describing the therapeutic effect of the ketogenic diet in schizophrenia are
presented in Table 1.
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Table 1. Studies describing therapeutic effects of the ketogenic diet in schizophrenia.

Author(s),
Year Study Design

Number of
Participants (Inter-
vention/Control)

Range Age of
Participants

(Years)

Dietary Intervention/
Assessment of Ketosis

Control
Intervention Duration Outcome Measures Main Findings

Pacheco et al.,
1965 [61] Pilot study I: 10 (F) 19–63 KD, lack of

detailed information none 2 weeks

A nursing checklist for ward
behavior ratings, The Minimal

Social Behavior Scale,
The Beckomberga Rating Scale

for the S-Factor

↓symptomatology,
↑symptomatology after
discontinuing the KD

Kraft et al.,
2009 [64] Case study I: 1 (F) 70

gluten and low-
carbohydrate KD, (<20 g
carbohydrates per day),

ketosis was not confirmed

none 1 year Patients’ and
physicians’ observations

↓symptomatology
(visual and auditory

hallucinations),
↓body weight, ↑energy level

Palmer et al.,
2019 [63]

Two case
studies I: 2 (F) 82 and 39 KD, lack of

detailed information none
5 years
and 12
years

Patients’ and
physicians’ observations

↓symptomatology,
↓body weight,
↓the amount of

taken medications

Sethi et al.,
2024
[62]

Pilot study I: 5 18–75

KD, 10% carbohydrate, 30%
protein, 60% fat; ≥5040 kJ,

<20 g carbohydrates
per day; blood ketone

meter at least once a week

none 4 months

Generalized
Anxiety Disorder (GAD–7),

Patient Health
Questionnaire Depression Scale

(PHQ–9), Pittsburgh Sleep
Quality Index

(PSQI), Clinical Mood
Monitoring Forms (CMF),

Clinical Global
Impression–Schizophrenia

(CGI–SCH) Scale,
Global Assessment of

Functioning (GAF), Manchester
Short Assessment of Quality of

Life (MANSA),
Brief Psychiatric Rating

Scale (BPRS) for Schizophrenia
and screening for suicidality;

HbA1c, fatty acid profile, hsCRP,
HOMA-IR, HOMA2-IR,

advanced lipid testing, body
weight, blood pressure, HR,
waist circumference, body

composition analysis

32% reduction in Brief Psychiatric
Rating Scale, ↑proportion of
participants who were in the
recovery state at baseline *,

↑sleep quality *,
improvement in cognition

and mood,
↓anxiety,

↓depressive symptoms *,
improvement in CGI scale,

↑life quality and satisfaction *,
↓body weight, waist circumference,
systolic blood pressure, FMI, BMI *,
↓visceral adipose tissue, HbA1c,

triglycerides, HOMA-IR *

F—females; M—males; KD—ketogenic diet; HbA1c—glycosylated hemoglobin; HOMA-IR—the homeostasis model assessment-estimated insulin resistance; hs-CRP—high sensitivity
C-reactive protein; HR—heart rate; FMI—fat mass index; BMI—body mass index; * all participants (patients with SZ and BD analyzed as one group); I—intervention; C—control.
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4. Therapeutic Effect of the Ketogenic Diet in Depression
4.1. Etiopathogenesis and Potential Role of the Ketogenic Diet

Brain regions such as the nucleus accumbens (NAc), medial prefrontal cortex (mPFC),
and lateral habenula (LHb) are involved in the development of depressive disorders [65].
MDD leads to chronic low-grade inflammation in the body. Microglia are activated and,
as a consequence, there are increased levels of interleukin 6 (IL-6), interleukin 8 (IL-8),
interleukin 12 (IL-12), and tumor necrosis factor-α (TNF-α) in the cerebrospinal fluid [66,67],
and increased translocator protein, a marker of central inflammation, in the temporal cortex
and anterior cingulate cortex of the brain [68,69]. The KD and other types of diets based
on restricted carbohydrate intake may prevent the occurrence of MDD, reduce depression
symptoms, cause a mood improvement, and lower the risk of cognitive impairment [70].
As previously mentioned, the KD can positively influence the gut microbiota composition.
The intestinal microbiota disturbances are intensified and can cause a chronic low-grade
inflammatory process, which influences a more severe course of MDD and treatment re-
sistance [66,71,72]. The KD induces ketolytic metabolism, which can lead to increased
oxidative phosphorylation with a shift in the glutamate–aspartate aminotransferase bal-
ance. As a result, there is an increase in adenosine and GABA activity [73]. In contrast,
reduced GABA levels and dysfunction of the GABA-ergic system are often described in
MDD [74]. The KD improves the function of uncoupling proteins (UCPs) in the mitochon-
dria, indirectly reducing oxidative stress and the production of ROS [14]. The mechanisms
described above result in a reduction in low-grade inflammation [14,73]. Clinical studies
have shown that the KD can also affect dopamine, serotonin, and glutamate, which are neu-
rotransmitters that are important in the pathogenesis of MDD, according to monoaminergic
theory [75,76]. Huang et al. demonstrated that β-hydroxybutyrate interacts with microglia
at the cellular and molecular levels, improving neural plasticity and modulating depressive
symptoms [20].

The etiopathogenesis of MDD and the potential role of the KD in its treatment are
summarized in Figure 2. An overlapping mechanism of the pathogenesis of SMI and the
therapeutic mechanism(s) of KD on SMI should be considered.
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4.2. Animal Model Studies

In the animal study conducted by Murphy et al., the KD was related to higher blood
β-hydroxybutyrate concentrations and a shorter period of immobility. The greater reactivity
indicates that the KD may have similar effects to antidepressants [77]. In another study,
susceptibility to depressive and anxiety states was significantly reduced, while physical
activity was increased after exposure to a KD in prenatal life. Exposure to the KD was
related to a 1.39% reduction in the hypothalamus, a 4.77% reduction in the corpus callosum,
and a 4.8% increase in cerebellar volume. Thus, the use of the KD in prenatal life may
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positively influence neuroanatomical brain and behavioral changes and reduce the risk
of depressive symptoms in later adult life [78]. Guan et al. observed that the KD may
decrease neuronal excitability in the lateral habenula (LHb), a brain region responsible for
the development of MDD. At the same time, in MDD, there is a reduction in the protein
level of innate immune receptor Trem2 in the LHb, leading to activation of a microglia and
inflammatory response [65]. An additional positive effect of the reduction of depressive
and anxiety symptoms can be achieved by physical exercise with the application of the
KD. After six weeks of the KD in mice, glucose, insulin, and the LDL/HDL ratio decreased,
and β-hydroxybutyrate increased. After the nutritional intervention, the animals displayed
fewer anxiety and depressive behaviors [79]. Furthermore, Kasprowska-Liśkiewicz et al.
proved that the KD increased motor activity and reduced anxiety in rodents. At the same
time, the rats’ social interest increased [80]. The study assessing the type of fatty acids used
in the KD showed a reduction in depressive behavior in animals, regardless of whether
they were fed long-chain triglyceride or medium-chain triglyceride fatty acids [81].

4.3. Clinical Trials and Case Studies

The limitations of pharmacotherapy for MDD determine the need to explore other
possible interventions to reduce the severity of the illness [82]. The KD could improve
health-related quality of life, including mental health, after 24 weeks in overweight vol-
unteers. However, the study participants were not diagnosed with MDD [83]. Cox et al.
described the case of a woman with uncontrolled type 2 diabetes, MDD, hypertension,
and dyslipidemia who followed the KD for 12 weeks under medical supervision. She was
chronically taking the selective serotonin reuptake inhibitors, lisinopril and glipizide. After
the intervention, a significant reduction in the severity of MDD symptoms and an improve-
ment in metabolic parameters such as glycated hemoglobin (HbA1c) and fasting blood
glucose were observed. In improving the prognosis of patients with co-occurring MDD
and type 2 diabetes, it may be essential to integrate approaches including various changes,
e.g., the KD, nutritional education, and physical activity [83]. Danan et al. conducted
a one-year analysis of poorly controlled symptoms (despite intensive pharmacological
treatment) of severe mental illness, including MDD, following the KD instead of the usual
hospital diet. A reduction in MDD symptoms was demonstrated in all of the examined
patients according to the Hamilton Depression Rating Scale (HAM-D) scale (mean score de-
creased from 25.4 to 7.7) and the Montgomery–Åsberg Depression Rating Scale (MADRS)
scale (mean score decreased from 29.6 to 10.1). Improvements were shown in metabolic
parameters such as BMI, blood pressure, blood concentration of fasting glucose, HbA1c,
gamma-glutamine transferase (GGT), alanine aminotransferase, aspartate aminotransferase,
total cholesterol, and triglycerides. Good tolerance of the KD was described in the vast
majority of patients [82]. In a study conducted by Ohio University, improvements in MDD
symptoms were described in 262 people with co-occurring type 2 diabetes after 10 weeks
of following the KD [84]. Additionally, in a young woman (21 years) with a co-occurrence
of mood disorders with obesity, hypertension, and Turner syndrome, a positive effect
of the KD was shown. A depressed mood led to self-harm, disrupted daily rhythms,
reduced ability to concentrate, and high suicide risk. After four weeks of application of
the KD, decreases in body weight (of 11.5 kg) and BMI (to class II obesity from class III)
were observed, as well as stabilization of mood, reduction in anxiety and normalization
of daily rhythm. The severity of MDD was described as moderate compared to severe
when starting the diet, and the patient did not report suicidal thoughts [74]. The number
of registered protocols of studies of the KD in MDD is still increasing. The outcomes of
ongoing trials are various, including in terms of MDD symptoms, laboratory tests, and
the brain’s electrical activity [85,86]. The studies describing the therapeutic effect of the
ketogenic diet in depression are presented in Table 2.
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Table 2. Studies describing therapeutic effects of the ketogenic diet in depression.

Author(s), Year Study Design

Number of
Participants

(Intervention/
Control)

Range Age of
Participants

(Years)

Dietary Intervention/
Assessment of Ketosis

Control
Intervention Duration Outcome Measures Main Findings

Cox et al.,
2019 [83] Case study I: 1 (F) 65

KD, 65% fat, 25% protein,
10% carbohydrates with a

time restricted feeding
window; Nutritional

education; High-intensity
interval training;

blood ketones
pre/post intervention

none 12 weeks

The Patient Health
Questionnaire 9

(PHQ-9), The General
Self-Efficacy Scale (GSE),

MetS Compliance Questionnaire
(MSC), blood: HgA1C, glucose,

ketones, HOMA-IR,
the triglyceride/

HDL cardiac risk ratio

Improvement in PHQ-9, GSE,
and MSC scales;

↓HgA1C, glucose ketones,
HOMA-IR,

and triglycerides/
HDL cardiac list ratio;

↓body weight;
↓amount of taken medications;
↑self-confidence, self-efficacy,

energy, mood stability
and cognition;

sleep improvement

Pieklik et al.,
2021 [74] Case study I: 1 (F) 21

KD, the Kalibra medical
protocol diet;

the urine ketone strip test
none 4 weeks

Body Image Questionnaire
(KWCO), Scale of satisfaction

with parts and parameters of the
body, The Scale for the Using of

Methods for Correcting
Appearance, Scale of Perception

of Peer Messages,
Scale of Self Constructs and

Beck Depression Inventory Scale
(BDI)

↓body weight,
mood stabilization, stabilization

of daily rhythm,
↓anxiety,

Improvement in BDI scale,
a lack of suicidal thoughts

Danan et al.,
2022 [82]

Retrospective
analysis

I: 31; bipolar
disorder type two

(n = 13),
schizoaffective

disorder (n = 12),
major depressive
disorder (n = 7)

27–73

KD, <20 g (5%)
carbohydrates per day,

15–20% protein, 75–80% fat;
measurement of urine

acetoacetate at least one
time during the

intervention period

none 6–248 days

Hamilton Depression Rating
Scale (HAM-D),

Montgomery–Åsberg Depression
Rating Scale (MADRS), Positive
and Negative Syndrome Scale

(PANSS), Clinical Global
Impressions Scale (CGI-S),
metabolic health measures

improvement in HAM-D,
MADRS and CGI-S scales;

↓the amount of
taken medications;

↓body weight, blood pressure,
blood glucose, and triglycerides

F—females; M—males; KD—ketogenic diet; HbA1c—glycated hemoglobin; I—intervention; C—control.
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5. Therapeutic Effect of the Ketogenic Diet in Bipolar Disorder
5.1. Etiopathogenesis and Potential Role of the Ketogenic Diet

BD is characterized by recurrent episodes of manic and depressive states, with tran-
sient episodes of euthymia (neutral mood) [87]. A growing body of evidence supports the
idea that mitochondrial dysfunction may be an underlying feature of BD [88–90]. Abnormal
mitochondrial function leads to reduced energy production associated with more cells
undergoing apoptosis, increased ROS, and excessive excitability [91–93]. There is increasing
evidence for the concept of oxidative stress as an underlying mechanism in BD [88,94].
Among patients with BD, elevated intracellular calcium levels are observed regardless of
disease phase [95]. Calcium homeostasis, one of the main factors determining apoptosis, is
regulated by mitochondria [96–98]. Dysfunction of the ATP formation pathway is also a
potential factor in the development of BD [99]. Changes in ATP levels affect the timing of
neurotransmitter release and the transition of neurons to excitatory or inhibitory states, and
may contribute to the manic and depressive states in BD [100]. Reduced Na+/K+ ATPase
activity and increased intracellular sodium levels have been observed among individuals
with BD. Under conditions of Na+/K+ ATPase hypofunctionality, sodium accumulates
in neurons and alters the resting potential, resulting in altered neuronal excitability [101].
Imbalances in monoamine concentrations may affect behavior and emotions [102]. The KD,
which changes the way the organism uses energy, appears to be a promising therapeutic
approach for BD. Numerous literature reviews provide evidence that the KD can affect
various metabolic and biochemical aspects of BD especially related to mitochondrial func-
tion [17]. According to Campbell et al. [103], the KD is able to alleviate the symptoms of BD
as a result of changing the main energy source in the brain from glucose to ketone bodies,
in effect helping to bypass existing mitochondrial defects and limit further damage to these
structures. Ketosis stimulates mitochondrial biogenesis, improves brain metabolism, acts
as a neuroprotector, and promotes glutathione synthesis [64,104,105]. Data available in the
literature show that lactate levels are consistently elevated and, at the same time, are one of
the biomarkers most altered among patients with BD [106]. Research proves qualitative
and quantitative changes in intestinal microbiota among patients with BD compared to
healthy individuals, suggesting that an imbalance in microbiome composition and func-
tion may affect mental health through the gut–brain axis [107,108]. Oxidative stress- and
inflammation-inducing Flavonifractor bacteria have been linked to BD [109]. Dickerson et al.
demonstrated that probiotic treatment of people with BD contributed to shorter patient hos-
pitalizations [110]. Studies show that the KD significantly alters the diversity and count of
the intestinal microbiome (towards potentially beneficial taxa) [53,71]. This may be linked
to reduced intake of carbohydrates (including refined sugars, which directly affect the
functionality of intestinal microbiota); this is synonymous with reduced polysaccharides,
from which the bacteria derive their energy [111]. The etiopathogenesis of bipolar disorder
and the potential role of the ketogenic diet in its treatment are summarized in Figure 3. An
overlapping mechanism of the pathogenesis of SMI and the therapeutic mechanism(s) of
KD on SMI should be considered.
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5.2. Animal Model Studies

Unfortunately, BD remains challenging to model in animal experiments. Scientists
have noted during human and animal studies that neurotransmitter imbalances may con-
tribute to the development of BD. Clinical observations are the source of reports that
changes in dopamine (DA) levels are present in episodes of BD. Manic episodes are as-
sociated with hyperdopaminergic and depressive episodes with reduced dopaminergic
transmission [103], and the KD contributes to altered levels of monoamine metabolites,
including a significant reduction in dopamine [75]. The KD leads to an increase in Lacto-
bacillus and Akkermansia, while decreasing potentially pro-inflammatory bacteria from the
genii Desulfovibrio and Turicibacter. This has been confirmed in rodent studies [53]. This
information may be clinically useful due to the fact that Akkermansia-containing probiotics
showed antidepressant properties in an animal model of stress, which also indicates their
potential role in antidepressant effects in patients with BD [112].

5.3. Clinical Trials and Case Studies

Danan et al. [82] conducted a retrospective analysis with a total of 31 participants,
13 of whom suffered from BD type two. Patients were admitted to a psychiatric hospital
and put on a KD for up to 248 days. Symptoms were poorly controlled despite the intensifi-
cation of psychiatric treatment. After the dietary intervention, a significant change in the
patients’ well-being and reduced severity of mood symptoms was observed. Additionally,
a reduction of 1 point on the Clinical Global Impressions–Severity Scale is considered a
minimal clinically relevant difference; in the study, the average decreased by 2.8 [113]. A
non-randomized, interventional pilot study confirmed the feasibility and safety of intro-
ducing a KD for three months among individuals with BD [113]. Phelps et al. presented
the cases of two women with BD II who maintained a KD for an extended period of 2 and
3 years, respectively. In both cases, there was an improvement in mood stability, and the
effects were more significant than those achieved through pharmacotherapy. The lamot-
rigine used by the first patient could not provide reliable symptom control. The second
patient had severe side effects from the medication used, including an increased frequency
of suicidal thoughts. Both women tolerated the dietary intervention well and reported a
marked improvement in well-being as a result of being in ketosis. In neither case were there
any significant side effects. The researchers additionally believe that regularly maintaining
urinary ketone body levels of at least 5 mg/dL helped control BD symptoms [114]. Another
paper describes the case of a patient whose mood stabilization was observed after following
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a KD for about two years and cyclical one-day fasting (to increase the intensity of ketosis).
The complete absence of depressive episodes had accompanied the patient for eight years,
and the patient decided to withdraw from quetiapine [115]. Campbell et al. conducted an
observational analytical study of comments in online forums regarding the effects of dietary
interventions (KD, omega-3 enriched, or vegetarian) on mental health in 274 patients with
BD. Eighty-five people reported beneficial effects associated with the KD: improved mood
stability (n = 55); fewer episodes of depression (n = 35); improved clarity of thought and
speech (n = 24); increased energy levels (n = 22); fewer anxiety/panic attacks (n = 17); fewer
episodes of mania (n = 1); improved sleep quality (n = 7); improved control of activities
(n = 7); and improved memory (n = 2). The duration of improvement in mood stability was
often reported to be months or years (the longest period was 8 years). It should be borne
in mind that there are many limitations to the study due to its retrospective nature [116].
A pilot study involving 27 patients with BD found that following a KD for 6–8 weeks
leads to decreased lability and lactate. Authors found a positive relationship between
ketone levels and ratings of momentary mood energy, and a negative correlation between
ketone levels and impulsivity and anxiety [117]. Sethi et al. conducted a 4-month pilot
study involving 16 people with BD. After dietary intervention, increased life satisfaction
and better sleep quality were observed. It was shown that 69% of participants with BD
experienced improvements in the severity of mental illness [62]. The studies describing the
therapeutic effect of ketogenic diet in bipolar disorder are presented in Table 3.

Currently, there are still ongoing studies that are likely to provide more detailed
information on the importance of the ketogenic diet among patients with BD and other
psychiatric disorders. Ongoing clinical trials exploring the role of the KD in psychiatric
disorders are presented in Table 4.
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Table 3. Studies describing therapeutic effects of the ketogenic diet in bipolar disorder.

Author(s),
Year

Study
Design

Number of
Participants

(Intervention/
Control)

Range Age of
Participants

(Years)

Dietary
Intervention/

Assessment of
Ketosis

Control
Intervention Duration Outcome Measures Main Findings

Phelps et al.,
2013 [114]

Two
case studies I: 2 (F) 69 and 30

KD, 8% carbohydrates,
22% protein,

70% fat (second case),
the urine ketone strip

test (first case)

none 2 years,
3 years

Patients’ and
physicians’ observations

significant subjective
reduction in symptoms,

↓the amount of
taken medications,

↓depressive symptoms
mood stabilization,

↑calm and confidence,
comfort

Chmiel et al.,
2022 [115] Case study I: 1 (M) 32

KD; 5% carbohydrate,
15% protein, 80% fat;

≥5040 kJ, <30 g
carbohydrates per day;

cyclic one-day fast
introduced every
7–10 days, blood
concentration of

β-hydroxybutyrate

none 2 years

Body mass index (BMI),
blood: CBC, lipid profile,

glucose, liver tests,
creatinine, uric acid

mood stabilization,
elimination of anxiety,

shorter and milder depressive
states till complete remission,

↑mood,
↑energy,

↑cognitive functions
and concentration,

↑periods of total remission
of symptoms,
↓amount of

taken medications,
↑HDL,

↓triglycerides
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Table 3. Cont.

Author(s),
Year

Study
Design

Number of
Participants

(Intervention/
Control)

Range Age of
Participants

(Years)

Dietary
Intervention/

Assessment of
Ketosis

Control
Intervention Duration Outcome Measures Main Findings

Needham
et al., 2023

[113]
Pilot study I: 27 26–54

A modified KD, 60–75%
fat, 5–7% carbohydrates,

additionally calories
from protein,
blood ketones

none 6–8 weeks

Medical and medication
history, blood pressure and

body mass index (BMI),
Affective Lability Scale 18,

Beck’s Depression Inventory,
Young Mania Rating Scale,
Within Trial Resource Use

Questionnaire, EuroQol 5D
quality of life instrument and

the Work Productivity and
Activity Impairment

Questionnaire (tailored),
Fasting venepuncture
and MR brain scans,

measurement of glucose
and ketones on a KetoMojo

device, daily ecological
momentary assessments
(EMAs) of anxiety, mood,
energy, impulsivity and
speed of thought, Visual

Analogue Scale (VAS)

↓body weight,
normalization of total

cholesterol, LDL,
and triglyceride levels

EQ5D-5L at baseline and
follow-up, respectively, were:

mobility, 90 and 85%;
self-care, 90 and 85%;

usual activities, 65 and 55%;
pain and discomfort, 45 and

45%; and anxiety and
depression, 45 and 50%

The visual analogue scale
(VAS) utility scores at
baseline and follow up

were 66.7 and 64.2,
↓mean expenditure,

↑mean productivity loss
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Table 3. Cont.

Author(s),
Year

Study
Design

Number of
Participants

(Intervention/
Control)

Range Age of
Participants

(Years)

Dietary
Intervention/

Assessment of
Ketosis

Control
Intervention Duration Outcome Measures Main Findings

Sethi et al.,
2024
[62]

Pilot study I: 16 18–75

KD, 10% carbohydrate,
30% protein, 60% fat;

≥5040 kJ, <20 g
carbohydrates per day;

blood ketone meter
at least once a week

none 4 months

Generalized
Anxiety Disorder (GAD–7),

Patient Health
Questionnaire Depression
Scale (PHQ–9), Pittsburgh

Sleep Quality Index
(PSQI), Clinical Mood

Monitoring Forms (CMF),
Clinical Global

Impression–Schizophrenia
(CGI–SCH) Scale, Global

Assessment of Functioning
(GAF), Manchester

Short Assessment of Quality
of Life (MANSA),

Brief Psychiatric Rating
Scale (BPRS) for

Schizophrenia and screening
for suicidality; HbA1c,

fatty acid profile, hsCRP,
HOMA-IR, HOMA2-IR,
advanced lipid testing,

body weight, blood pressure,
HR, waist circumference,

body composition analysis

improvement in CGI scale:
severity of mental

illness showed improvement
of >1 point in 69%

of participants,
↑proportion of participants
who were in the recovery

state at baseline *,
↑sleep quality *,

↓anxiety *,
↓depressive symptoms,

↑life quality and satisfaction *,
↓body weight,

waist and circumference
and systolic blood pressure

and FMI and BMI *
↓visceral adipose tissue,

HbA1c, triglycerides,
HOMA-IR *

F—females; M—males; KD—ketogenic diet; HbA1c—glycosylated hemoglobin; HOMA-IR—the homeostasis model assessment-estimated insulin resistance; hs-CRP—high sensitivity
C—reactive protein; HR—heart rate; FMI—fat mass index; BMI—body mass index; * all participants (patients with SZ and BD analyzed as one group); I—intervention; C—control.
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Table 4. Ongoing clinical trials exploring the role of the KD in psychiatric disorders.

Identifier Study Title Status Locations Conditions
Hospitalized/

Amulatory
Patients

Age of
Partici-
pants

Enrollment Intervention Control Timeframe Primary Outcome
and Timeframe

NCT03873922
[118]

Dietary Intervention
for Psychotic

Disorders: a Pilot
Intervention Study
of Ketogenic Diet

for Psychotic
Symptoms—PsyDiet

Pilot Study

Recruiting Kuopio,
Finland

Patients
with psychotic

symptoms (ICD-10
diagnosis F20-29)

Hospitalized ≥18 40
Ketogenic diet

(15–20 g
CHO/d)

Conventional
hospital meals 6 weeks Changes in PANSS

and diet feasibility

NCT05968638
[119]

Single-Blind
Randomized

Ketogenic Diet vs.
Control Diet in

People With
Schizophrenia

Recruiting
Catonsville,
Maryland,

United States

Schizophrenia/
Schizoaffective

disorder
(DSM-IV/DSM-5)

N/A 18–64 50 Ketogenic diet Standard diet 3 months Changes in BPRS

NCT05268809
[120]

Can Neural Network
Instability in

Schizophrenia be
Improved With

a Very Low
Carbohydrate

Ketogenic Diet?

Recruiting
San Francisco,

California,
United States

Schizophrenia/
Schizoaffective

disorder/Bipolar
disorder (SCID-5)

Ambulatory 18–65 70

Ketogenic diet
(70% F; 10%
CHO; 20%

PRO); 3 meals
+ snak/d

The diet
as usual 4 weeks

Changes in network
stabilization,

cognition, waist to
hip ratio, HOMA-IR,

blood: CRP

NCT06221852
[121]

A Randomized
Controlled Clinical
Trial of Ketogenic
and Nutritional
Interventions for

Brain Energy
Metabolism and

Psychiatric
Symptoms in First

Episode Bipolar
Disorder

Not yet
recruit-

ing

Belmont,
Massachusetts,
United States

Bipolar disor-
der/Schizoaffective
disorder, onset of
illness in the last
7 years (DSM-5)

N/A 18–45 50

Ketogenic diet
(75–80% F; 7%
CHO; 13–18%
PRO); 3 meals

+ snak/d;
normocaloric

Dietary
Guidelines for

Americans;
3 meals +
snak/d;

normocaloric

12 weeks

Changes in PANSS,
HAM-D, YMRS, CGI,

insulin resistance,
brain NAD+/NADH

ratio and creatine
kinase forward

reaction rate
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Table 4. Cont.

Identifier Study Title Status Locations Conditions
Hospitalized/

Amulatory
Patients

Age of
Partici-
pants

Enrollment Intervention Control Timeframe Primary Outcome
and Timeframe

NCT06081426
[122]

Elucidating
Neurobiological

Mechanisms
Underlying the

Therapeutic Effect of
the Ketogenic Diet
in Bipolar Disorder

(BD):
a Multidisciplinary
Mechanistic Study

Recruiting
Pittsburgh,

Pennsylvania,
United States

Bipolar disorder
I/Bipolar disorder

II, hypomanic/
euthymic (DSM-5)

N/A 18–30 107 Ketogenic diet
Non-

ketogenic
diet/No diet

8–10
weeks

Changes in YMRS,
brain activity and
connectivity, brain
concentration of

GABA, glutamate,
lactate, blood:
glucose, lipids,
bilirubin, total

protein, albumin,
liver enzymes

NCT05705063
[123]

Impact of A
Low-Carbohydrate,
High-Fat, Ketogenic

Diet on Obesity,
Metabolic

Abnormalities,
and Psychiatric
Symptoms on

Patients With Bipolar
Disorder (BPD)

Not yet
recruit-

ing

Stanford,
California,

United States

Bipolar disorder
(DSM-5) N/A 18–75 30 Ketogenic diet No control

group 6 weeks

Changes in weight,
waist circumference,

visceral fat mass,
body fat mass,

heart rate, blood
pressure, HOMA-IR,

blood: HbA1c,
hs-CRP, lipids

NCT06105762
[124]

KETO-MOOD:
Ketogenic Diet for

Microbiome
Optimization and

Overcoming
Depression

Not yet
recruit-

ing

Basel,
Switzerland

Major Depressive
Disorder/

Bipolar Depression
(ICD-10/ICD-11)

N/A 18–70 120
Ketogenic diet

(MAD,
<20 g CHO/d)

Mixed diet
following the
recommenda-

tions for
healthy

nutrition by
the Schweiz-

erische
Gesellschaft

für Ernährung
(Société Suisse
de Nutrition)

(45–60% CHO)

8 weeks Changes in
HAM-D17
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Table 4. Cont.

Identifier Study Title Status Locations Conditions
Hospitalized/

Amulatory
Patients

Age of
Partici-
pants

Enrollment Intervention Control Timeframe Primary Outcome
and Timeframe

NCT05558995
[85]

Effects and
Mechanistic Aspects
of Ketogenic Diet in

Individuals With
Major Depressive

Disorder:
A Pilot Study

Recruiting
Kingston,
Ontario,
Canada

Major Depressive
Disorder (DSM-5) Ambulatory 18–55 10

Ketogenic diet
(20–30 g
CHO/d;
80–100 g

PRO/d; PUFA;
MUFA) +
vitamins,
minerals
in caps

No control
group 12 weeks Adherence to diet

NCT06091163
[125]

A Randomised
Controlled Trial
Evaluating the

Efficacy and
Mechanisms of

a Ketogenic Diet as
an Adjunctive
Treatment for
People With

Treatment-resistant
Depression

Recruiting
Oxford,
United

Kingdom
Depression Ambulatory 18–65 100

Ketogenic diet
(20–50 g CHO
estimated on a
2000 kcal/d);

3 meals +
snacks

Modified fat
and

phytonutrient
diet

6 weeks Changes in PHQ-9

NCT06080932
[126]

Ketogenic
Intervention in

Depression
Recruiting

Columbus,
Ohio, United

States

Major Depressive
Disorder (DSM-5) Ambulatory 18–30 30

Ketogenic diet
(<50 g CHO/d,
~1.5 g PRO/kg

reference
weight)

No control
group

~up to
12 weeks

Changes in
HAM-D17, WHO-5,

blood: ketones
and glucose

DSM—Diagnostic and Statistical Manual of Mental Disorders; ICD—International Classification of Diseases; SCID—The Structured Clinical Interview for DSM; N/A—Not Applicable;
CHO—carbohydrates; PRO—protein; PANSS—The Positive and Negative Syndrome Scale; BPRS—The Brief Psychiatric Rating Scale; HAM-D—Hamilton Depression Rating Scale;
YMRS—Young Mania Rating Scale; PHQ—Patient Health Questionnaire; CGI—The Clinical Global Impressions Scale; WHO-5—The World Health Organisation-Five Well-Being Index;
HOMA-IR—Homeostatic Model Assessment for Insulin Resistance; HbA1c—Glycated hemoglobin; CRP—C-Reactive Protein; GABA—Gamma Amino Butyric Acid; NAD/NADH—the
ratio of oxidized and reduced forms of nicotinamide adenine dinucleotide.
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6. Health Risks Associated with the Use of the Ketogenic Diet

Despite many positive aspects of using the KD, some disadvantages and risks must be
mentioned. Some patients experience one or more symptoms during the early adaptation of
the KD [82,127]. Among the most commonly reported early side effects of the KD, patients
present “ketone flu” (a set of temporary, general malaise symptoms), headache, nausea,
fatigue, weakness, gastrointestinal symptoms, and change in heart rate. However, after
a few weeks following the KD, the side effects pass in most patients [127]. For severe
gastrointestinal symptoms, the treatment may include H2 blockers, proton pump inhibitors,
increased fluid intake, and the addition of fiber-containing products [128]. If the balance
of the diet is not adapted to the individual requirements, it can cause complications such
as dehydration, electrolyte disturbances, hypercholesterolemia, and nutritional deficien-
cies [129,130]. A very restrictive KD with a limited supply of fruit, whole grains, vegetables,
or legumes can lead to nutritional deficiencies in folic acid, thiamin, vitamin A, vitamin E,
vitamin B6, calcium, magnesium, and potassium levels, as well as an inadequate intake
of fiber and protein and an excess intake of fats [129,131]. Therefore, a dietician should be
consulted first to determine the appropriate intake of nutrients. Long-term adherence to
the KD can be problematic for the patient due to the need for lifestyle changes. However,
proper education and explanation of the mechanisms and clinical effects motivate patients
to adhere to the KD [131,132]. The most common long-term side effects include hyper-
lipidemia, hypertriglyceridemia, renal stones, cardiovascular complications, mineral and
vitamin deficiencies, and electrolyte imbalance [133–135]. Monitoring of specific laboratory
parameters while following the KD is required. In particular, monitoring of renal function
should be undertaken, including urinalysis: albumin, creatinine, calcium/creatinine ratio,
and blood creatinine to estimate the glomerular filtration rate (eGFR), due to the risk of
developing nephrolithiasis and chronic kidney disease [128,131,132]. Adequate hydration
and monitoring of electrolyte blood concentration are also important. The use of citrates
to normalize urine pH may be considered [127]. Taking into consideration the increased
cardiovascular risk of patients with SMI and the high content of fat in the KD, determining
the lipid profile (total cholesterol, LDL and HDL, triglyceride concentrations), and liver
parameters, and performing an ECG or ECHO, are recommended [128]. The KD is not rec-
ommended in patients with liver failure, chronic pancreatitis and in patients with diabetes
on insulin treatment or with recurrence of severe hypoglycemia [132]. The KD can lead
to chronic malnutrition of the body, reduced bone density, and menstrual cycle disorders
with the co-occurrence of the diseases as mentioned above [135–137]. The KD should not
be recommended for women who are pregnant or planning to become pregnant. A study
by Desrosiers et al. found that low-carbohydrate diets were more likely to result in folic
acid deficiency, increasing the risk of having a baby with a neural tube defect [138]. Despite
some limitations, the KD shows a number of clinical benefits. It reduces the risks of obesity,
metabolic syndrome, and type 2 diabetes, disorders that often co-occur with SMI [139].
The KD should be implemented in hospital conditions to ensure constant supervision,
physician care, and patient safety [140,141].

7. A Practical Guide to Using the KD in Psychiatric Disorders

The choice to use the KD depends on many patient-related aspects and it should
always be applied with high-quality care of a physician and dietitian [142,143]. The po-
tential side effects related to some medications and multimorbidity should be considered
when planning the diet. The KD is high in fat, so lipid disturbances could occur, especially
in patients receiving atypical antipsychotics [144–146]. Ensuring a healthy dietary fatty
acid profile (mono- and polyunsaturated fatty acids, while avoiding saturated and trans-
unsaturated fatty acids) and cooking techniques (cooking, grilling, and baking instead of
frying) minimizes the risk of hypercholesterolemia. The carbohydrate restriction leads to a
low amount of fiber in the diet and could lead to constipation [147]. The fiber also posi-
tively affects lipid metabolism. The anticholinergic effect of some medications (clozapine,
olanzapine, phenothiazine derivatives, or tricyclic antidepressants) could cause severe con-
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stipation [148]. Fiber-rich vegetables with low amounts of carbohydrates should be chosen.
Monitoring the daily amount of fluid intake may be helpful. The anti-constipation effect
of physical activity should also be taken into account. However, in implementing the KD
and an inadequate intake of energy, physical activity could be harmful. Supplementation
of omega-3 fatty acids, recommended in SMI, can stimulate intestinal peristalsis. Another
problem of the KD is the inadequate amount of calcium [149]. Vitamin D supplementa-
tion, according to guidelines, allows for increased calcium absorption up to 30–40% [150].
Products with high calcium content and recommended in the KD should be implemented.
One of the examples of a healthy, balanced ketogenic diet is its Mediterranean version. Its
main principles include using olive oil and vegetable fat sources, limiting products rich in
saturated fatty acids, using high-biological-value protein sources, and including seasonal
fruits and vegetables with every meal [151].

Despite the many potential advantages of implementing the KD, patients could face
many difficulties [152]. Longer-term adherence to the diet in patients with psychiatric
disorders remains uncertain. In pilot studies, adherence is reported at 65–80% [113]. The
application of the KD is challenging due to several reasons. Developing strategies to
improve patient compliance might increase the number of individuals benefiting from the
KD [152]. According to studies, low compliance results from the inability to contact the
nutritionist, physiological disturbances affecting blood laboratory tests, unresponsiveness
to diet, or insufficient knowledge about the KD [113,152].

Available scientific data show patients with mental disorders have poor nutrition
and mental disorders negatively influence dietary intake. Patients’ symptoms could have
a negative impact on compliance, such as impulsivity, apathy, reduced appetite, food
cravings, and binge eating [153]. Psychological support and behavioral components to
increase the likelihood of compliance are essential [154]. Intervention should address three
factors influencing adherence: capability, opportunity, and motivation. Additional psycho-
logical techniques, such as integrated motivational interviewing and cognitive behavior
therapy, can lead to improvements in diet adherence [154]. In pilot studies, support in-
cluded problem-solving [154], identifying and managing side effects, personalizing dietary
prescriptions, and being supervised by specialists.

Many medications are associated with substantial increases in appetite and uncon-
trolled food intake [155]. Antipsychotic medication affects dietary intake and eating be-
haviours, and patients may fail to implement any dietary restrictions. The KD is demanding
and highly restricted, which may discourage patients from implementing it, especially
with problems with overeating. Many patients report decreasing satiety and cravings for
non-nutritious foods with high sugar and fat content. Some health practitioners might not
believe in the positive effect of diet implementation, which reduces the patient’s motivation.
According to a study, less than 5% of patients with mental health problems receive lifestyle
advice, despite 80% of them expressing a desire for lifestyle medicine from their general
practitioner [155]. In most mental health centers, the availability of dietitians is limited.
The lack of a specialist makes it challenging to implement and monitor patients’ progress
and discuss and solve problems encountered during therapy. The increased possibility
of implementing dietary recommendations will allow us to obtain more data about the
potential incorporation of a diet in clinical practice in the treatment of mental disorders.

The practical advice is presented in Table 5.
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Table 5. A practical guide to implementing the ketogenic diet in psychiatric disorders [156].

Potential Risk Risk Group Advice

Dyslipidemia
Patients treated with atypical

antipsychotic medication.
Overweight or obese individuals.

Replace foods with high SFA and trans unsaturated fatty acid
with sources of PUFA and MUFA.

Less: meat with high-fat content, lard, butter, eggs, coconut/palm oil
More: olive oil, rapeseed oil, flax oil, avocado, fatty fish,

allowed amounts of nuts and seeds
Supplementation of omega-3 fatty acids

(>1 g EPA or EPA/DHA ratio 1:1) could be helpful

Constipation

Patients treated with medication with
anticholinergic effects (clozapine,

olanzapine, phenothiazine
derivatives, TCA72).

Choose vegetables, nuts, and seeds with more fiber and
less carbohydrate content; the examples of the ratio of

fiber to carbohydrate in some foods are presented below:
Spinach 1:1.15
Sesame 1:1.27

Desiccated coconut 1:1.28
Mushrooms 1:1.3

Chives 1:1.56
Celery tuber 1:1.57

Almonds 1:1.59
Kale 1:1.6

Brussels sprout 1:1.6
Hazelnut 1:1.67

Chinese cabbage 1:1.68
Horseradish 1:1.76
Green beans 1:1.95

Lettuce 1:2.07
Broccoli 1:2.08

Cauliflower 1:2.08
Parsley, root 1:2.14

Peanuts 1:2.63
Red cabbage 1:2.68

Walnuts 1:2.77
Tomatoes 1:3
Zucchini 1:3.2

Red pepper 1:3.3
Cucumber, pickled 1:3.8

Onion 1:4.05
Cucumber 1:5.8 *
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Table 5. Cont.

Potential Risk Risk Group Advice

Calcium
deficiency,

osteoporosis risk

Patients treated with SSRI, valproic
acid and with high prolactin levels

after pharmacotherapy.

Supplementation of vitamin D according to guidelines.
Monitoring vitamin D status. Intake of foods rich in Ca allowed on
KD, such as: cheese (hard cheese, feta, mozzarella), Greek yoghurt,

cream, or vegetables with a high ratio of Ca to P. The ratio of Ca to P
in some foods is presented below; 1:1 or higher Ca is recommended.

Kale 1:0.36
Parsley, leaves 1:0.44
Cabbage, white 1:0.49

Cheese, Emmentaler 1:0.5
Sauerkraut 1:0.5

Chives 1:0.54
Onion 1:0.56

Brussels, sprout 1:0.58
Cheese, parmesan 1:0.59

Cheese, brie 1:0.63
Pumpkin 1:0.65

Cabbage, red 1:0.67
Cheese, camembert 1:0.8
Cabbage, Chinese 1:0.82

Broccoli 1:1.38
Cucumber, pickled 1:1.5

Cucumber 1:1.53
Almonds 1:1.9

Cauliflower 1:2.15
Walnuts 1:3.82

Sunflower seeds 1:5.98
Peanuts 1:6.64

Egg, white 1:8.5
Cod 1:92

Roast beef 1:95.5
Chicken, leg 1:98

Egg 1:102
Breast, chicken 1:120

Salmon 1:133
Egg, yolk 1:293 **

TCA—tricyclic antidepressants; SSRI—selective serotonin reuptake inhibitor; SFA—saturated fatty acid PUFA—
polyunsaturated fatty acids; MUFA—monounsaturated fatty acids; EPA—eicosapentaenoic acid; DHA—
docosahexaenoic acid; Ca—calcium; P—phosphorus; KD—ketogenic diet; * fiber to carbohydrate ratio; ** Ca to
P ratio.

8. Strengths and Limitations

Our review has several strengths and limitations to consider. Firstly, the analysis
included the manuscripts indexed in one of the three most popular databases, and strictly
defined keywords for relevant literature obtained were used. Apart from the completed
studies, the authors included ongoing studies in the review to better determine the current
concepts and proposals for the potential use of the KD in patients with mental diseases.
The practical advice for psychiatrists and patients was proposed based on literature anal-
ysis. Despite the growing interest in the diet, studies discussing practical guidance for
implementing and monitoring diet therapy are still limited. Due to a lack of guidelines,
clinical application is elusive and, for some practitioners, a major challenge.

The studies included in this review article were mainly pilot studies or case reports
with poor quality and strength of evidence. However, the number of clinical trials is still
too scarce to provide significant and reliable findings. The authors used different tools
to assess the effect of the KD on patients’ health and examined different outcomes. We
could only analyze articles in English and the selection of studies may reflect a publication
bias, as studies with positive outcomes are more likely to be published. There is a lack of
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evidence about long-term studies investigating the KD in patients with mental disorders.
The longstanding consequences of the KD in individuals with a high risk of somatic
complications are still not determined.

9. Conclusions

The KD shows promise as providing benefits to patients with many serious diseases.
However, regarding SMI, the benefits of the KD remain inconclusive at this time. The
currently available data highlight the potential therapeutic role and benefits of the KD
in SMI. The animal model studies demonstrate the ability of the KD to modulate many
pathological processes connected with SZ, MDD, and BD, including disruptions in carbo-
hydrate metabolic pathways, altered neurotransmission, changes in intestinal microbiota
composition, mitochondrial dysfunction, inflammation, and oxidative stress. The data from
case studies and a few studies with unsatisfactory quality confirm the positive effect of the
KD on MDD, BD, and SZ symptoms, including changes in pharmacotherapy (reduction in
dosage or complete withdrawal of medication), in some cases. Additionally, following the
KD reduces the comorbid symptoms of patients. The number of clinical trials assessing the
potential role of the KD in SMI is still limited. However, the number of ongoing studies
indicates the therapeutic potential of the KD, and implementation of this results of these
trials will enable the verification of the hypothesis.
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