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Abstract: Pressure ulcers (PUs) are a prevalent skin disease affecting patients with impaired mobility
and in high-risk groups. These ulcers increase patients’ suffering, medical expenses, and burden on
medical staff. This study introduces a clinical decision support system and verifies it for predicting
real-time PU occurrences within the intensive care unit (ICU) by using MIMIC-IV and in-house ICU
data. We develop various machine learning (ML) and deep learning (DL) models for predicting
PU occurrences in real time using the MIMIC-IV and validate using the MIMIC-IV and Kangwon
National University Hospital (KNUH) dataset. To address the challenge of missing values in time
series, we propose a novel recurrent neural network model, GRU-D++. This model outperformed
other experimental models by achieving the area under the receiver operating characteristic curve
(AUROC) of 0.945 for the on-time prediction and AUROC of 0.912 for 48h in-advance prediction.
Furthermore, in the external validation with the KNUH dataset, the fine-tuned GRU-D++ model
demonstrated superior performances, achieving an AUROC of 0.898 for on-time prediction and
an AUROC of 0.897 for 48h in-advance prediction. The proposed GRU-D++, designed to consider
temporal information and missing values, stands out for its predictive accuracy. Our findings suggest
that this model can significantly alleviate the workload of medical staff and prevent the worsening of
patient conditions by enabling timely interventions for PUs in the ICU.

Keywords: intensive care unit; clinical decision support systems; pressure ulcers; time series; missing
values; machine learning; deep learning
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1. Introduction

Pressure ulcers (PUs) are prevalent skin injuries in patients who remain immobile or
cannot change positions for extended periods. PUs arise due to prolonged pressure on
bony prominences, such as the back of the head, shoulders, elbows, and heels, or from
blood circulation disorders [1-3]. In the early stages of PUs, simple interventions like
wound dressings or patient repositioning are required. However, in advanced cases, the
patient’s condition may deteriorate significantly, and surgical procedures are required.
Such interventions increase medical expenses [4,5] and the workload of the intensive care
unit (ICU) staff [6].

In the ICU, various risk assessment tools, including the Braden scale, Gosnell scale,
Norton scale, and Waterlow score, are used to gauge PU risks [7-12]. Recently, machine
learning (ML)-based PU prediction systems have been developed [13-18] to effectively
predict PU occurrences. These systems employ logistic regression, random forest, boosting
machines, or multi-layer perceptron. However, they suffer two major problems: (1) they
cannot handle time series data even though real-world data are time series and (2) they
cannot appropriately handle missing values even though real-world data contain a massive
number of missing values.

To overcome these problems, we develop recurrent neural network (RNN)-based PU
prediction systems. RNN is a deep learning (DL) method for time series data. We employ
five different RNNs. Simple RNN, gated recurrent unit (GRU) [19], and long-short-term
memory (LSTM) [20] are representative RNN models. However, they are not suitable for
missing-value handling. Therefore, we also employ GRU with decay (GRU-D) [21], which
is specialized to impute missing values. Furthermore, we propose an enhanced version of
GRU-D named GRU-D++, suitable for time series with a high missing-value rate.

In the empirical experiments, Simple RNN, GRU, and LSTM outperform traditional
ML systems, which indicates the importance of time series information for PU prediction.
GRU-D and GRU-D++ outperform RNN systems, demonstrating that their missing-value
imputation mechanisms are very effective. In addition, we conduct additional experiments
of GRU-D++ with different numbers of input variables, data rescaling, and model fine-
tuning. These experiments can provide meaningful insights to researchers who want to
employ GRU-D++ in other medical centers. For the reproducibility of our experiments, we
have publicly opened the source code of GRU-D++ at https://github.com/gim4855744
/GRU-Dpp accessed on 6 November 2023.

2. Methods
2.1. Study Population

We used the Medical Information Mart for Intensive Care IV (MIMIC-1V) [22], a
large public database containing de-identified patient information admitted to the Beth
Israel Deaconess Medical Center (BIDMC), as the internal dataset. Note that, although the
MIMIC-IV is a public database, the use of full MIMIC-1V requires approval from PhysioNet.
Only ICU patients were included in this study. We classified patients who had records of
PUs or who had been assigned PU grades in the nursing records as the PU group. The
remaining patients were classified as the non-PU group. Patients with PUs before ICU
admissions were excluded from this study.

The external validation dataset was collected from the Kangwon National University
Hospital (KNUH) in the Republic of Korea. We used adult patients (age > 18) who were
admitted to the ICU between January 2016 and August 2022 and had at least 48 h of records
after admission. The dataset has been approved by the Institutional Review Board of
KNUH (IRB, KNUH-2022-09-013-00).

2.2. Data Collection

We used 48 variables. Our input variables included patient demographics, vital
signs, laboratory findings, medication and treatment information, underlying diseases, the
Braden scales, and the sedation scale. In the MIMIC-IV, some patients have the Richmond-
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Agitation Sedation Scale (RASS), and the others have the Riker Sedation-Agitation Scale
(SAS). Therefore, we converted RASS to SAS. Figure 1 shows the list of our input variables.
In this study, we use real-world datasets collected hourly. Therefore, some of the variables
have large amounts of missing values; for instance, the laboratory events pH and lactate
are missing 72% and 80%, respectively, whereas vital signs such SBP, DBP, and MBP are

0.6% missing.

Demographics Vital Sign Laboratory Finding Braden Scale
Gender Systolic BP pH Perception
Age Diastolic BP PaCoO, Moisture
Height Mean BP PaO, Activity
Weight Heart Rate Bicarbonate Mobility
BMI Respiratory Rate Lactate Nutrition
Temperature BUN Friction / Shear
Underlying Disease SpO, Creatinine
Invasive Procedure
Diabetes Glucose
Invasive Ventilation
Cerebrovascular Disease Medication Cholesterol
CRRT
Hypertension Relaxant Albumin
ECMO
Arterial Disease Sedation Total Bilirubin
Skin Disease Vasopressor AST Others
ALT Repositioning
Sedation Scale WBC Restraint
SAS Hemoglobin Diarrhea

Figure 1. List of input variables.

2.3. Data Preprocessing
We performed the following preprocessing steps to prepare patients’ time series:

We sampled patient data hourly from ICU admission to discharge;
If multiple sampling data exist in an hour, we selected the average values for con-
tinuous variables, the most negative values for categorical variables, and binarized
medication information;

e  We applied the interquartile range method to discard outliers.

Figure 2 displays a flow chart of the preprocessing steps.

The input variables of a dataset have distinct scales, which is problematic for effectively
training ML models. Thus, we performed min-max scaling with the range [-1, 1]. We
performed forward filling and then mean filling to impute missing values. This imputation
was not performed when using GRU-D and GRU-D++ because they automatically impute
missing values internally.
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Figure 2. Flow chart of the preprocessing steps.

2.4. Prediction Models

In this study, we compare nine ML and DL models. Logistic regression (LR), deci-
sion tree (DT), random forest (RF), and extreme gradient boosting machine (XGBoost) are
representative machine learning models that have been widely used in previous stud-
ies. However, they can only take 1 h of data as input and cannot capture time-varying
information. Therefore, they are not suitable to handle real-time data.

RNN, GRU, and LSTM are deep learning models for time series data. Since they take
information from the previous time step as input again, they can capture time-varying
information. Due to this advantage, they are widely used in real-time applications. How-
ever, the missing value problem is another challenge in the medical domain. Real-world
electronic health records (EHR) contain many missing values, and missing values must be
imputed appropriately before being input into a machine learning model.

GRU-D automatically imputes missing values internally and has demonstrated good per-
formance in EHR datasets compared to other ML and DL models with traditional imputation
methods such as mean fill. This result indicates that the imputation mechanism of GRU-D
is effective. However, we found that GRU-D still has a problem in high missing-value rate
datasets. GRU-D requires the last observation of a variable to generate an imputation value.
However, the last observation is unavailable when the first value of a variable is missing.

In recent years, various missing value imputation methods for multivariate time series
have been proposed [23-27]. Notably, many of these methods adopt a two-phase learning
process [23-27], wherein the entire dataset is first imputed using an imputation model,
followed by the training of a classification model. However, this two-phase approach is time-
consuming for both training and inference. Some recent methods utilize generative adversarial
networks (GANSs) [24-26], but it is well known that training GANs is notoriously difficult.

To overcome this problem, we developed a novel deep learning model named GRU-
D++ in this study. Our GRU-D++ is an end-to-end (training and inference of imputation and
classification are simultaneously performed) and RNN-based model, practical in real-world
scenarios. In addition, we focused on making GRU-D++ able to handle high missing-rate
datasets effectively. To the best of our knowledge, GRU-D++ is the first model that explicitly
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considers high missing-rate data. Details of GRU-D++ can be found in Appendix A. Figure 3
depicts the overview of our proposed real-time in-advance PU prediction system.
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Figure 3. Overview of the proposed in-advance PU prediction system. The blue cell indicates the
patient’s admission time, and the red cell indicates the PU occurrence time. Here, x; represents the
input variables updated every hour, and x'; represents imputed complete variables. Furthermore, yt
is the output of whether PU occurs or not, which was used for training and evaluating our model.
The definition of y; can be changed according to the in-advance prediction setting. For example, in
24 h of in-advance prediction, if PU occurs 60 h after admission, the first “yes” should be y3¢.

3. Results
3.1. Baseline Characteristics

The internal cohort, MIMIC-1V, consists of 67,175 patients, whereas the external cohort,
KNUH, consists of 6876 patients. In the internal cohort, we used 53,740 patients for training
and 13,435 for validation. Table 1 displays the baseline characteristics of both the internal
and external cohorts.

Table 1. Baseline characteristics.

Variables

MIMIC-1IV (Internal) KNUH (External)

Development Cohort

Validation Cohort Validation Cohort

Control Pﬁf::rre p-Value Control Pli.elf::elrre p-Value Control Prlif:::lrre p-Value
w=st600 e wm=12876) T (=6317 (= 550)
Demographics

Male, 7 (%) (52521639‘2,) (5;.21%/0) <0.001 (5;.132450/0) (62?.)35%) <0.001 (441%7250/0) (651.23%) <0.001
Sty e 0 Sy e 0% iy dbey 00

Height (cm) * Coom sy O Koo om0 K (o) 03u
Body Weight (kg) * (f31£9) (fgéége) <0.001 (lefja (fgfgl) 0.097 (f1lfgs) (i516Z§3) <0.001
BMIL* (iz fggl) (199'.?5) <0.001 (i%ii) (197'.15%9) 0481 (ﬁ.%}s) (ﬁé@) <0.001




J. Clin. Med. 2024, 13, 36

6 of 14

Table 1. Cont.

MIMIC-IV (Internal) KNUH (External)
Development Cohort Validation Cohort Validation Cohort
Variables Control Pressure Control Pressure Control Pressure
_ Ulcer p-Value B Ulcer p-Value _ Ulcer p-Value
(n=51,6000  (, _ 5140) (n=12876) (,, _ 559) (n=6317)  (,_ 559)
Underlying Disease
, 15,243 728 3661 192 21 38
DM, 7 (%) 2954%)  (3402%) 0001 ogasey  (3435%) 0.003 (3.50%) ©80%) <000
, 8236 465 2019 118 793 111
CVD, 1 (%) 1596%)  @1.730%) 0001 q5es0) i) P01 qossey  osewy <0001
o 32,541 1385 8081 374 141 10
Hypertension, n.(%) 3560y (64.72%) 0.125 6276%)  (66.91%) 0.052 (2.23%) (1.79%) 0.593
Arterial Disease, 5958 385 1496 100 71 10
1 (%) a155%)  (1799%) 000 qie0)  azsowy <001 (129 (1.79%) 0.233
- . 4852 510 1235 136 101 55
Skin Disease, 11 (%) g 400, 2383%) 0001 (9509, @433%) <0001 g 6o ©.84%) <0001

*: mean and standard deviation, DM: diabetes mellitus, CVD: cerebrovascular disease, BMI: body mass index.

3.2. Predictive Performances

We used the area under the receiver operating characteristics curve (AUROC) and
the area under the precision-recall curve (AUPRC) to evaluate the experimental models.
AUROC is a common evaluation metric for binary classification. AUPRC is a similar metric
to AUROC, but it considers class imbalance. We not only evaluated the performances at
the PU occurrence time but also assessed early prediction performances (i.e., 12, 24, and
48 h in-advance predictions).

Table 2 presents the performances of the experimental models on the internal vali-
dation set. The results indicated that DT performed poorly with an AUROC of 0.569 at
PU occurrence time, whereas the other ML models, LR, RF, and XGBoost exhibited higher
performances with AUROCs of 0.818, 0.818, and 0.814 at the PU occurrence time. All RNN
models exhibited higher performances than the ML models. In particular, GRU exhibited
an AUROC of 0.918 at the PU occurrence time. GRU-D outperformed other RNNSs. Further-
more, GRU-D++ exhibited the best performances in all experimental settings, indicating
the superiority of its imputation mechanism.

We evaluated the performance of the Braden scale, which is widely used to measure
PU risks in the ICU. The AUROC of the Braden score showed lower results at all times
compared to the Al model (Table 3).

Table 2. Performance comparison of various models on the internal validation set.

On Time 12 h In Advance 24 h In Advance 48 h In Advance

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

LR 0.818 0.433 0.814 0.438 0.810 0.442 0.804 0.450
(+£0.000) (+0.001) (£0.000) (+0.001) (+0.000) (+0.001) (£0.000) (+0.001)

DT 0.569 0.145 0.567 0.151 0.566 0.156 0.569 0.172
(£0.007) (+0.006) (£0.007) (+£0.005) (+£0.005) (£0.004) (£0.004) (+£0.003)

RE 0.818 0.407 0.813 0.412 0.808 0.414 0.801 0.424
(+£0.000) (£0.005) (£0.001) (£0.004) (£0.001) (£0.004) (£0.001) (£0.004)

XGBoost 0.814 0.404 0.807 0.404 0.805 0.410 0.797 0.424
(£0.002) (£0.006) (£0.003) (£0.006) (£0.006) (£0.012) (£0.003) (£0.011)

Simple RNN 0.860 0.489 0.864 0.506 0.859 0.511 0.837 0.507
(£0.021) (£0.037) (£0.003) (£0.015) (£0.010) (£0.022) (£0.003) (£0.015)

GRU 0.918 0.657 0.913 0.657 0.905 0.649 0.885 0.630
(£0.003) (£0.011) (£0.002) (+£0.009) (£0.001) (£0.008) (£0.003) (£0.007)

LSTM 0.909 0.625 0.903 0.619 0.900 0.620 0.880 0.605

(£0.005)

(£0.020) (£0.004) (£0.019) (0.007) (£0.020) (0.005) (£0.013)
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Table 2. Cont.
On Time 12 h In Advance 24 h In Advance 48 h In Advance

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

GRU-D 0.944 0.737 0.938 0.723 0.930 0.712 0.909 0.686
(£0.003) (£0.008) (£0.002) (£0.009) (£0.003) (£0.005) (£0.002) (£0.007)

GRU-D++ 0.945 0.742 0.940 0.730 0.933 0.722 0.912 0.699
(£0.003) (£0.005) (4:0.002) (£0.004) (40.001) (40.005) (4:0.003) (£0.007)

LR: logistic regression, DT: decision tree, RF: random forest, XGBoost: extreme gradient boosting machine, RNN:
recurrent neural network, GRU: grated recurrent unit, LSTM: long short-term memory, GRU-D: gated recurrent
unit with a decay.

Table 3. Performance comparison of different input variables on the internal validation set.

On Time 12 h In Advance 24 h In Advance 48 h In Advance

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

Braden scale 0.730 0.201 0.730 0.212 0.731 0.223 0.732 0.245

GRU-D++ 0.945 0.742 0.940 0.730 0.933 0.722 0.912 0.699
(40.003) (40.005) (40.002) (£0.004) (40.001) (£0.005) (40.003) (£0.007)

GRU-D++10 0.923 0.670 0.918 0.665 0911 0.658 0.888 0.637
(+0.004) (£0.012) (£0.003) (£0.004) (+0.005) (+0.003) (£0.007) (+0.008)

GRU-D++ 0.934 0.671 0.928 0.660 0.920 0.648 0.901 0.631
(w/o Braden) (+£0.002) (£0.009) (£0.002) (£0.010) (£0.001) (£0.010) (£0.002) (£0.011)

GRU-D++10: GRU-D++ trained with top ten important variables, GRU-D++ (w/o braden): GRU-D++ trained
without the Braden scales.

We used 48 variables in the experiment, but these variables may not be available in
other medical centers. Since the utilizability of the prediction system is essential, we trained
and evaluated GRU-D++ again using the top ten variables, which have the highest SHAP
values. The top ten variables are displayed in Figure 4. In Table 3, GRU-D++!° indicates
GRU-D++ with the top ten variables. GRU-D++!? outperformed other RNN models trained
with 48 variables, even though it only uses ten variables. Additionally, we conducted the
GRU-D++ with 42 variables out of 48 variables, excluding the six variables corresponding
to the Braden scales, and the results were presented on GRU-D++ (w/o Braden) in Table 3.

High
Braden-Friction l o
Respiratory Rate o -—‘— o
Diarrhea -——'l——— Ll
Invasive Ventilation ——— g
Braden-Perception R —— g
Restraint o — %
Braden-Nutrition —— &
Braden-Mobility
Sedation ———
Braden-Activity —-—I}—
T T T T Low
-0.05 0.00 0.05 0.10

SHAP value (impact on model output)

Figure 4. SHAP values of top ten influential variables.

Table 4 shows the performances of GRU-D++ on the external validation set. GRU-
D++ achieved a promising performance (an AUROC of 0.807 at the PU occurrence time).
To improve the performance of GRU-D++ on the external validation set, we rescale the
external set to have a similar distribution to the internal set. Consequently, GRU-D++
(rescale) exhibited a significantly higher performance than GRU-D++ (AUROC 0.895 vs.
0.807 at the PU occurrence time). In addition, we evaluated the performance of GUR-D++
after fine-tuning. Specifically, we randomly split the external set into training (10%), model
selection (10%), and validation (80%) sets. As a result, GRU-D++ (fine-tune) exhibited the
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highest performances on the external set. A comparison of all experimental models on the
external set is presented in Appendix A.

Table 4. Performances of GRU-D++ on the external validation set.

On Time 12 h In Advance 24 h In Advance 48 h In Advance

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

GRU-D++ 0.807 0.350 0.827 0.380 0.826 0.398 0.848 0.445
(£0.015) (£0.026) (£0.018) (+0.031) (+0.035) (+0.054) (£0.016) (+0.030)

GRU-D++ (rescale) 0.895 0.534 0.892 0.538 0.889 0.539 0.864 0.514
(£0.032) (£0.078) (£0.022) (£0.044) (£0.017) (£0.049) (£0.017) (£0.023)

GRU-D-++ (fine-tune) 0.898 0.523 0.901 0.542 0.895 0.543 0.897 0.575
(£0.018) (£0.051) (£0.016) (£0.045) (£0.019) (£0.050) (£0.008) (£0.027)

4. Discussion
4.1. Analysis of Predictive Performances

We conducted extensive experiments using various ML and DL models to predict PU
occurrences. DT exhibited poor predictive performance because the model is susceptible
to overfitting, that is, it cannot accurately predict unseen data. By contrast, other base-
line models, LR, RF, and XGBoost, exhibited good performances because of their strong
regularization abilities. This is a well-known phenomenon, and previous studies have
demonstrated that XGBoost has good predictive power.

The RNN models, Simple RNN, GRU, and LSTM, demonstrated considerably higher
performances than the ML models, highlighting the importance of considering time-varying
information. Many researchers still widely use boosting machine for their studies, but
we showed that RNN models are very helpful for time series data. In addition, GRU
and LSTM significantly outperformed Simple RNN, which is unsuitable for capturing
long-term temporal information. This result suggests that patients” long-term information
is important in predicting PU occurrences. GRU outperformed LSTM, which is a well-
known phenomenon. LSTM requires more data samples than GRU and is susceptible to
the overfitting problem.

GRU-D and GRU-D++ significantly outperformed the other ML and RNN models,
demonstrating that conventional imputation techniques are insufficient to handle missing
values and that the trainable imputation methods of GRU-D and GRU-D++ are effective. In
addition, GRU-D++ outperformed GRU-D, which indicates that GRU-D++ is more effective
in handling high missing-value rate datasets than GRU-D. We also evaluated GRU-D++
with fewer variables (i.e., ten of the highest SHAP scores) and found that it outperformed
the other RNNs with 48 variables. This is an important finding because other medical
centers may be unable to collect all 48 variables.

We evaluated GRU-D++ on the external validation set and determined that it exhibited
good predictive performances (AUROC >0.8). An issue with directly applying GRU-D++
trained with the internal validation set to the external validation set is that the imputation
mechanism of GRU-D++ was trained to predict the internal validation set accurately. However,
the distributions of the internal and external validation sets may differ. Thus, the imputation
mechanism may fail to generate accurate imputation values on the external validation set,
which can result in a deterioration in the predictive performance of GRU-D++. To address
this problem, we rescaled the external validation set to have a distribution similar to the
internal validation set as much as possible. GRU-D++ with rescaling exhibited a considerably
improved performance over basic GRU-D++, demonstrating that GRU-D++ can achieve
predictive performances close to those of the internal validation set on any other external sets
(e.g., datasets from other medical centers) via rescaling. Furthermore, we retrained (fine-tuned)
GRU-D++ with a small part of the external validation set. It demonstrated superior predictive
performance with a few data samples and is effective for other medical centers.
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4.2. Clinical Findings

Similar to previous studies, we developed PU prediction systems using various ML
and DL models, classifying data into PU and non-PU groups. However, although previous
studies [3,8] have predicted PU occurrences using average values of each variable as
input, we used time series data to predict PU occurrences. This study overcomes the
performance degradation problem of existing studies using time series information and
a novel missing value imputation mechanism. Our system is very effective in real-time
in-advance prediction.

The MIMIC-1V dataset used for model development has been widely used in various
studies because of its diverse variables. However, the dataset has a disproportionate repre-
sentation, with Whites and Blacks accounting for approximately 78.56% and Asians making
up only approximately 2.94% of the total dataset. Due to this racial imbalance, applying
the results of studies only performed with the MIMIC-IV to Asians is inappropriate. One
advantage of this study is presenting a prediction system suitable for diverse ethnicities by
validating the system developed using the MIMIC-IV with Asian data (KNUH).

An analysis of the SHAP values revealed that, as expected, the Braden scores were
among the top ten essential variables for predicting PU occurrences. Interestingly, PU
prediction using only 42 variables without the Braden score demonstrated only 1.2-1.4%
degradation in AUROC to that with 48 variables (Table 3). This finding indicates that
the 42 variables contain valuable information about PU occurrences. Furthermore, using
GRU-D++ allows for accurate predictions without the Braden scales, given that these scales
inherently have been measured based on the patient’s condition related to the 42 variables.
Clinically, this could potentially reduce the workload of nurses who measure and record the
Braden score. We anticipate that this model could be a valuable tool for future clinical use.

5. Conclusions

PU adversely affects patient health and increases the workload of medical staff in
the ICU. Therefore, early prediction of PU is crucial. This study compared various ML
and DL models to develop accurate PU prediction systems. As a result, we developed
the GRU-D++ model, which covers a high missing-value rate. This model demonstrated
better performance than the Braden scale, and it even showed high performance when
implemented without the Braden scale. It is expected to contribute significantly to reducing
the workload of medical staff in the future.

GRU-D++ can be helpful to other researchers aiming to predict PU occurrences accu-
rately. Furthermore, in future work, we plan to develop a system that integrates the precise
prediction of PU occurrence region and grade predictions for PU.
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Appendix A
Appendix A.1. Details of GRU-D++

Having missing values in real-world multivariate time series causes poor prediction
results. To address this problem, many studies have been conducted to impute missing
values [25-27]. GRU-D [23] can directly handle missing values. GRU-D implicitly learns the
weighted sum between the means and last observations of input variables. It outperforms
RNNs with conventional imputation methods on the MIMIC-III and PhysioNet datasets,
which are real-world electronic health records. However, GRU-D is still not suitable for high
missing-value rate datasets. To overcome this limitation, we proposed a novel GRU-based
model for missing values called GRU-D++ in this study.

Let X = (x1,Xp,...,XT) € RT*M be a multivariate time series, where T is the number
of time steps and M is the number of input variables. Given a multivariate time series X,
we define a mask M € {0, 1}TXM for X as follows:

0, ifxgmisN/A
Pom = { 1, otherwise €M (A1)

where N/A indicates a missing value. Then, the last observation X € RT*M for X and the

corresponding mask M € {0, 1}TXM are defined as follows:

Xtm, if Ptm =1 _

Xtm =94 Xt—1m, fptm =0andt>1 €X (A2)
N/A, otherwise

[0, ifFmisN/A

Him = { 1, otherwise €M (A3)

We then record time intervals A € RT*M a5 follows:

Xtm — St—1 + Ot—1m, ift>land p_1m =0
Otm = Xtm —St—1, ift>landp1m=1€X (A4)
0, otherwise

where s = (s1,52,...,5T) € RT indicates the timestamps for X. (A4)~ is the same as the
method detailed in [23]. Figure A1 illustrates an example of X, X, M, M, s, and A.

7 2 N/A 7 2 N/A 0
4 N/A N/A 4 2 N/A 0.3
_[N/A 5 4 v_|4 5 4 _o.7
X=Ina na Nl XTla s 4| 5721
9 N/A 9 9 5 9 2.5
3 NA 1 35 1 3.4
110 110 0 0 0
100 110 03 03 0.3
_lo 1 1 = 111 _lo4 07 07
M=10 0 o M=11 1 1 A=li8 14 14
10 1 11 1 22 18 18
10 1 11 1 09 27 09

Figure Al. An example of X, )N(, M,M,s, and A. This time series has three variables and six time
steps. N/A = not applicable.
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Because time intervals between each time step can be different, we applied a train-
able soft time decaying mechanism to input variables and hidden states of GRU-D++.
The decaying weight vector y,, and vy, for the input x; and hidden state h; are defined
as follows:

Yx = exp(—max(O, Stht + bXt)) © ﬁtr (A5)

Yh, = exp(—max(0, 8;Wy, +by,)), (A6)

where Wy, € RMxM Wy, € RMxK by, € RM and by, € RK are trainable weights and
biases. Unlike GRU-D, Wy, is a dense matrix, and vy, n, is held to 0 if the last observation
Him is missing. These decaying mechanisms help GRU-D++ capture temporal dynamics in
various time intervals. The trainable imputation method is defined as follows:

xé,m = Mtm Xtm + (1 - mt,m) X (')/xt,m zt,m + (1 - ’)’xt,m) Ym) (A7)

where ¥, indicates the arithmetic mean of the mt" variable. Finally, GRU-D++ is defined
as follows:

1= Yhhe 1, (A8)

re = o(xW; + hi_; Uy + m¢V; + mQ, + b;), (A9)

zi = 0(x{W, + h{_;U, + m\V, + mQ, +b,), (A10)
h; = tanh (x{W + (1 © h{_;) U+ mV + mQ +b), (A11)
hi=(1-2z)0h, ;+2zOh,. (A12)

Appendix A.2. Further Experiments

In this section, we present a comparison of all experimental models on the external
validation set. Table A1 displays the performances of the experimental models on the
external validation set, where GRU outperforms GRU-D++. The imputation mechanisms
of GRU-D and GRU-D++ were trained to predict the internal set accurately. Therefore, they
may fail to generate precise imputation values on the external set because the distributions
of the internal and external sets may differ. Consequently, GRU-D and GRU-D++ exhibit
lower performances than GRU. To address this problem, we rescaled the external validation
set to have a similar distribution to the internal set. Table A2 presents the performances
of the experimental models after rescaling, and a considerable improvement in the GRU-
D++ performance. Furthermore, we evaluated the performances of RNNs on the external
validation set after fine-tuning. Thus, we retrained the RNNs with a small subset of the
external set and evaluated the performances on the remaining set. Table A3 demonstrates
the performances of the RNNs on the external set after fine-tuning, where GRU-D++
consistently outperforms the other experimental models in all settings.

Table Al. Performance comparison on the external validation set.

On Time 12 h In Advance 24 h In Advance 48 h In Advance

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

LR 0.653 0.212 0.655 0.220 0.656 0.229 0.667 0.249
(£0.008) (£0.002) (+0.008) (£0.002) (£0.008) (+0.003) (+0.008) (+0.003)

DT 0.504 0.125 0.502 0.131 0.519 0.141 0.520 0.153
(£0.015) (+0.005) (+0.037) (+0.010) (£0.012) (+£0.006) (+0.014) (£0.009)

RE 0.652 0.195 0.631 0.203 0.645 0.215 0.662 0.237
(£0.011) (£0.010) (+0.038) (£0.016) (£0.029) (£0.012) (£0.033) (£0.016)

XGBoost 0.603 0.189 0.605 0.199 0.627 0.221 0.635 0.233
(£0.025) (+£0.010) (£0.022) (£0.015) (£0.026) (£0.018) (£0.016) (£0.015)
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Table Al. Cont.

On Time 12 h In Advance 24 h In Advance 48 h In Advance
AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC
RNN 0.768 0.290 0.753 0.295 0.759 0.309 0.751 0.315
(£0.033) (£0.027) (0.028) (£0.024) (£0.023) (0.025) (£0.008) (0.006)
GRU 0.880 0.469 0.875 0.471 0.873 0.480 0.867 0.490
(40.015) (40.035) (4:0.006) (£0.025) (£0.010) (40.031) (4:0.008) (£0.024)
LSTM 0.816 0.370 0.833 0.390 0.829 0.405 0.815 0.409
(40.042) (0.054) (40.013) (40.027) (£0.017) (£0.029) (£0.027) (40.041)
GRU-D 0.762 0.267 0.768 0.285 0.777 0.307 0.759 0.291
(£0.019) (£0.015) (£0.015) (£0.009) (£0.022) (£0.021) (£0.026) (£0.029)
GRU-D++ 0.807 0.350 0.827 0.380 0.826 0.398 0.848 0.445
(£0.015) (:£0.026) (£0.018) (£0.031) (£0.035) (:£0.054) (£0.016) (:£0.030)
Table A2. Performance comparison on the external validation set with rescaling.
On Time 12 h In Advance 24 h In Advance 48 h In Advance
AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC
IR 0.643 0.217 0.644 0.226 0.646 0.235 0.657 0.255
(£0.010) (:£0.004) (:£0.009) (:£0.004) (£0.010) (:£0.004) (:£0.007) (:£0.004)
DT 0.542 0.139 0.503 0.133 0.539 0.151 0.541 0.161
(£0.022) (£0.011) (:£0.060) (£0.013) (£0.024) (£0.011) (:£0.009) (£0.005)
RE 0.513 0.162 0.590 0.197 0.581 0.202 0.555 0.202
(£0.051) (£0.026) (£0.044) (£0.023) (£0.067) (£0.029) (£0.073) (£0.029)
XGBoost 0.565 0.179 0.569 0.187 0.555 0.192 0.587 0.218
(£0.033) (£0.016) (£0.059) (£0.022) (£0.039) (£0.019) (£0.048) (£0.016)
RNN 0.755 0.278 0.774 0.321 0.779 0.336 0.749 0.324
(£0.043) (£0.028) (0.029) (£0.025) (£0.031) (0.029) (£0.011) (£0.010)
GRU 0.890 0.513 0.882 0.503 0.880 0.515 0.874 0.521
(0.007) (0.024) (40.003) (£0.017) (£0.006) (£0.015) (4:0.005) (4-0.006)
LSTM 0.834 0.393 0.838 0.394 0.819 0.390 0.811 0.398
(40.014) (0.027) (£0.031) (40.048) (£0.017) (0.026) (40.028) (40.045)
CRU-D 0.824 0.370 0.840 0.407 0.810 0.378 0.726 0.289
(40.045) (£0.088) (0.039) (+0.070) (+0.035) (£0.050) (+£0.083) (+0.103)
GRU-D++ 0.895 0.534 0.892 0.538 0.889 0.539 0.864 0.514
(4-0.032) (40.078) (40.022) (40.044) (£0.017) (40.049) (£0.017) (40.023)
Table A3. Performance comparison on the external validation set with finetuning.
On Time 12 h In Advance 24 h In Advance 48 h In Advance
AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC
RNN 0.786 0.307 0.773 0.318 0.766 0.324 0.771 0.338
(£0.014) (£0.017) (£0.032) (£0.019) (£0.012) (£0.021) (£0.012) (£0.005)
GRU 0.873 0.458 0.872 0.466 0.868 0.473 0.864 0.485
(£0.011) (£0.029) (:£0.008) (£0.024) (£0.007) (£0.026) (:£0.007) (£0.023)
LSTM 0.826 0.375 0.832 0.398 0.838 0.414 0.811 0.399
(£0.032) (£0.047) (:£0.026) (:£0.025) (£0.020) (£0.036) (£0.022) (:£0.036)
GRU-D 0.858 0.426 0.853 0.424 0.856 0.442 0.845 0.438
(£0.015) (£0.046) (£0.023) (£0.044) (£0.017) (£0.035) (£0.018) (£0.029)
GRU-D++ 0.898 0.523 0.901 0.542 0.895 0.543 0.897 0.575
(£0.018) (££0.051) (££0.016) (£0.045) (£0.019) (££0.050) (££0.008) (£0.027)
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Table A4. Performance comparison on the external validation set without Braden scales.
On Time 12 h In Advance 24 h In Advance 48 h In Advance
AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC
IR 0.707 0.234 0.709 0.244 0.711 0.254 0.716 0.274
(40.002) (£0.001) (£0.002) (40.001) (40.002) (£0.002) (£0.002) (40.002)
DT 0.516 0.129 0.513 0.133 0.525 0.143 0.532 0.157
(40.008) (£0.004) (£0.008) (40.003) (40.012) (£0.006) (£0.023) (40.013)
RF 0.683 0.211 0.680 0.217 0.694 0.230 0.693 0.251
(40.004) (£0.006) (£0.011) (£0.007) (40.008) (£0.009) (£0.004) (£0.003)
XGBoost 0.676 0.220 0.675 0.227 0.683 0.239 0.692 0.264
(40.010) (£0.009) (£0.008) (40.005) (£0.013) (£0.005) (40.008) (40.005)
RNN 0.761 0.277 0.777 0.290 0.775 0.304 0.772 0.323
(£0.014) (£0.010) (£0.015) (£0.009) (£0.022) (£0.015) (£0.006) (£0.006)
GRU 0.856 0.413 0.843 0.406 0.848 0.426 0.837 0.434
(£0.010) (£0.021) (££0.008) (£0.015) (£0.016) (£0.026) (£0.027) (££0.058)
LSTM 0.844 0.389 0.833 0.388 0.827 0.385 0.813 0.390
(£0.020) (£0.026) (£0.020) (£0.043) (£0.016) (£0.038) (£0.010) (£0.022)
GRU-D 0.749 0.270 0.750 0.286 0.761 0.302 0.778 0.344
(£0.028) (£0.029) (£0.025) (£0.032) (£0.025) (£0.033) (£0.018) (£0.030)
GRU-D++ 0.783 0.328 0.795 0.337 0.803 0.382 0.818 0.405
(40.033) (£0.051) (40.034) (40.046) (40.030) (£0.031) (40.034) (40.039)
Table A5. Performance comparison on the external validation set without Braden scales after rescaling.
On Time 12 h In Advance 24 h In Advance 48 h In Advance
AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC
IR 0.697 0.236 0.697 0.245 0.699 0.254 0.702 0.273
(40.003) (£0.003) (40.003) (40.003) (40.003) (£0.004) (40.003) (40.004)
DT 0.515 0.132 0.546 0.148 0.537 0.148 0.453 0.138
(40.046) (£0.019) (40.030) (40.016) (40.032) (£0.013) (40.097) (40.016)
RF 0.538 0.164 0.612 0.198 0.552 0.185 0.525 0.180
(40.050) (£0.020) (£0.042) (£0.010) (£0.058) (£0.016) (£0.056) (£0.018)
XGBoost 0.537 0.176 0.592 0.197 0.560 0.193 0.568 0.209
(40.057) (£0.028) (40.046) (40.024) (40.062) (£0.025) (£0.050) (40.020)
RNN 0.771 0.284 0.761 0.287 0.751 0.301 0.764 0.323
(£0.026) (£0.013) (£0.016) (£0.007) (£0.009) (£0.004) (£0.014) (£0.009)
GRU 0.866 0.446 0.844 0.426 0.850 0.447 0.826 0.439
(£0.008) (£0.022) (£0.019) (£0.032) (£0.021) (£0.036) (£0.040) (£0.062)
LSTM 0.840 0.380 0.821 0.381 0.798 0.368 0.791 0.376
(£0.008) (£0.010) (£0.033) (£0.029) (£0.039) (£0.043) (£0.023) (£0.021)
GRU-D 0.811 0.408 0.853 0.469 0.845 0.468 0.810 0.431
(0.020) (0.036) (£0.013) (£0.016) (£0.035) (0.048) (£0.059) (£0.115)
GRU-D++ 0.868 0.492 0.888 0.530 0.889 0.546 0.874 0.543
(£0.037) (£0.078) (£0.012) (£0.034) (£0.014) (£0.040) (£0.032) (£0.062)
Table A6. Performance comparison on the external validation set without Braden scales after finetuning.
On Time 12 h In Advance 24 h In Advance 48 h In Advance
AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC
RNN 0.771 0.296 0.782 0.315 0.782 0.329 0.784 0.346
(£0.015) (0.009) (£0.013) (£0.007) (40.014) (£0.015) (£0.001) (40.004)
GRU 0.856 0.426 0.844 0.406 0.852 0.436 0.847 0.447
(40.010) (£0.018) (40.011) (40.020) (40.018) (£0.029) (40.020) (40.046)
LSTM 0.853 0.406 0.851 0.408 0.837 0.405 0.835 0.418
(40.009) (£0.022) (£0.012) (£0.028) (40.025) (£0.025) (£0.001) (£0.009)
0.852 0.424 0.439 0.857 0.449 0.845 0.459
GRU-D (40.010) (£0.021)  OB5(0012) 03y (40.016) (40.037) (+0.006) (40.024)
GRU-D++ 0.881 0.500 0.867 0.475 0.878 0.504 0.875 0.518
(£0.025) (£0.073) (£0.020) (£0.059) (£0.016) (10.048) (£0.011) (£0.039)
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