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Abstract: Background: Resting electrocardiogram (ECG) is a valuable non-invasive diagnostic tool
used in clinical medicine to assess the electrical activity of the heart while the patient is resting.
Abnormalities in ECG may be associated with clinical biomarkers and can predict early stages of
diseases. In this study, we evaluated the association between ECG traits, clinical biomarkers, and
diseases and developed risk scores to predict the risk of developing coronary artery disease (CAD)
in the Qatar Biobank. Methods: This study used 12-lead ECG data from 13,827 participants. The
ECG traits used for association analysis were RR, PR, QRS, QTc, PW, and JT. Association analysis
using regression models was conducted between ECG variables and serum electrolytes, sugars,
lipids, blood pressure (BP), blood and inflammatory biomarkers, and diseases (e.g., type 2 diabetes,
CAD, and stroke). ECG-based and clinical risk scores were developed, and their performance was
assessed to predict CAD. Classical regression and machine-learning models were used for risk score
development. Results: Significant associations were observed with ECG traits. RR showed the largest
number of associations: e.g., positive associations with bicarbonate, chloride, HDL-C, and monocytes,
and negative associations with glucose, insulin, neutrophil, calcium, and risk of T2D. QRS was
positively associated with phosphorus, bicarbonate, and risk of CAD. Elevated QTc was observed in
CAD patients, whereas decreased QTc was correlated with decreased levels of calcium and potassium.
Risk scores developed using regression models were outperformed by machine-learning models. The
area under the receiver operating curve reached 0.84 using a machine-learning model that contains
ECG traits, sugars, lipids, serum electrolytes, and cardiovascular disease risk factors. The odds ratio
for the top decile of CAD risk score compared to the remaining deciles was 13.99. Conclusions: ECG
abnormalities were associated with serum electrolytes, sugars, lipids, and blood and inflammatory
biomarkers. These abnormalities were also observed in T2D and CAD patients. Risk scores showed
great predictive performance in predicting CAD.

Keywords: ECG; arrythmia; risk scores; Qatar Biobank; type 2 diabetes; cardiovascular diseases;
Middle East; diverse populations

1. Introduction

Resting electrocardiogram (ECG) is a valuable diagnostic tool used in clinical medicine
to assess the electrical activity of the heart while the patient is at rest [1–3]. ECG abnor-
malities directly indicate certain diseases, such as atrial fibrillation (AF) [4] and heart
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arrhythmias (ARs) [5]. They tend to occur more often in patients with certain diseases (e.g.,
diabetes [6,7], coronary artery disease (CAD) [8], hypertension (HTN) [9]) compared to
healthy people.

ECG abnormalities have been shown to be associated with metabolic syndrome and
its components, with evidence changing by gender [10]. They have also been associated
with insulin-induced hypoglycemia [11,12] and abnormal serum electrolyte levels. Devia-
tions in the concentrations of extracellular potassium, calcium, and magnesium have the
potential to disrupt the myocyte membrane potential gradients and modify the cardiac
action potential [13]. Many of these results were obtained in disease cohorts and not in
general populations.

Risk scores using ECG parameters have been proposed to predict various outcomes,
including mortality [14], sudden cardiac death in the general population [15], and cardio-
vascular disease and its subclinical phenotypes [16–18]. These risk scores can be combined
with traditional clinical risk scores that are used to predict cardiovascular diseases (CVD)
(e.g., QRISK3) [19] and type 2 diabetes (T2D) (e.g., FINDRISC) [20]. Accurate disease
prediction and early detection are important for better prevention and management of
CAD and T2D.

Most findings about ECG association with various diseases and performance of risk
scores were determined using cohorts of individuals of European descent. To the best of
our knowledge, ECG was never studied in the Middle Eastern and North African (MENA)
region. In this study, we evaluated the association between ECG traits and (1) diseases
such as T2D and CAD, (2) serum electrolytes, (3) blood and inflammatory biomarkers (e.g.,
red blood cells, white blood cells, C-reactive protein, etc.), and (4) CVD/T2D risk factors
(e.g., LDL-C, insulin, etc.) in the Qatar Biobank (QBB) dataset. We used the 12-lead resting
ECG data of 13,827 subjects from QBB, a self-reported questionnaire, biochemical markers
(serum electrolytes and CVD/T2D risk factors (sugars/lipids/BP)), and available electronic
medical records (EMRs) of 8308 subjects to extract disease information (e.g., CAD, AF, etc.).

2. Materials and Methods
2.1. Study Cohort

The dataset consisted of 13,827 Qatari individuals. QBB collected all samples and
generated the phenotypic data [21]. Personal referrals from family, friends, social media,
and the QBB’s website were used to recruit participants. Deep phenotyping was performed
at QBB facilities. Participants filled out a standardized questionnaire presenting information
about lifestyle, nutrition, and medical history. Blood, saliva, and urine were collected and
kept in liquid nitrogen at –80 ◦C. To ensure informed permission from all participants,
the research study protocol’s ethical approval was obtained from the Hamad Medical
Corporation Ethics Committee (Protocol No. MRC-03-20-097) and QBB Institutional Review
Board (IRB) (Protocol No. E-2019-QF-QBB_RES-ACC-0153-0103) in 2020 and renewed on
an annual basis.

2.2. Phenotypic Data: Serum Electrolytes, Sugars/Lipids, Blood and Inflammatory, and
Clinical/Disease Traits

EMRs for 8308 participants were available based on the International Classification
of Diseases, 10th Revision Codes and Systemized Nomenclature of Medicine Clinical Ter-
minology Codes (SNOMED CT). Self-reported questionnaires and biochemical marker
data were available on 14,259 subjects. Five categories were considered: (1) demograph-
ics, which included sex, age, BMI, and ancestry; (2) serum electrolytes, which included
chloride, magnesium, potassium, sodium, calcium, phosphorus, and bicarbonate; (3) sug-
ars/lipids, which included glucose, HbA1C, insulin, LDL-C, HDL-C, total cholesterol (TC),
triglycerides (TG); (4) blood and inflammatory, which included eosinophil, basophil, lym-
phocyte, monocyte, neutrophil, red blood cells, white blood cells, and C-reactive protein;
and (5) clinical/disease traits, which included CAD (527 patients), T2D (3308 patients), AF
(67 patients), AR (391 patients), cardiomyopathy (CM; 48 patients), stroke (92 patients),
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hyperthyroidism (1369 patients), smoking (3615 patients), systolic blood pressure (SBP),
and diastolic blood pressure (DBP). T2D status was determined using HbA1C (T2D if
HbA1C > 6.5), self-reported questionnaire, and available EMR data. CAD, AF, CM, stroke,
hyperthyroidism, and smoking were extracted from EMR and questionnaire data. Note
that all ECG traits and tested continuous variables were mean-centered and standardized.

2.3. ECG Data

Resting 12-lead ECG was performed using Mortara Eli 350 or 380 automated system
(Welch Allyn, Skaneateles Falls, New York, NY, USA) to collect data from participants
who were required to rest for 2 min. The ECG data were collected following 10 s ECG
recording with an interval of 1 min between each recording, three times [21]. Measures
were automatically recorded, including the RR interval, PR interval, QRS duration, and
corrected QT interval (QTc). These measures were averaged over the 3 recordings and used
for analysis. Two additional variables were calculated: P wave (PW) was calculated as max
(Offset–Onset) over the three time points, and JT interval as “average QTc–average QRS”.
ECG data were available for 13,827 participants.

2.4. Statistical Analysis

Association analysis was performed between the 6 ECG traits (RR, PR, QRS, QTc,
PW, and JT) and each of the demographics, serum electrolytes, sugars/lipids, blood and
inflammatory, and clinical/disease traits. Linear regression was applied, adjusting for sex,
age, and BMI, except when testing the association with demographic variables. Risk scores
were developed to predict CAD using a variety of models that included the following as
predictors: demographics only, ECG traits only, serum electrolytes only, sugars/lipids only,
and clinical/disease traits that are known to be risk factors for CAD. A global model was
developed, including all traits from the previous categories. The risk scores were created
by splitting the full data into training and testing datasets (70% vs. 30%, respectively).
Multivariate logistic regression and xgboost machine-learning models were performed. In
the multivariate regression model (RSmult), the regression effect sizes were recorded and
used to build the risk score as a weighted sum (effect size × predictors). Only predictors
that had a p < 0.05 were included in the risk score calculation. Xgboost risk score (RSxgboost)
included all features/predictors and used the following parameters: max_depth = 2,
gamma = 0, max_delta_step = 0, lambda = 1, eta = 0.001, nthread = 8, and nrounds = 4000 in
the xgboost R package (https://cran.r-project.org/web/packages/xgboost/index.html,
accessed on 1 September 2023). The performance of each score was evaluated using logistic
regression between the disease and the risk score. OR per 1 SD increase, the area under
the receiver operating curve (AUC), and OR for the top decile (ORdecile) vs. the remaining
deciles were reported as performance metrics in the testing dataset.

3. Results

The cohort characteristics and summary of the ECG traits before normalization are
shown in Table 1. The total number of subjects was 13,827, of which 44.46% were male. The
cohort was relatively young, with an average age of 40.12 ± 13.11. The average BMI was
29.6 ± 6.16.

Table 1. Cohort characteristics and variable distributions.

Mean ± SD/N (%)

Sex (male) 6340 (44.46)
Age 40.12 ± 13.11
BMI 29.6 ± 6.16
AF 67 (0.005)
AR 156 (0.011)
CR 48 (0.003)

CAD 527 (0.038)

https://cran.r-project.org/web/packages/xgboost/index.html
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Table 1. Cont.

Mean ± SD/N (%)

T2D 3308 (0.236)
Hyperthyroidism 1369 (0.098)

Smoking 3615 (0.258)
Stroke 92 (0.007)

RR 905.29 ± 131.23
PR 162 ± 22.55

QRS 93.28 ± 10.63
QTc 402.29 ± 18.56
PW 116.15 ± 11.13
JT 309.01 ± 19.78

3.1. Association Analysis
3.1.1. Demographics

Sex, age, and BMI were all associated with all ECG traits (p < 3.8 × 10−13; Table 2).
RR, PR, QRS, and PW were significantly elevated in females, with QRS being the most
significant ECG trait. QTc and JT were significantly decreased in females (Table 2). All
ECG traits except for RR were positively correlated with age and BMI (Table 2). Age
showed the most significant association with QTc (p = 3.4 × 10−218) and BMI with PW
(p = 9.1 × 10−222) (Table 2). Ancestry, as inferred using genetic data, was associated with
ECG traits. Only JT and RR did not show significant associations using the Bonferroni
significance level (α = 0.05/6 = 0.008) (Figure 1). PR was the ECG trait with the largest
differences between ancestral groups (p = 7.99 × 10−19; Figure 1). PR was the largest in
individuals with African origins (average—167 ms) and lowest in individuals with South
Asian origins (average—159 ms). QRS was the largest in South-Asian-origin individuals
(average—94 ms) and the lowest in African-origin individuals (average—91 ms) (Figure 1).
QTc was also the highest in South-Asian-origin individuals. Although differences were
observed between ancestral groups, the magnitude of these differences may not be of
clinical relevance.

Table 2. Associations between ECG traits and demographic data.

Sex Age BMI Ancestry

b p b p b p p

RR −0.44 6.04 × 10−150 −0.06 3.81 × 10−13 −0.15 6.27 × 10−66 0.42
PR −0.24 3.12 × 10−43 0.23 8.67 × 10−163 0.18 1.86 × 10−96 7.99 × 10−19

QRS −0.71 0 0.12 1.20 × 10−42 0.10 1.07 × 10−31 3.52 × 10−14

QTc 0.56 1.29 × 10−247 0.26 3.43 × 10−218 0.20 7.58 × 10−122 2.12 × 10−4

PW −0.29 2.05 × 10−66 0.23 2.01 × 10−168 0.27 9.14 × 10−222 2.55 × 10−6

JT 0.91 0 0.18 1.84 × 10−106 0.13 8.13 × 10−55 0.04

The sex variable was coded as 1 for females and 0 for males. Negative effect size means a decrease in ECG traits
in females.

3.1.2. Serum Electrolytes

With Bonferroni significance (0.05/(7 × 6) = 1.1 × 10−3), RR was significantly associ-
ated with all tested electrolytes except potassium (Figure 2). Electrolytes were associated
with an increase in RR, except for calcium (Figure 2). PR was only associated with phospho-
rus and bicarbonate, showing a positive correlation (Figure 2). QRS was associated with
potassium (negative correlation) and phosphorus and bicarbonate (positive correlations)
(Figure 2). QTc was significantly decreased with potassium and calcium but increased
with phosphorus and magnesium (Figure 2). PW did not show significant associations at
Bonferroni levels, while JT was significantly elevated with phosphorus and decreased with
potassium and calcium (Figure 2).
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represent positive ones. The numbers in each cell are the p-values. The underlined p-values are
significant with Bonferroni threshold.

3.1.3. Sugars/Lipids

With Bonferroni significance (0.05/(7 × 6) = 1.1 × 10−3), all sugars/lipids traits except
LDL-C were associated with RR (Figure 3). Only HDL-C showed a positive correlation with
RR, meaning that the increase in HDL-C was associated with an increase in RR (Figure 3).
The two most significant associations were between RR and HbA1C (p = 5.0 × 10−133) and
between RR and TG (p = 2.9 × 10−94) (Figure 3). For PR, only insulin, HbA1C, and TG
showed significant associations (p = 1.3 × 10−4, 1.3 × 10−4, and 1.9 × 10−5, respectively;
Figure 3). For QRS, QTc, PW, and JT, only one negative association was significant between
PW and HbA1C (p = 7.3 × 10−5) (Figure 3).
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3.1.4. Blood and Inflammatory

Here, the Bonferroni significance level was 0.05/(8 × 6) = 10−3. Monocytes and
basophils did not show significant associations with RR (Figure 4). Eosinophils were associ-
ated with an elevated RR, while the remaining blood traits were associated with a decreased
RR (Figure 4). For PR, neutrophils, red blood cells, white blood cells, and C-reactive protein
were significantly associated and negatively correlated with PR (p = 1.2 × 10−14, 4.5 × 10−6,
5.0 × 10−11, and 3.3 × 10−5, respectively; Figure 4). For QRS and JT, C-reactive protein and
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red blood cells yielded negative associations (p = 1.8 × 10−6 and 1.1 × 10−4, respectively;
Figure 4). No significant associations were observed for QTc and PW (Figure 4).
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3.1.5. Clinical/Disease Traits

AF was significantly associated with PW at a Bonferroni significance level
(α = 0.05/(10 × 6) = 8.3 × 10−4; p = 5.7 × 10−18; Figure 5). Low PW was associated
with a higher risk of AF (Figure 5). Higher CM risk was associated with elevated QRS
and QTc (p = 2.3 × 10−20 and 6.2 × 10−11, respectively; Figure 5). Increased QRS and
QTc were associated with elevated risk of CAD (p = 2.3 × 10−20 and 6.2 × 10−11, respec-
tively; Figure 5). T2D risk was decreased with elevated PW (p = 6.6 × 10−4), elevated PR
(p = 4 × 10−4), and elevated RR (p = 7.7 × 10−73) (Figure 5). Hyperthyroidism and stroke
were not associated with any ECG traits (Figure 5). SBP and DBP were associated with RR
(p = 6.8 × 10−50 and 9.2 × 10−140, respectively) and QTc (p = 3.6 × 10−8 and 8.3 × 10−7,
respectively). QRS was associated with SBP (p = 8.7 × 10−7), JT was associated with DBP
(p = 3.6 × 10−11), and PW was associated with DBP (p = 1.4 × 10−5) (Figure 5).

3.2. Risk Score Performance to Predict CAD

Risk score results are presented in Table 3. The RSmult for the demographic variables
was performed twice. In the first model, only sex and age were the variables that con-
tributed to the risk scores, while BMI and ancestry were not significant. The OR was
3.84 (95% CI [3.21, 4.59], p = 3.55 × 10−49) and AUC was 0.84. However, this performance
is due to the data collection process and the unbalanced distribution of age and sex for
CAD vs. control subjects (mean age in CAD = 54.46 vs. 39.57 in controls; 39% of CAD
patients were females, whereas 56% were females in controls). In the second RSmult model,
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we omitted age and sex. BMI and ancestry were both significant and yielded a score with
OR = 1.24 (95% CI [1.06, 1.46], p = 6.34 × 10−3) and AUC = 0.56. The RSmult model focusing
on clinical/disease variables (AUC = 0.8, OR = 2.85 (95% CI [2.46, 3.31], p = 8.76 × 10−44)
performed better than the models focusing on ECG traits (AUC = 0.66, OR = 1.65 (95%
CI [1.45, 1.88], p = 4 × 10−14), electrolytes (AUC = 0.64, OR = 1.76 (95% CI [1.52, 2.04],
p = 1.9 × 10−14), sugars/lipids (AUC = 0.75, OR = 2.04 (95% CI [1.8, 2.32], p = 9.88 × 10−29).
The model that included the blood and inflammatory variables did not show significant
results. The global model showed a negligible improvement in performance over the model
with clinical/disease variables (AUC = 0.81, OR = 2.85 (95% CI [2.46, 3.3], p = 2.2 × 10−44).
The ORdecile was the highest for the global model (ORdecile = 9.57). Xgboost model in-
cluded all variables. The global RSxgboost outperformed the global RSmult (AUC = 0.84,
OR = 2.06 (95% CI [1.87, 2.28], p = 2.1 × 10−46). Most importantly, the ORdecile for xgboost
was 13.99, which was substantially higher than the global RSmult (i.e., 9.57). The effect
sizes for the multivariate regression and variable importance for xgboost are shown in
Supplementary Table S1. Finally, we performed a risk score analysis excluding AF patients
from the dataset, but the obtained performance did not change (data not shown).

Figure 5. Associations between ECG traits and clinical/disease traits. Colors are proportional to the
effect size of each regression model. Red colors represent a negative association, while green colors
represent positive ones. The numbers in each cell are the p-values. Cases were coded as 1 and controls
as 0. AF: atrial fibrillation; AR: arrhythmia; CAD: coronary artery disease; T2D: type 2 diabetes;
HyperThyroid: hyperthyroidism. The underlined p-values are significant with Bonferroni threshold.

Table 3. Multivariate regression and machine-learning risk score models to predict CAD using several
combinations of risk factors.

Risk Score

OR OR 95% CI p OR Decile AUC AUC 95% CI

Multivariate regression
BMI + Ancestry 1.24 [1.06, 1.46] 6.34 × 10−3 1.36 0.56 [0.52, 0.61]

Sex + Age 3.84 [3.21, 4.59] 3.55 × 10−49 11.73 0.84 [0.81, 0.87]
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Table 3. Cont.

Risk Score

OR OR 95% CI p OR Decile AUC AUC 95% CI

PR + QRS + QTc 1.65 [1.45, 1.88] 4.00 × 10−14 3.76 0.66 [0.61, 0.7]
HDL + HbA1C 2.04 [1.8, 2.32] 9.88 × 10−29 7.57 0.75 [0.7, 0.79]

Chloride + Magnesium + Potassium
+ Calcium 1.76 [1.52, 2.04] 1.94 × 10−14 4.32 0.64 [0.59, 0.69]

SBP + DBP + Smoking + T2D +
Stroke 2.85 [2.46, 3.31] 8.76 × 10−44 9.29 0.8 [0.77, 0.84]

SBP + DBP + Smoking + T2D +
Stroke + RR + PR + QRS + QTc +

HbA1C + Magnesium + Potassium +
Ancestry

2.85 [2.46, 3.3] 2.20 × 10−44 9.57 0.81 [0.77, 0.85]

xgboost
T2D + HbA1C + TC + QRS + SBP +
QTc + Smoking + Glucose + RR +
Potassium + LDL-C + PW + TG +
BMI + DBP + Insulin + Stroke +

HDL-C + PR

2.06 [1.87, 2.28] 2.10 × 10−46 13.99 0.84 [0.81, 0.88]

TC: total cholesterol; TG: triglyceride; SBP: systolic blood pressure; DBP: diastolic blood pressure.

4. Discussion

In this study, we performed association analysis between ECG traits (RR, PR, QRS,
QTc, PW, and JT) and several clinical biomarkers and diseases. We used the QBB dataset
of 13,827 participants with available ECG data. We tested three types of biomarkers:
serum electrolytes (chloride, magnesium, potassium, sodium, calcium, phosphorus, and
bicarbonate), sugars/lipids (glucose, HbA1C, insulin, LDL-C, HDL-C, total cholesterol, and
TG), and blood and inflammatory (eosinophil, basophil, lymphocyte, monocyte, neutrophil,
red blood cells, white blood cells, and C-reactive protein). The clinical and disease traits
that were tested with ECG traits were AF, AR, CM, T2D, CAD, smoking, hyperthyroidism,
stroke, SBP, and DBP. This is the first and largest such a study in the Middle East and North
Africa region. Participants in the QBB cohort had Arab, African, and South Asian origins.
The summary of significant associations and their directions with ECG traits is shown in
Figure 6.

Serum electrolyte imbalances have been reported to be associated with ECG abnormal-
ities and cardiac arrhythmias [22,23]. Mild hyperkalemia was associated with a narrow QTc
interval [23]. This is concordant with what was observed in our study. QTc was inversely
and significantly associated with potassium levels. However, potassium levels were not
associated with PR, as previously discussed [13,23]. Consistent with the literature, lower
calcium levels (hypocalcemia) were associated with prolongation of QTc [22,24]. Lower lev-
els of calcium were also associated with elevated JT and RR. Heart rate, which is inversely
proportional to RR, was previously shown to correlate with lower levels of calcium [25]. In
our study, heart rate increase was associated with a rise in all serum electrolytes (except for
calcium), with bicarbonate and chloride being the most statistically significant. Phosphorus
rise was associated with prolonged QTc. In the Third National Health and Nutrition Survey
(NHANES III) and the Atherosclerosis Risk in Communities (ARIC) study, phosphorus
was positively associated with longer QTc, which is consistent with our data [24]. However,
in patients undergoing hemodialysis, longer QTc was associated with lower phosphorus
serum levels [26]. This suggests that the associations we identified may be valid for rela-
tively healthy participants, and different relationships may be observed depending on the
presence of certain diseases.

Sugars, lipids, and BP traits are known risk factors for CVD and T2D. CVD and T2D
can lead to cardiac arrhythmias [27]. AF, which is the most common form of arrhythmias,
is associated with a range of CVD [28]. In our study, all sugars/lipids/BP were associated
with heart rate except LDL-C. An increase in these traits was associated with an increase in
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heart rate, except for HDL-C, which was negatively correlated with heart rate. In a recent
study with a relatively small sample size, a positive correlation was observed between heart
rate and HDL-C, LDL-C, BMI, and TG [29]. Our results should be more accurate because of
our larger sample size (40× higher) and thus higher statistical power. The good cholesterol
HDL-C is considered a protective factor against CVD, and it is expected that it has an impact
on decreasing heart rate. QTc was only associated with BP traits where the correlation was
positive (higher blood pressure associated with longer QTc). Elevations in SBP and DBP
can disrupt ventricular repolarization, leading to the prolongation of the QT interval [30].
Prolonged PR intervals increase susceptibility to AF [31,32]. It was previously shown
that enhanced PI3K activation reduced PR intervals in cross-bred transgenic mice [33].
Therefore, PI3K activation by insulin may avert AF and improve cardiac rhythm [31]. Our
results add evidence to this hypothesis, where we showed that an increase in insulin and
HbA1C levels was associated with reduced PR intervals.
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PR interval was negatively associated with red blood cells, neutrophils, and C-reactive
protein. The decrease in any of these biomarkers may lead to a prolonged PR. The decrease
in RR due to an increase in red blood cells, neutrophils, and C-reactive protein resulted in
only a PR interval decrease, while QRS, QTc, PW, and JT remained relatively unchanged.
The other types of white blood cells were not associated with any ECG trait. The increase
in red blood cells is expected to be associated with an increase in heart rate (decrease in
RR). When tissues receive insufficient oxygen, the body may attempt to compensate by
increasing the heart rate to pump more oxygenated blood to the tissues.

ECG alterations have been previously observed in T2D, CVD, CM, and other dis-
eases [34]. For example, long QTc, QT dispersion, and left ventricular hypertrophy may be
observed in T2D patients [35]. In our study, PR, RR, and PW intervals were the only ECG
variables that decreased in T2D patients. In CAD patients, QRS and QTc were the only
ECG traits that showed significant associations. An increase in QRS and QTc was observed
in CAD patients. Like CAD, CM patients showed higher QRS and QTc levels. As expected,
the increase in QRS and QTc was greater in CM patients than in CAD patients. AF patients,
despite their small numbers, showed a significant decrease in PW intervals. Long QRS and
QTc were found to be among the strongest predictors of CAD events in postmenopausal
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women [36] concordant with what was observed in our study, which generalizes this
finding to the general population (not only postmenopausal women). These two variables
were also identified as the dominant mortality predictors [36]. They can be used clinically
to improve the prognosis of CAD patients.

The risk prediction of CAD using various well-established risk factors is important
for early detection and prevention. One commonly used risk score is QRISK3 [19]. Addi-
tional risk factors can improve the performance of risk scores for CAD. ECG traits were
previously used to predict the level of coronary artery calcium, and they provided good
performance [16]. ECG abnormality risk scores were also shown to predict mortality risk in
the elderly [37]. Recently, a deep learning model was developed using 12-lead ECGs and
predicted 5-year atherosclerotic disease with an AUC of 0.67 [38]. Our results showed a
good predictive power for CAD using ECG traits only (i.e., AUC = 0.66). OR for the top
decile compared to the remaining deciles was 3.76 for the model that includes ECG traits
only, which means a 3.76-fold risk increase in people with the highest risk score values. The
performance of the risk scores developed using serum electrolytes, sugars/lipids, or clini-
cal/disease traits all outperformed the ECG-based risk score. The global risk score, which
showed the greatest predictive performance (AUC = 0.81 and ORdecile = 9.57), contained
T2D, stroke, SBP, DBP, RR, PR, QRS, QTc, magnesium, potassium, smoking, and HbA1C.
The machine-learning model, xgboost, outperformed the multivariate logistic regression
(AUC = 0.84 and ORdecile = 13.99). The model included serum electrolytes, sugars/lipids,
demographics, and clinical/disease risk factors. Both multivariate and xgboost models can
be easily used in clinical settings. However, it is important to validate our developed risk
scores in independent cohorts from the same region. Finally, the validation and utility of
integrating ECG risk scores, genetic risk scores, and clinical scores remains to be seen in
future longitudinal studies for CAD and other diseases.

This study has a few limitations. The sample size for diseases (AF, CM, AR, CAD, and
stroke) is small. In the risk score analysis, ideally, the cases and controls should be age-
and sex-matched, which was not the case in our study. Selecting a subset of controls to
match our cases would have reduced the sample size drastically, especially for the disease
categories. Since this is a retrospective study, the validation of the risk scores needs further
investigation using longitudinal datasets.

5. Conclusions

Our study is the largest and the first study to investigate ECG trait associations with
sugars, lipids, BP, blood and inflammatory biomarkers, CAD, T2D, and arrhythmias in a
Middle Eastern cohort. Significant associations were identified with different ECG traits.
RR was the ECG trait that showed significant associations with the highest number of
variables. T2D, HbA1C, and triglycerides showed the largest negative effect size with
RR. Importantly, QTc was shown to be longer in CAD patients but showed a negative
correlation with calcium levels. Interestingly, the JT interval, part of the QTc interval, was
negatively associated with calcium levels and smoking. Risk scores for CAD showed great
predictive power. They included ECG traits, demographics, serum electrolytes, sugars,
lipids, and clinical and disease traits (T2D, HbA1C, TC, QRS, SBP, QTc, smoking, glucose,
RR, potassium, LDL-C, PW, TG, BMI, DBP, insulin, stroke, HDL-C, and PR). Implementation
of these scores in clinical practice should help in setting tailored prevention and treatment
plans for everyone.
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