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Abstract: Background: In patients with cervical spinal cord injury (SCI), we need to make accurate
prognostic predictions in the acute phase for more effective rehabilitation. We hypothesized that
a multivariate prognosis would be useful for patients with cervical SCI. Methods: We made two
predictive models using Multiple Linear Regression (MLR) and Artificial Neural Networks (ANNs).
We adopted MLR as a conventional predictive model. Both models were created using the same
20 clinical parameters of the acute phase data at the time of admission. The prediction results were
classified by the ASIA Impairment Scale. The training data consisted of 60 cases, and prognosis
prediction was performed for 20 future cases (test cohort). All patients were treated in the Spinal
Injuries Center (SIC) in Fukuoka, Japan. Results: A total of 16 out of 20 cases were predictable.
The correct answer rate of MLR was 31.3%, while the rate of ANNs was 75.0% (number of correct
answers: 12). Conclusion: We were able to predict the prognosis of patients with cervical SCI from
acute clinical data using ANNs. Performing effective rehabilitation based on this prediction will
improve the patient’s quality of life after discharge. Although there is room for improvement, ANNs
are useful as a prognostic tool for patients with cervical SCI.

Keywords: artificial neural networks (ANNs); cervical spinal cord injury; prognosis prediction;
rehabilitation; artificial intelligence

1. Introduction

Patients with cervical spinal cord injury (SCI) experience varying degrees of paralysis.
Generally, patients who develop mild paralysis in the early stages have a good recovery.
However, even if severe paralysis develops early, there may be significant recovery, making
it difficult to predict the prognosis [1]. This difficulty in predicting makes it difficult to
set rehabilitation goals for patients. Therefore, accurately predicting each patient’s motor
function prognosis at the early stages of injury is important for rehabilitation goals and
post-discharge life planning [2]. If we can predict the prognosis early after injury, it will
be possible to perform rehabilitation according to the functional outcome. For example, if
there is a high possibility that the patient will be able to walk, rehabilitation with a walker
will be necessary, and if severe paralysis remains and it is difficult to stand up, rehabilitation
using a wheelchair will be necessary. In addition, the number of patients with cervical SCI
is increasing in Japan year by year; therefore, it is expected that it will be more important
to perform efficient rehabilitation and that patients will return to society or be discharged
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from the hospital as soon as possible [3]. For this reason, it is very important to accurately
predict the prognosis of cervical SCI from the early stages of injury.

Furthermore, accurate prognosis prediction plays an important role in determining the
effectiveness of new treatments. Currently, a lot of basic research is being carried out on SCI
patients, and some treatments are already at the stage of clinical application [4,5]. Unlike
basic research, it is extremely difficult to establish an accurate control group in clinical
research. If accurate prognosis prediction becomes possible, we can use the prediction
results as a control to determine the effectiveness of new treatments, which is a huge
advantage for the future development of SCI research. However, it is difficult to accurately
predict the prognosis at an early stage of injury [6]

So far, many studies have been conducted on predicting the prognosis of patients
with cervical SCI, and many univariate factors have been reported (e.g., blood glucose [7],
Zinc [8], OPLL [9,10]). However, these factors are intricately intertwined and influence the
final prognosis. In addition, patients come from a wide range of backgrounds, from young
to elderly, and have a wide range of complications, and the types of trauma and associated
fractures also affect prognosis. Therefore, prognosis prediction using univariate variables is
extremely difficult, and prediction using multivariate variables is highly anticipated. So, we
made a hypothesis that combining these univariate factors and predicting prognosis using
multivariate factors would enable more accurate prognosis prediction. In fact, an accurate
prognosis prediction method using a multivariate analysis has not yet been established.
Conventionally known multivariate prediction models include those based on Multiple
Linear Regression (MLR) analysis, but the prediction accuracy of this model remains
limited [11,12]. Therefore, we wondered if it was possible to create a predictive model that
was better than this conventional MLR analysis model.

In the various multivariate models, Artificial Neural Networks (ANNs) are one of
the AI machine learning models. ANNs are inspired by the sophisticated functionality of
human brains, where hundreds of billions of interconnected neurons process information
in parallel (Figure 1) [13]. They are comprised of a large number of connected nodes, each
of which performs a simple mathematical operation (Figure 2). ANNs are currently being
applied in many fields, including medical science [14,15]. For instance, for breast, colorectal,
prostate, and hypopharyngeal cancer, accurate prognostic predictions have been made by
using ANNs, and its usefulness in the future is highly expected [16–18]. Therefore, we
used ANNs to construct a model that enables an accurate prognosis of cervical SCI in the
acute phase.

Currently, prognosis predictions for patients with cervical SCI are often made by
individual physicians based on experience. We hope that this research will enable many
people to predict the prognosis of patients with SCI more easily and help determine
subsequent treatment strategies. We created two predictive models using MLR analysis
and ANNs from the same 20 parameters. We compared them to determine which model
was better.
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2. Materials and Methods
2.1. Participants and Data Splitting

Eighty-six individuals were transported to Spinal Injuries Center (SIC in Fukuoka,
Japan) by the day after the injury from February 2013 to May 2019. In 6 cases of 86,
neurological evaluation was insufficient, so these 6 cases were excluded. Therefore, the
cohort consisted of 80 patients. We defined the early 60 cases as training cohorts and later
20 cases as test cohorts (Table 1). By dividing the cases chronologically, we aimed for a
pseudo-prospective study. The average age of the training cohort was 61.9 years (range:
18–83), with 47 (78.3%) men and 13 (21.7%) women. Meanwhile, the average age of the
test cohort was 56.1 years (range: 18–79), with 17 cases (85.0%) being male and 3 cases
(15.0%) being female. The number of cases by ASIA Impairment Scale upon admission in
the training cohort was 31 cases (38.8%) of grade A, 15 cases (18.8%) of grade B, 30 cases
(37.5%) of grade C, and 4 cases of grade D (5.0%).

In order to build machine learning models, learning using training datasets is essential.
Training data are also called learning data. A test cohort is a data set used to check the
accuracy of the constructed machine learning model and uses data that are not used
in the training set to perform accuracy tests. The training cohort was transported to
SIC from July 2017 to May 2019, and the test cohort was delivered after June 2019. All
patients were hospitalized for 6 months or more. In the hospital, they underwent SIC
rehabilitation program.

2.2. Primary Endpoint

In this study, the primary endpoint was the ASIA Impairment Scale (AIS) at hospital
discharge. All patients were discharged more than 6 months after the injury. AIS is a
medical rating scale for assessing the degree of SCI. This scale is useful in classifying the
degree of symptoms and functional impairment in patients with SCI and in developing
treatment and rehabilitation plans. It also helps to track the progression of symptoms and
monitor the effectiveness of treatment.
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Table 1. Participants and data splitting. * Height and body weight data were missing for three
patients in the training group.

All Patients
(N = 80)

Training Group
(N = 60)

Test Group
(N = 20)

Age (range) 60.4 (18–83) 61.9 (18–83) 56.1 (18–79)
Sex

Male (%) 64 (80.0) 47 (78.3) 17 (85.0)
Female (%) 16 (20.0) 13 (21.7) 3 (15.0)

Height (range) 165.8 (143–186) (N = 77 *) 164.9 (145–182) (N = 57 *) 168.3 (143–186)
Body weight (range) 64.4 (41–1147) (N = 77 *) 62.9 (41–86) (N = 57 *) 68.7 (41–114)
ASIA Impairment Scale on Admission

A (%) 31 (38.8) 26 (43.3) 5 (25.0)
B (%) 15 (18.8) 10 (16.7) 5 (25.0)
C (%) 30 (37.5) 20 (33.3) 10 (50.0)
D (%) 4 (5.0) 4 (6.7) 0 (0.0)

NLI
C1 (%) 2 (2.5) 2 (3.3) 0 (0.0)
C2 (%) 3 (3.8) 3 (5.0) 0 (0.0)
C3 (%) 11 (13.8) 8 (13.3) 3 (15.0)
C4 (%) 36 (45.0) 24 (40.0) 12 (60.0)
C5 (%) 17 (21.3) 14 (23.3) 3 (15.0)
C6 (%) 9 (11.3) 7 (11.7) 2 (10.0)
C7 (%) 0 (0.0) 0 (0.0) 0 (0.0)
C8 (%) 1 (1.3) 1 (1.7) 0 (0.0)
T1 (%) 1 (1.3) 1 (1.7) 0 (0.0)

ASIA total motor score on admission (range) 21.3 (0–72) 22.6 (0–72) 17.5 (1–44)
Lesion Type

Compression fracture (%) 1 (1.3) 1 (1.7) 0 (0.0)
Axis rotation dislocation fracture (%) 1 (1.3) 1 (1.7) 0 (0.0)
Atlas fracture (%) 1 (1.3) 1 (1.7) 0 (0.0)
Flexion teardrop fracture (%) 3 (3.8) 2 (3.3) 1 (5.0)
Dens fracture (%) 2 (2.5) 2 (3.3) 0 (0.0)
Anterior dislocation fracture (%) 20 (25.0) 18 (33.3) 2 (10.0)
Vertebral fracture (%) 6 (7.5) 2 (3.3) 4 (20.0)
Burst fracture (%) 2 (2.5) 2 (3.3) 0 (0.0)
Fracture of the vertebral arch (%) 1 (1.3) 0 (0.0) 1 (5.0)
Spinal cord injury without bone injury (%) 42 (52.5) 30 (50.0) 12 (60.0)
Others (%) 1 (1.3) 1 (1.7) 0 (0.0)

OPLL (%) 23 (28.8) 20 (33.3) 3 (15.0)
Sagittal low in high (MRI) (%) 26 (32.5) 19 (31.7) 7 (35.0)
Pre-vertebral hematoma (MRI) (%) 53 (66.3) 38 (63.3) 15 (75.0)
Laboratory data

WBC (×10³) (range) 10.8 (4.5–22.8) 10.9 (4.5–21.6) 10.5 (5.4–22.8)
Neut (×10³) (range) 9.1 (3.3–20.1) 9.2 (3.8–19.2) 8.7 (3.3–20.1)
Mono (×10²) (range) 4.93 (0.1–17.2) 4.8 (0.3–10.4) 5.4 (0.1–17.2)
Plate (×104) (range) 18.8 (8.3–32.4) 18.1 (8.3–28.5) 20.9 (12.6–32.4)
CRP (range) 0.77 (0–11.4) 0.69 (0–5.0) 1.04 (0–11.4)
Blood glucose (range) 135 (76–376) 141 (76–376) 116 (84–171)

Diabetes mellitus (%) 22 (27.5) 19 (31.7) 3 (15)
Blood pressure

Systolic (range) 119 (76–175) 117 (76–175) 122 (96–169)
Diastolic (range) 66 (25–97) 66 (25–97) 66 (43–91)

ASIA Impairment Scale at discharge
A (%) 21 (26.3) 18 (30.0) 3 (15.0)
B (%) 8 (10.0) 6 (10.0) 2 (10.0)
C (%) 18 (22.5) 12 (20.0) 6 (30.0)
D (%) 33 (41.3) 24 (40.0) 9 (45.0)



J. Clin. Med. 2024, 13, 253 5 of 11

2.3. Variables: Clinical Parameters

We retrospectively investigated clinical parameters, including age at injury, sex, height,
body weight, lesion type, ossification of the posterior longitudinal ligament (+/−), sagittal
low in high (+/−), pre-vertebral hematoma (+/−), *AIS (ASIA Impairment Scale on
admission), **NLI (Neurological Level of Injury), ***ZPP (Zone of Partial Preservation),
****ASIA total motor score on admission, blood pressure, diabetes (+/−), white blood cell
count, neutrophil count, monocytes count, platelet count, C-reactive protein (CRP), and
blood glucose.

*AIS (ASIA Impairment Scale) is a tool developed by the American Spinal Injury
Association (ASIA) to assess neurological outcomes in patients with spinal cord injuries.
AIS is classified into five levels from grade A to E. Grade A = Complete. Grade B = Sensory
Incomplete. Grade C and D = Motor Incomplete. Grade E = Normal.

**NLI (Neurological Level of Injury): “The most caudal segment of the spinal cord
with normal sensory and antigravity motor function on both side of the body”.

***ZPP (Zone of Partial Preservation): “The most caudal segment with some sensory
and motor levels with some sensory and/or motor function defines the extent of the sensory
or motor ZPP respectively and are documented as four distinct levels (R-sensory, L-sensory,
R-motor, and L-motor)”.

****ASIA total motor score: “Normal strength is assigned a grade of 5 for each muscle
function. A score of 5 for each of the five key muscle functions of the upper extremity would
result in a maximum score of 25 for each extremity, totaling 50 for the upper limbs. The
same is true for the five key muscle functions of the lower extremity, totaling a maximum
score of 50 for the lower limbs”. From the above, the total motor score is 100 for the upper
and lower limbs.

These definitions are taken from the International Standards for Neurological Classifi-
cation of Spinal Cord Injury (ISNCSCI) (Revised 2019) [19,20].

2.4. Methods
2.4.1. Multiple Linear Regression (MLR)

As a conventional predictive model using multivariate analysis, we used MLR analysis
to create a prediction profile. We adopted Multiple Linear Regression in JMP® Pro version
14.2.0 (SAS Institute Inc., Cary, NC, USA). This analysis was conducted using the variables
described above. We created a prediction profile using the 60 cases as a training cohort. By
inputting various parameters into the profile, it is possible to predict the final prognosis at
the time of discharge in the test cohort.

2.4.2. Artificial Neural Networks (ANNs)

ANNs, one of the supervised machine learnings inspired by the biological neural
networks in human brain, were used in this study. We adopted neural networks in JMP®

Pro version 14.2.0 (SAS Institute Inc., Cary, NC, USA), and the variables used were 20 pa-
rameters similar to those used in MLR analysis. Weight Decay is used as a penalty method
to reduce the risk of overfitting by limiting the degrees of freedom of a parameter while
preserving the predictive model’s ability. It consists of input, 1st, 2nd, and output layers.
The number of nodes in the 1st and 2nd layers are 5 and 10, respectively. First, we create
a profile by entering the data of the training cohorts (n = 60). After that, prognosis is
predicted by inputting the clinical parameters of test cohorts in the profile.

2.4.3. Prediction Accuracy

Finally, we calculated the prediction accuracy rate by comparing the prediction result
with the actual AIS at the discharge. We also compared the prediction accuracy of MLR
analysis and ANNs.
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3. Results

We inputted the clinical parameters in the profile. As basic information on patients,
we adopted age at injury, sex, height, and body weight. Advanced age is associated with
worse functional outcomes after SCI [21]. The presence or absence of OPLL that affects the
outcome is added to the parameters [9,10].

To evaluate the extent of damage, we classified lesion types into 11 types: compression
fracture, axis rotation dislocation fracture, atlas fracture, flexion teardrop fracture, dens
fracture, anterior dislocation fracture, vertebral fracture, burst fracture, fracture of vertebral
arch, and spinal cord injury without bone injury and others.

In addition to lesion types, we added MRI findings, such as sagittal low in high
(+/−) and pre-vertebral hematoma (+/−), to the parameters. In the sagittal section of
T2-enhanced MRI, sometimes, we can see a low signal area in hyperintensity. This imaging
finding is known as a poor prognostic factor for patients with SCI [22].

We assessed neurological findings of SCI on admission according to International
Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) and added its
endpoints, such as AIS on admission, NLI (Neurological Level of Injury), ZPP (Zone of
Partial Preservation), and ASIA total motor score, to the parameters.

To reflect the patient’s general condition at the time of injury, blood pressure, presence
of diabetes, and blood test results were included in the profile. In the results of the blood
test, the white blood cell, neutrophil, monocyte, platelet, CRP, and blood glucose levels that
were important for motor functional outcome after SCI were applied for parameters [7,23].
Finally, we built two predictive models using MLR and ANNs. Both models were created
using these same 20 parameters (Figure 3).
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Figure 3. We adopted neural networks in JMP® Pro version 14.2.0 (SAS Institute Inc., Cary, NC,
USA). Weight Decay is used as a penalty method. It consists of input, 1st, 2nd, and output layers.
The number of nodes in the 1st and 2nd layers are 5 and 10, respectively. The outputs are the ASIA
Impairment Scale (AIS) at hospital discharge.

Since parameters that are unprecedented in teacher data cannot be entered into the
profile, there were four cases in which the prognosis could not be predicted in this study.
Eventually, 16 out of 20 cases of test cohort were predictable.

First, profile prediction using MLR analysis was correct in only 5 out of 16 cases. The
prediction accuracy was 31.3%, which was not sufficient (Figure 4). The correct answer rate
for each final AIS grade was 0% for grades A and B, 20% for grade C, and 66% for grade D.
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On the other hand, the correct answer rate of prediction using ANNs was 75.0% (12 correct
answers). The correct answer rate of ANNs was 66% for grade A, 50% for grade B, 60% for
grade C, and 100% for grade D (Figure 4). In all grades, ANNs were able to obtain better
prediction accuracy than MLR. For both MLR and ANNs, AIS grade C/D (ambulatory)
at discharge tended to have a higher percentage of correct answers than AIS grade A / B
(non-ambulatory). Regarding ANNs, the predictive accuracy of the ambulatory group (AIS
grade C and D) was 81.8% in 9 out of 11 cases.
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Figure 4. The prediction accuracy of MLR was 31.3% (5 correct answers). On the other hand, the
correct answer rate of prediction using ANNs was 75.0% (12 correct answers). The correct answer
rate of ANNs for each final AIS was 66% for AIS A, 50% for B, 60% for C, and 100% for D. The size of
the circle represents the number of applicable cases. Green indicates that the prediction is correct,
yellow indicates an error of one level, and red indicates an error of two or more levels.

4. Discussion

In this study, we attempted to predict the prognosis of patients with cervical SCI
from acute-phase clinical data using ANNs. This approach may allow for more accurate
prognostic predictions, taking into account complex patient characteristics and multiple
variables. Although it is generally believed that the prognosis of patients with cervical SCI
becomes easier to predict as time passes, we focused on predicting the final prognosis from
acute phase clinical data at the time of admission. In our study, we were able to predict
prognosis using ANNs with an accuracy rate of 75%. The correct answer rate of MLR
was 31.3%, which was significantly lower than the prediction accuracy of ANNs. Taking
further consideration, if we consider ambulatory (AIS grades C and D)/non-ambulatory
(grades A and B) as the primary endpoint rather than AIS, the correct answer rate was
62.5% in MLR, but the rate for ANNs was 93.4% (15 out of 16 cases answered correctly).
Furthermore, looking at the correct answer rate for each grade of AIS, the higher the grade
was, the higher the correct answer rate was for both MLR and ANNs. The main reason
for this is thought to be that the final AIS grade tends to be ambulatory (grades C and D)
because paralysis gradually improves with treatment. In this series of 16 cases, 11 cases
were ultimately ambulatory, and only 5 cases were non-ambulatory.

In this series, the predictive accuracy of ambulatory was 93.4%. We believe it is ex-
tremely significant that we were able to predict whether more than 90% of patients would
eventually be able to walk based on clinical data at the time of hospitalization. It is a
well-known fact that whether or not a patient is able to walk greatly influences their life
after being discharged from the hospital [24,25]. If walking ability can be predicted from
clinical data in the acute phase, the prediction of outcomes can be used to inform rehabil-
itation goals and regimens, and it might lead to motivation when starting rehabilitation
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interventions [26]. In the early stages of cervical SCI, paralysis often occurs, and patients
are extremely anxious [27]. Explaining the possibility of regaining walking ability will give
patients great hope [28]. Furthermore, if the care team knows that there is a high possibility
that the patient will eventually be able to walk, the ultimate goal of assistance and the
extent of home renovations will naturally change [29].

Attempts to predict the prognosis of SCI patients using ANNs have been reported in
the past. Belliveau T et al. predicted the prognosis after traumatic SCI using the Artificial
Neural Network model [30]. They set the main outcome as self-reported ambulation and
reported high predictive accuracy with a model that predicts ambulation status (>85% case
classification accuracy). They also conducted a study to predict independence in self-care
activities for people with SCI, with moderate accuracy (76–86% case classification accuracy).
In their study, the cohort consisted of 3211 individuals who contributed data to the National
Spinal Cord Injury Model Systems (SCIMS) Database between 2010 and 2014, but the input
variables were very simple: age at the time of injury, sex, and ASIA exam manual motor
testing scores. On the other hand, although the number of our training data is 60, we
obtained relatively good results by increasing the input variables. In addition to basic data
such as age and gender, 20 items included imaging findings, ASIA classification, blood
sampling data during transportation, and the presence or absence of diabetes. Although
the sample size was small, we were able to obtain relatively good prediction accuracy by
increasing the number of clinical parameters. Additionally, due to the characteristics of
the database we used, the primary endpoint was set to AIS grade, but this scoring alone
can only provide a general understanding of the condition of patients with cervical SCI.
However, by enriching the content of teacher data, it is also possible to predict factors that
are directly linked to life after discharge, such as walking distance and self-care activities.
Belliveau T et al. also compared ANNs and MLR analysis [30]. They reported that the
performance of the model generated by ANN was equivalent to or exceeded that of the
MLR model, and this result is consistent with our present results.

AI machine learning models, such as neural networks, often tend toward “overfitting”
training data [31]. This is a concern because the model learns about noise and random
fluctuations in the training data, which can reduce its generalizability to new data. To
address this issue, we introduced weight regularization. Regularization is a technique that
adds a penalty for large weights to the model’s loss function, which reduces overfitting to
training data by encouraging the model to choose smaller weight values [32]. Specifically,
this research adopted JMP’s Weight Decay regularization method. Weight Decay, also
known as L2 regularization, appropriately constrains model parameters and suppresses
overfitting by imposing penalties on large weight parameters. Appropriately avoiding
overfitting is expected to improve the generalizability of the model and, as a result, improve
prediction accuracy.

Many factors have been found to influence the prognosis of SCI [7–10,21–23]. This
study significantly improved prognosis prediction ability by incorporating these factors
into ANNs. In recent years, factors related to the prognosis of SCI have been discovered
one after another [8,33]. ANNs can be modified by incorporating another clinical parameter.
Although adding parameters to ANNs does not necessarily improve accuracy, ANNs have
a lot of potential to be upregulated with new effective variables in the future [34].

Our future plans are to further increase the amount of training data and create predic-
tive models that can handle more datasets. After that, we plan to publish the profile of the
predictive model on the Internet so that many people can use it. We hope that this will help
determine treatment strategies for cervical SCI.

Finally, research using AI is expected to increase at an accelerated pace. Various
predictive tools using AI will likely be created in the field of SCI as well. For example,
predictive models have the potential to become even more clinically useful tools by chang-
ing the predicted outcomes to various factors such as walking distance, degree of urinary
assistance, and risk of dysphagia. By using various predictive models, patients can easily
imagine their final standard of living.
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5. Limitation

The logic used by ANNs to predict prognosis is a black box, and we cannot know the
algorithm involved in prognosis, but it will not disturb the purpose of this study to predict
the outcome of the patients of SCI.

We made predictions for the test set using a predictive model created based on training
data. However, this model is also not predictive in all cases. Variables that are not included
in the training data cannot be input into the predictive model. In other words, clinical
parameters that are unprecedented in teacher data cannot be entered into the profile. In
this study, 16 out of 20 cases were predictable. However, this problem can be solved by
increasing the number of cases of training data.

The patients with cervical SCI in this study were hospitalized for a long period of time
in a specialized facility at SIC, and during that period, they received highly specialized
rehabilitation. Therefore, it is highly likely that the current predictive model will not be
able to accurately predict the prognosis of patients in less specialized facilities or facilities
with less time for rehabilitation. Ideally, it would be desirable for SCI patients across the
country to be able to receive highly specialized rehabilitation, but this is extremely difficult
to achieve. When predicting prognosis at other hospitals, it may be possible to solve this
problem by incorporating rehabilitation time and quality as clinical parameters. In the
future, we should consider ways to utilize this predictive model prospectively, but further
research is required for this purpose.

6. Conclusions

ANNs developed from the data of the acute phase predicted the prognosis of the
patients with cervical SCI more accurately than MLR analysis. Performing effective re-
habilitation based on ANNs will lead to the improvement of the patient’s quality of life
after discharge.
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