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Abstract: Since the early 2000s, an influx of novel glucose-lowering agents has changed the therapeutic
landscape for treatment of diabetes and diabetes-related complications. Glucagon-like peptide-1
(GLP-1) receptor agonists represent an important therapeutic class for the management of type
2 diabetes (T2D), demonstrating benefits beyond glycemic control, including lowering of blood
pressure and body weight, and importantly, decreased risk of development of new or worsening
chronic kidney disease (CKD) and reduced rates of atherosclerotic cardiovascular events. Plausible
non-glycemic mechanisms that benefit the heart and kidneys with GLP-1 receptor agonists include
anti-inflammatory and antioxidant effects. Further supporting their use in CKD, the glycemic benefits
of GLP-1 receptor agonists are preserved in moderate-to-severe CKD. Considering current evidence,
major guideline-forming organizations recommend the use of GLP-1 receptor agonists in cases of
T2D and CKD, especially in those with obesity and/or in those with high cardiovascular risk or
established heart disease. Evidence continues to build that supports benefits to the heart and kidneys
of the dual GLP-1/glucose-dependent insulinotropic polypeptide (GIP) receptor agonist tirzepatide.
Ongoing outcome and mechanistic studies will continue to inform our understanding of the role of
GLP-1 and dual GLP-1/GIP receptor agonists in diverse patient populations with kidney disease.
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1. Introduction

The upsurge in the number of cases of chronic kidney disease (CKD) in people with
diabetes, a leading cause of kidney failure worldwide, is driven primarily by the global
pandemics of obesity and diabetes [1–3]. When the development of persistent albuminuria
and/or reduced glomerular filtration rate (GFR) is attributed to diabetes, the condition is re-
ferred to as chronic kidney disease (CKD) in diabetes, or diabetic kidney disease (DKD) [4].
DKD is associated with progression to kidney failure, requiring kidney replacement ther-
apy, cardiovascular complications, increased risk of cardiovascular and all-cause mortality,
and increased risk of infections and hospital admissions [5–8]. For close to two decades, the
management of DKD was based on optimized control of blood glucose and blood pressure,
and use of renin–angiotensin system (RAS) inhibitors in patients with hypertension and al-
buminuria [9–13]. This approach has since been transformed following unexpected findings
from cardiovascular outcomes trials (CVOTs) mandated by the U.S. Food and Drug Admin-
istration (FDA) to ensure cardiovascular safety of new glucose-lowering agents entering the
market [14]. Select CVOTs performed with agents from the glucagon-like peptide-1 (GLP-1)
receptor agonist and sodium-glucose cotransporter-2 (SGLT-2) inhibitor classes reported
reduced rates of cardiovascular events [15]. Secondary and exploratory findings from large
GLP-1 receptor agonist CVOTs additionally suggested a beneficial effect of the class on wors-
ening of kidney function [16–20]. Although originally approved to lower glucose in cases
of type 2 diabetes (T2D), select GLP-1 receptor agonists have received expanded indications
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for cardiovascular risk reduction and treatment of obesity. Furthermore, GLP-1 receptor
agonists have demonstrated many other favorable biological effects, including reductions
in blood pressure and local and systemic markers of inflammation, with GLP-1 receptor ag-
onists under active study for their effectiveness in other cardiovascular–kidney–metabolic
(CKM) conditions [21,22]. Given the clear evidence of positive impact on glycemia, weight,
and organ protection, GLP-1 receptor agonists are uniformly recommended by major pro-
fessional society guidelines to improve outcomes for patients with diabetes and other CKM
conditions [23–29]. Additionally, evidence continues to mount suggesting similar organ
protective effects with the dual GLP-1/glucose-dependent insulinotropic polypeptide (GIP)
agonist, tirzepatide [30,31]. While a dedicated trial examining the effects of tirzepatide on
kidney outcomes is ongoing, a post hoc analysis of completed clinical trials indicated that
reductions in albuminuria and estimated glomerular filtration rate (eGFR) decline with
tirzepatide versus comparators [32], thus suggesting potential kidney benefits with the first
agent in this novel class of incretin therapies. This review provides a succinct discussion
of the biology of incretins, proposed mechanisms of action of GLP-1 receptor agonists,
clinical evidence to date demonstrating kidney benefits with GLP-1 and dual GLP-1/GIP
receptor agonists, and overview of current recommendations for GLP-1 receptor agonist
use in patients with T2D and DKD.

2. Incretin Biology: An Overview

The INtestine seCRETion of INsulin (INCRETIN) effect, describing insulin secretion
in the postprandial state in response to oral intake of glucose, was first described in the
first half of the 20th century. Specifically, the incretin effect is driven by insulin secretory
effects of the incretin hormones GLP-1 and GIP [33,34]. GLP-1 and GIP are secreted by
enteroendocrine L cells in the terminal ileum and colon, and K cells in the duodenum and
jejunum, respectively [35,36]. In addition to oral nutrient intake, GLP-1 release is stimulated
by microbiomic products, immune-cell-derived cytokines, and neuroendocrine modulators,
indicating its central role in the interface between metabolic processes and immune re-
sponse [37,38]. Postprandial effects of both peptides are short lived (~4–7 min) because they
are rapidly inactivated by dipeptidyl peptidase-4 (DPP-4) [39]. Endogenous GLP-1 and
GIP act via specific receptors broadly expressed in multiple organs (Figure 1) [40,41]. Both
GLP-1 and GIP demonstrate insulinotropic effects, with opposing effects on pancreatic se-
cretion of glucagon, which is suppressed with GLP-1 and promoted by GIP [40,42]. Another
important biological role of endogenous incretin hormones is weight regulation. GLP-1
facilitates weight loss by slowing motility of the upper gastrointestinal tract, decreasing
gastrointestinal secretions, and modulating satiety through actions in the central nervous
system [43,44]. GIP enhances blood flow in adipose tissue, increases insulin sensitization,
and promotes energy expenditure through mechanisms in the central nervous system [45].
Only GLP-1 receptors have been identified in the kidneys (Figure 1) [41]. The exact location
of GLP-1 receptors in the kidneys is still under investigation. To date, GLP-1 receptor mRNA
has been detected in different kidney vascular structures, proximal tubular cells, and resi-
dent and infiltrating inflammatory cells [46–49]. Accordingly, important organ protective
mechanisms of GLP-1 receptor agonist therapy are related to their anti-inflammatory and
antioxidative effects [38,50–54]. Evidence shows that GLP-1 receptor activation down-
regulates multiple pro-inflammatory pathways including protein kinase A/activator of
transcription 3 (PKA/STAT3), phosphoinositide 3-kinases/protein kinase B (PI3K/AKT),
and mitogen-activated protein kinase/nuclear factor-κB (MAPK/NF-κB) [54–56]. In a
mouse model, liraglutide ameliorated oxidative stress through increasing cyclic adenosine
monophosphate (cAMP) levels and PKA activity, and reducing nicotinamide adenine din-
ucleotide phosphate oxidase (NADPH oxidase) without changes in insulin secretion or
glucose tolerance [47]. Furthermore, in healthy volunteers and experimental models, GLP-1
receptor activation promotes natriuresis and diuresis via inhibition of sodium-hydrogen
exchanger 3 (NHE3)-mediated Na+/H+ exchange in the proximal tubule. This action
partially explains the blood pressure-lowering effect of GLP-1 receptor agonists [48,49].
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Figure 1. Tissue distribution of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic
polypeptide (GIP) receptors and proposed biological actions. Abbreviations: VSCM, vascular
smooth muscle cells. From: Reprinted under the Creative Commons Attribution-NonCommercial-
NoDerivatives License 4.0 (CCBY-NC-ND) from [41].

3. Proposed Mechanisms of Benefit in Diabetic Kidney Disease

Structural and functional changes are consistent with DKD results from ongoing
exposure to multilayered, self-perpetuating metabolic (insulin resistance, hyperinsuline-
mia, hyperglycemia, obesity), hemodynamic (inappropriate RAS activation, increased
glucose and sodium chloride uptake, hyperfiltration, glomerular hypertension), and pro-
inflammatory/pro-fibrotic (activation of major immune pathways, oxidative stress, cy-
tokine production, and fibrotic factors) processes [57–61].

GLP-1 receptor agonists positively modify multiple risk factors, including glycemia,
body weight, and systolic blood pressure, in addition to reducing LDL cholesterol and
triglyceride levels [62–64]. In most studies, GLP-1 receptor agonism reduced glycated
hemoglobin A1C (HbA1c) by 0.8–1.5% (8–15 mmol/mol), systolic blood pressure by
3–4 mmHg, and promoted an approximate mean 3 kg weight loss [65]. Indeed, both
liraglutide and injectable semaglutide have received approval in the United States for the
treatment of obesity irrespective of the presence of diabetes [66]. The glucose-lowering
benefits of GLP-1 receptor agonists are preserved in advanced CKD and have demon-
strated efficacy and safety in large clinical trials with an eGFR of 15 mL/min/1.73 m2 [67].
It is important to note that data from several studies and meta-analyses indicate organ
benefits from mechanisms other than direct metabolic effects. For instance, in the Assess-
ment of Weekly AdministRation of LY2189265 (Dulaglutide) in Diabetes 7 (AWARD-7)
trial, beneficial effects on eGFR decline were observed with dulaglutide treatment when
compared to insulin glargine, despite similar blood glucose and blood pressure control
between treatment groups [67]. Furthermore, an exploratory mediation analysis of liraglu-
tide and semaglutide trials estimated that improvements in glycemia, blood pressure,
and body weight mediated observed effects on doubling of serum creatinine, reaching an
eGFR < 45 mL/min/1.73 m2, or progression to kidney failure by only 10–25% [21].
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In individuals with diabetes and obesity, GLP-1 receptor agonist therapy reduced
levels of inflammatory macrophages as well as multiple inflammatory and oxidative
markers (e.g., interleukin-6, interleukin-1β, monocyte chemoattractant protein-1, adhesion
molecules, prostaglandins, serum amyloid A, tumor necrosis factor-α, toll-like recep-
tors) [41,68]. Antioxidative and anti-inflammatory effects were demonstrated in multiple
rodent models of DKD, where GLP-1 receptor agonist exposure was associated with sup-
pression of oxidative stress, inflammatory cell infiltration of kidney, and reduced activation
of proinflammatory cytokines and profibrotic factors [54–56,69]. Moreover, in rodent
and cell culture models, liraglutide, exendin-4, and GLP-1 reduced pathological findings
characteristic of DKD, including mesangial expansion and cell proliferation, glomerular
hypertrophy, and tubulointerstitial and glomerular fibrosis [54–56,70]. These changes cor-
relate with amelioration of structural (e.g., reduction in kidney hypertrophy, mesangial
matrix expansion, loss of podocytes and glomerular basement membrane thickness) and
functional changes (e.g., reduction in albuminuria) of DKD (Figure 2) [54–56,69,70]. Other
proposed beneficial effects of GLP-1 receptor agonists in other tissues include pulmonary
protective effects and beneficial effects on gut microbiome composition [71]. In summary,
mounting evidence points to beneficial GLP-1 receptor agonist effects on inflammation,
oxidative stress, and fibrosis as crucial mechanisms behind the kidney protective actions of
this class [72–74]. Similarly, within the cardiovascular system, GLP-1 receptor agonism also
reduces inflammation, increases endothelial proliferation and angiogenesis, and promotes
vasodilation, plaque stability, and improved cardiac perfusion [50,75–77].
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Figure 2. Incretin effects on structural kidney damage observed in diabetic kidney disease. (a) Histo-
logical manifestations of diabetic kidney disease include glomerular hypertrophy with expansion of
the mesangium by matrix and mesangial cells; mesangial matrix accumulation with the formation
of nodules (Kimmelstiel–Wilson nodules) and focal to global glomerulosclerosis; thickening of the
glomerular basement membrane (GBM); podocyte foot process fusion, effacement, and loss; tubular
basement membrane thickening with interstitial inflammation, fibrosis, and immune cell infiltration
(including macrophages, lymphocytes, and polymorphonuclear leukocytes); and arteriolar hyalinosis.
(b) Treatment with incretin-based therapies can ameliorate the structural changes in the kidneys
that are induced by diabetes, at least in part, through anti-inflammatory and antifibrotic effects.
Abbreviations: ECM, extracellular matrix. From: Reprinted with permission from [70].
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4. GLP-1 Receptor Agonist Cardiovascular Outcome Trials

The primary composite endpoint of most major CVOTs with agents from the GLP-1
receptor agonist class is a three-point major adverse cardiovascular event (MACE) outcome,
consisting of time to first event of either cardiovascular death, non-fatal myocardial infarc-
tion, or non-fatal stroke [15]. CVOTs completed with liraglutide, injectable semaglutide,
and dulaglutide have reported benefits over placebos for their primary MACE outcome,
leading to expanded cardiovascular indications for these agents by the U.S. FDA [16,17,19].
While primary kidney outcome trials are still ongoing, secondary and exploratory kidney
outcomes derived from CVOT data have provided hypothesis-generating data suggesting
improved kidney outcomes with agents from the GLP-1 receptor agonist class, driven pri-
marily by preventing development of new, or reducing existing, albuminuria [16,17,19,78].
A post hoc analysis of prespecified secondary kidney outcomes in the SUSTAIN-6 and
LEADER trials showed a reduced risk of progression of albuminuria, increased likelihood of
regression in albuminuria, and slower annual rate of eGFR decline in patients treated with
semaglutide and liraglutide when compared with a placebo [79,80]. The effect on eGFR de-
cline was more pronounced in the subpopulation with eGFR < 60 mL/min/1.73 m2 (mean
annual estimated treatment difference (ETD) between slopes of 1.62 mL/min/1.73 m2 and
0.67 mL/min/1.73 m2 favoring semaglutide and liraglutide groups relative to placebo,
respectively) [80]. A 2019 meta-analysis that included over 56,000 participants enrolled
across seven GLP-1 receptor agonist CVOTs reported that GLP-1 receptor agonist treatment
reduced the risk of MACE by 12% (hazard ratio (HR): 0.88; 95% confidence interval (CI):
0.82–0.94; p < 0.001), all-cause mortality by 12% (HR: 0.88, 95% CI: 0.83–0.95; p = 0.001)
and kidney outcomes (development of new-onset macroalbuminuria, decline in eGFR
(or increase in creatinine), progression to end-stage kidney disease, or death attributable
to kidney causes) by 17% (HR: 0.83, 95% CI: 0.78–0.89; p < 0.001) [81]. A subsequent
2021 meta-analysis included new data from the efpeglenatide CVOT, the AMPLITUDE-O
trial [82]. The meta-analysis included over 60,000 patients enrolled in CVOTs completed
with lixisenatide, liraglutide, injectable semaglutide, exenatide, albiglutide, dulaglutide,
oral semaglutide, and efpeglenatide (currently in phase 3 clinical trials). Overall, treat-
ment with GLP-1 receptor agonists in patients with T2D reduced the risk of three-point
MACE by 14% (HR: 0.88; 95% CI: 0.82–0.94; p = 0.0001), and the composite kidney out-
come consisting of development of macroalbuminuria, worsening of kidney function
(based on eGFR change), kidney replacement therapy, or death due to kidney disease by
21% (HR: 0.79; 95% CI: 0.73–0.87) with treatment effect at least as large in patients with
eGFR < 60 mL/min/1.73 m2 [83]. This finding is clinically important when considering
the enhanced cardiovascular risk in persons with CKD.

An additional benefit of GLP-1 receptor agonist therapy in cases of T2D and CKD comes
from the AWARD-7 trial with dulaglutide [67]. AWARD-7 was a glycemic efficacy and safety
trial that enrolled participants with moderate-to-severe CKD (mean eGFR 38 mL/min/1.73 m2,
inclusive of participants with baseline eGFR down to 15 mL/min/1.73 m2). At trial end, par-
ticipants randomized to dulaglutide experienced less eGFR decline from baseline and atten-
uation of albuminuria when compared to participants randomized to treatment with insulin
glargine. Importantly, reduction in the rate of eGFR decline was maintained in those with
urinary albumin-to-creatinine ratio (UACR) > 300 mg/g (macroalbuminuria) at high-risk
of kidney disease progression [67,84]. A summary of exploratory kidney outcomes and on-
going mechanistic and kidney outcome trials is provided in Table 1 [16–19,67,78,82,85–88].
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Table 1. Kidney outcomes from completed and ongoing GLP-1 receptor agonist and dual GLP-1/GIP agonist clinical trials.

Trial Treatment Arms Duration of
Follow-Up/Trial Status Study Population Characteristics Primary, Secondary, and/or Exploratory Kidney Outcomes

Completed Trials

LEADER [16,85]
Liraglutide
0.6 to 1.8 mg daily
vs. placebo

Median 3.8 years

• T2D
• Mean HbA1c > 7%
• Established CVD in 81% of

participants
• Mean BP: 167/77 mmHg
• Mean BMI: 32.5 ± 6.3 kg/m2

• Kidney function:

o 21% with eGFR 30–59
o 2% with eGFR < 30

• Secondary microvascular outcome: lower rate of DKD events in
the liraglutide treatment group (1.5 events per 100 patient-years)
compared with placebo (1.9 events per 100 patient-years) (HR 0.84,
95% CI 0.73–0.97; p = 0.02)

• Prespecified secondary kidney outcome: reduction in the
composite kidney outcome of new-onset persistent
macroalbuminuria, persistent doubling of the serum creatinine
level, kidney failure or death due to kidney disease in the
liraglutide treatment group (HR 0.78; 95% CI 0.67–0.92; p = 0.003)

EXCEL [18,86] Exenatide 2 mg once
weekly vs. placebo Median 3.2 years

• T2D
• Mean HbA1c 8.1%
• Established CVD in 73% of

participants
• Mean systolic BP: 135 mmHg
• Mean BMI: 32.7 kg/m2

• Kidney function:

o Mean eGFR 76
o 18% with eGFR < 60

• Prespecified secondary kidney outcomes:

o New macroalbuminuria occurred in 2.2% and 2.5% of
participants in the exenatide and placebo groups,
respectively (HR 0.87; 95% CI 0.70–1.07)

o No difference between treatment groups for kidney
composite 1 (40% eGFR decline, kidney replacement, or
kidney disease-related death) (HR 0.88; 95% CI 0.74–1.05;
p = 0.16)

o No difference between treatment groups for kidney
composite 2 (40% eGFR decline, kidney replacement,
kidney disease-related death, or macroalbuminuria)
(HR 0.88; 95% CI 0.76–1.01; p = 0.07)

ELIXA [78,87] Lixisenatide 10 to 20 mcg
daily vs. placebo Median 2.1 years

• T2D with recent acute
coronary syndrome

• Mean HbA1c 7.7%
• Mean systolic BP: 130 mmHg
• Mean BMI: 30.2 kg/m2

• Kidney function:

o Mean eGFR 77
o Median UACR 10.4 mg/g

• Exploratory analyses:

o Placebo-adjusted LSM percentage change in UACR from
baseline was −39.2% (95% CI −68.5 to −9.8; p = 0.04) in
participants with macroalbuminuria

o Reduced risk of new-onset macroalbuminuria compared
with placebo when adjusted for baseline HbA1c (HR 0.81;
95% CI 0.66–0.99; p = 0.04) or when adjusted for baseline
and on-trial HbA1c (HR 0.82; 95% CI 0.67–0.99; p = 0.049)
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Table 1. Cont.

Trial Treatment Arms Duration of
Follow-Up/Trial Status Study Population Characteristics Primary, Secondary, and/or Exploratory Kidney Outcomes

SUSTAIN-6 [17]
Semaglutide
0.5 to 1 mg weekly
vs. placebo

Median 2.1 years

• T2D
• HbA1c > 7%
• Mean body weight: 92.1 kg
• Prior CVD in 83% of participants
• Mean BP: 136/77 mmHg
• Kidney function:

o 25% eGFR 30–59
o 3% eGFR ≤ 30

• Prespecified secondary outcome:

o New or worsening nephropathy (persistent
UACR > 300 mg/g, doubling of serum creatinine or
eGFR < 45 mL/min/1.73 m2, need for kidney replacement
therapy) occurred in 3.8% and 6.1% of participants in the
semaglutide and placebo groups, respectively (HR 0.64;
95% CI 0.46–0.88; p = 0.005)

AWARD-7 [67,88]

Dulaglutide
0.75 to 1.5 mg
weekly vs. insulin
glargine daily

52 weeks (treatment trial)

• T2D
• HbA1c 7.5–10.5%
• Mean BP: 137/75 mmHg
• Mean BMI: 32.5 kg/m
• Kidney function:

o Mean eGFR 38
o 26% eGFR 45–60
o 35% eGFR 30–45
o 31% eGFR < 30
o 29% UACR > 30 mg/g
o 46% UACR > 300 mg/g

• Prespecified secondary outcomes:

o eGFR decline (mL/min) was −3.3 with insulin glargine,
−0.7 with dulaglutide 0.75 mg, and −0.7 with dulaglutide
1.5 mg

o eGFR decline (mL/min) in UACR >300 mg/g group was
−5.5 in the insulin glargine group, −0.7 in the dulaglutide
0.75 mg group, and −0.5 in the dulaglutide 1.5 mg group

o UACR reduction:

■ −13% in the insulin glargine group, −12.3% in the
dulaglutide 0.75 mg group, and −29% in the
dulaglutide 1.5 mg group

o Composite endpoint of kidney failure or >40%
eGFR decline:

■ 5.2% in dulaglutide 1.5 mg group
■ 10.8% in insulin glargine group (p = 0.038)

REWIND [19]
Dulaglutide
1.5 mg weekly vs.
placebo

Median 5.4 years

• T2D
• Mean HbA1c 7.3% in dulaglutide

group; 7.4% in placebo group
• Prior CVD in 31% of participants
• Mean BP 137/78 mmHg
• Mean BMI 32 kg/m2

• Kidney function:

o Mean eGFR 75
o Mean UACR 16 mg/g

• Secondary composite kidney outcome:

o Defined as development of a urinary albumin-to-creatinine
ratio > 300 mg/g in those with a lower baseline
concentration, a sustained 30% or greater decline in eGFR
or chronic kidney replacement therapy occurred in 20% of
participants in the placebo group vs. 17% in the
dulaglutide group (HR 0.85; 95% CI 0.77–0.93; p = 0.0004)
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Table 1. Cont.

Trial Treatment Arms Duration of
Follow-Up/Trial Status Study Population Characteristics Primary, Secondary, and/or Exploratory Kidney Outcomes

AMPLITUDE-O
[82]

Efpeglenatide
4 to 6 mg weekly
vs. placebo

Median 1.8 years

• T2D
• Mean HbA1c 8.9%
• Mean BP 135/77
• Prior CVD in 89.6% of participants
• Mean BMI 32 kg/m2

• Kidney function:

o 31.6% eGFR < 60
o Median UACR 28.3 mg/g
o 21.8% with CVD and

eGFR < 60

• Secondary composite kidney outcome:

o Defined as development of macroalbuminuria, increase in
albumin-to-creatinine ratio of >30%, a sustained ≥40%
decline in eGFR, end-stage kidney disease, or death due to
any cause occurred in 18.4% of participants in the placebo
group and 13% of participants in the efpeglenatide group
(HR 0.68; 95% CI 0.57–0.79; p < 0.001)

Ongoing Trials

FLOW
(NCT03819153)

Weekly semaglutide vs.
standard of care Results pending

• T2D
• HbA1c 6.5% to 12%
• High CV risk
• UACR 300 to 5000 mg/g
• eGFR 30 to ≤90 mL/min/1.73 m2

• Primary kidney composite outcome:

o Defined as persistent eGFR decline of ≥50% from trial
start, reaching kidney failure, death from kidney disease,
or death from CVD

SOUL
(NCT03914326)

Oral semaglutide
3 mg, 7 mg, or 14 mg
daily

In progress

• T2D
• HbA1c 6.5% to 10.0%
• Established CVD

• Secondary composite outcome:

o Defined as CV or kidney death, onset of persistent ≥ 50%
eGFR decline, onset of persistent eGFR < 15 mL/min/1.73 m2,
or initiation of kidney replacement therapy
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Table 1. Cont.

Trial Treatment Arms Duration of
Follow-Up/Trial Status Study Population Characteristics Primary, Secondary, and/or Exploratory Kidney Outcomes

TREASURE-CKD
(NCT05536804)

Tirzepatide once
weekly vs. standard
of care

In progress

• With and without T2D
• BMI ≥ 27 kg/m2

• eGFR ≥ 30 to ≤60 mL/min/1.73 m2 or
eGFR ≥ 30 to ≤75 mL/min/1.73 m2

if UACR > 30 mg/g

• Primary outcome:

o Change from baseline in kidney oxygenation in
participants with or without T2D

REMODEL
(NCT04865770)

Semaglutide once
weekly vs. standard
of care

In progress

• T2D
• HbA1C < 9%
• eGFR ≥ 30 to ≤75 mL/min/1.73 m2

• UACR > 20 to <5000 mg/g

• Primary outcome:

o Change in kidney oxygenation and inflammation assessed
by MRI

Abbreviations: BMI, body mass index; BP, blood pressure; CI, confidence interval; CV, cardiovascular; CVD, cardiovascular disease; DKD, diabetic kidney disease; eGFR, estimated
glomerular filtration rate; HbA1C; glycated hemoglobin A1c; HR, hazard ratio; LSM, least-squares mean; MRI, magnetic resonance imaging; T2D; type 2 diabetes mellitus; UACR, urinary
albumin-to-creatinine ratio.
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5. Dual GLP-1/Glucose-Dependent Insulinotropic Polypeptide (GIP) Receptor Agonist:
Evidence to Date

Dual GLP-1/GIP receptor agonism with tirzepatide demonstrates impressive reduc-
tion in principal CKD risk factors including blood pressure, blood glucose, and weight
when compared to GLP-1 receptor agonism alone [89,90]. A meta-analysis of pooled
data from seven tirzepatide trials showed that tirzepatide treatment resulted in a median
dose-related blood pressure reduction of −4.20 mmHg (95% CI: −5.17 to −3.23) for a 5 mg
dose, −5.34 mmHg (95% CI: −6.31 to −4.37) for a 10 mg dose, and −5.77 mmHg (95% CI:
−6.73 to −4.81) for a 15 mg dose [91]. Furthermore, when compared with placebos and
other glucose-lowering agents, tirzepatide demonstrated dose-dependent superiority in
lowering HbA1C (−1.62% to −2.06% vs. placebo, −0.29% to −0.92% vs. GLP-1 receptor
agonists, and −0.70% to −1.09% vs. basal insulin), and reducing body weight (reductions
vs. GLP-1 receptor agonists ranged from 1.68 kg with 5 mg tirzepatide to 7.16 kg with
15 mg tirzepatide) [92]. More recent weight loss trials in participants with obesity have
demonstrated robust weight loss with tirzepatide therapy in patients with and without
diabetes [93,94], with 79–83% of participants with obesity and T2D treated with tirzepatide
in the SURMOUNT-2 trial achieving ≥5% weight loss from baseline, compared to 32%
receiving a placebo [94]. The first report on direct effects of dual GLP-1/GIP receptor
agonism on the kidneys comes from a prespecified exploratory analysis of the Tirzepatide
Versus Insulin Glargine in Type 2 Diabetes and Increased Cardiovascular Risk (SURPASS-4)
study [32]. The analysis reported that when compared with insulin glargine, tirzepatide
use was associated with a slower rate of eGFR decline, lower albuminuria, and significantly
reduced occurrence of the composite kidney endpoint of eGFR decline ≥40% from baseline,
end-stage kidney disease, death due to kidney failure, or new-onset macroalbuminuria
(HR: 0.58; 95% CI: 0.43–0.80) [32]. The largest observed beneficial effect was on reduc-
ing albuminuria. This report is of particular interest given that 25% of participants were
also receiving an SGLT2 inhibitor [32], suggesting an additional kidney benefit of these
guideline-directed medical therapies when used in combination. The Tirzepatide Study of
Renal Function in People With Overweight or Obesity and Chronic Kidney Disease With or
Without Type 2 Diabetes: Focus on Kidney Hypoxia in Relation to Fatty Kidney Disease
Using Multiparametric Magnetic Resonance Imaging (TREASURE-CKD; NCT05536804)
trial is currently enrolling participants and will examine the effect of tirzepatide on primary
kidney outcomes and explore potential mechanisms of kidney benefits with tirzepatide.

6. Current Guidance on GLP-1RA Use in T2D and DKD

Multiple GLP-1 receptor agonists and one dual GLP-1/GIP receptor agonist are avail-
able for clinical use (Table 2) [95–102]. In consideration of evidence showing robust benefi-
cial effects of these agents on glycemia, weight, and outcomes, guidelines for the manage-
ment of T2D have evolved dramatically in recent years. The American Diabetes Association
(ADA), the American Association of Clinical Endocrinologists (AACE), the European Asso-
ciation for the Study of Diabetes (EASD), the European Society of Cardiology (ESC), and
Kidney Disease: Improving Global Outcomes (KDIGO) all now recommend GLP-1 receptor
agonists for glycemic control and cardiovascular risk reduction in patients with T2D with or
without DKD [23–29]. GLP-1 receptor agonists are universally recommended as an option
in T2D to reduce HbA1c and to assist with achieving and maintaining individualized
weight management goals [23,25–27,29]. ADA additionally recommends a GLP-1 receptor
agonist in preference to insulin for patients with T2D who require greater glucose lowering
than can be achieved with oral glucose-lowering agents [25]. In patients with T2D and
DKD, ADA and KDIGO recommend the addition of a GLP-1 receptor agonist in those
unable to achieve individualized glycemic goals despite first-line treatment with an SGLT2
inhibitor and metformin [23]. This recommendation is based in part on emerging evidence
for kidney benefits observed in large CVOTs and the preserved glucose-lowering effects of
GLP-1 receptor agonists in advanced CKD.
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Table 2. Key administration and dosing information for currently available GLP-1 and dual GLP-1/GIP receptor agonists [95–102].

Agent Administration Frequency Indication(s) Recommended Kidney Dose Adjustment

GLP-1 Receptor Agonists

Exenatide Twice daily • Adjunct to diet and exercise to improve glycemic control in adults
with T2D

• Not recommended with CrCl < 30 mL/min
• Caution recommended with initiating or escalating the

dose with CrCl 30–50 mL/min

Liraglutide Once daily
• Adjunct to diet and exercise to improve glycemic control in

patients ≥ 10 years with T2D
• To reduce the risk of MACE in adults with T2D and established CVD

• No dosage adjustments recommended

Lixisenatide Once daily • Adjunct to diet and exercise to improve glycemic control in adults
with T2D

• Not recommended with eGFR < 15 mL/min/1.73 m2

Dulaglutide Once weekly

• Adjunct to diet and exercise to improve glycemic control in adults and
pediatric patients ≥ 10 years old with T2D

• To reduce the risk of MACE in adults with T2D and established CVD or
multiple CV risk factors

• No dosage adjustments recommended

Exenatide XR Once weekly
• Adjunct to diet and exercise to improve glycemic control in adults and

pediatric patients ≥ 10 years old with T2D
• Not recommended with eGFR < 45 mL/min/1.73 m2

or ESKD

Semaglutide
Once weekly (SubQ)

• Adjunct to diet and exercise to improve glycemic control in adults
with T2D

• To reduce the risk of MACE in adults with T2D and established CVD • No dosage adjustments recommended

Once daily (Oral) • Adjunct to diet and exercise to improve glycemic control in adults with T2D

Dual GLP-1/GIP Receptor Agonist

Tirzepatide Once weekly • Adjunct to diet and exercise to improve glycemic control in adults with T2D • No dosage adjustments recommended

Abbreviations: CrCl, creatinine clearance; CV, cardiovascular; CVD, cardiovascular disease; eGFR, estimated glomerular filtration rate; GIP, glucose-dependent insulinotropic peptide;
GLP-1, glucagon-like peptide-1; MACE, major adverse cardiovascular events; SubQ, subcutaneous; T2D, type 2 diabetes; XR, extended release.
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Guidelines also emphasize the importance of counseling patients about common side
effects as well as risk mitigation strategies to ensure safe medication use. The most common
dose-limiting side effects with GLP-1 and dual GLP-1/GIP receptor agonists are related to
their biological function and are gastrointestinal (GI) tract related (e.g., nausea, decreased
appetite, vomiting, and diarrhea) [23]. Generally, GI side effects improve after several weeks
of therapy at a given dose, and can be minimized by initiating with a lower dose and slowly
titrating the dose upward [103]. While GLP-1 receptor agonists and tirzepatide do not
cause hypoglycemia when used as monotherapy, there is a risk of additive hypoglycemia
when combined with sulfonylureas or insulin, with close monitoring and downward dose
adjustment or withdrawal of background hypoglycemic agents (e.g., sulfonylureas, insulin)
recommended to avoid unnecessary hypoglycemic events [23].

7. Future Directions

The kidney effects of GLP-1 receptor agonists and tirzepatide and their mechanisms
of action are areas of active investigation. The Effect of Semaglutide Versus Placebo on the
Progression of Renal Impairment in Subjects With Type 2 Diabetes and Chronic Kidney
Disease (FLOW study; NCT03819153) is the first dedicated kidney outcome trial with a
GLP-1 receptor agonist that was halted prematurely due to meeting prespecified criteria
for efficacy, with detailed results anxiously expected in 2024. The ongoing Semaglutide
Cardiovascular Outcomes Trial in Patients With Type 2 Diabetes (SOUL trial; NCT03914326)
trial is examining the efficacy of oral semaglutide for a combined cardiovascular and
kidney outcome in participants with T2D and established cardiovascular disease or CKD.
A complement to the FLOW and SOUL trials, the Renal Mode of Action of Semaglutide in
Patients With Type 2 Diabetes and Chronic Kidney Disease (REMODEL trial; NCT04865770),
is exploring possible mechanisms of kidney benefits with semaglutide. The Tirzepatide
Study of Renal Function in People With Overweight or Obesity and Chronic Kidney
Disease With or Without Type 2 Diabetes: Focus on Kidney Hypoxia in Relation to Fatty
Kidney Disease Using Multiparametric Magnetic Resonance Imaging (TREASURE-CKD;
NCT05536804) is currently enrolling participants and will examine the effect of tirzepatide
on primary kidney outcomes and potential mechanisms of action. To help address the
question of potential GLP-1 receptor agonist benefits in people with type 1 diabetes, the
REMODEL-1 study will evaluate CKD outcomes in people with type 1 diabetes. The results
of these trials will provide further clarity on the benefits and clinical role of GLP-1 and dual
GLP-1/GIP receptor agonists in diverse populations with DKD.

8. Conclusions

GLP-1 receptor agonists and the dual GLP-1/GIP receptor agonist tirzepatide have
emerged as potent glucose-lowering and weight loss agents with additional benefits of
cardiovascular and kidney risk reduction. Evidence suggests that the organ protective
effects of these agents extend beyond their metabolic benefits, with GLP-1 receptor agonism
associated with anti-inflammatory and antifibrotic effects in the heart and kidneys. While
current guidelines widely recommend GLP-1 receptor agonists for the treatment of CKM
conditions, ongoing research will continue to inform the role of GLP-1 and dual GLP-1/GIP
receptor agonists in diverse populations with kidney disease.
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