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Abstract: Background: the word recognition score (WRS) achieved with cochlear implants (CIs)
varies widely. To account for this, a predictive model was developed based on patients’ age and
their pre-operative WRS. This retrospective study aimed to find out whether the insertion depth of
the nucleus lateral-wall electrode arrays contributes to the deviation of the CI-achieved WRS from
the predicted WRS. Materials and methods: patients with a pre-operative maximum WRS > 0 or a
pure-tone audiogram ≥80 dB were included. The insertion depth was determined via digital volume
tomography. Results: fifty-three patients met the inclusion criteria. The median WRS achieved with
the CI was 70%. The comparison of pre- and post-operative scores achieved with a hearing aid and
a CI respectively in the aided condition showed a median improvement of 65 percentage points
(pp). A total of 90% of the patients improved by at least 20 pp. The majority of patients reached
or exceeded the prediction, with a median absolute error of 11 pp. No significant correlation was
found between the deviation from the predicted WRS and the insertion depth. Conclusions: our data
support a previously published model for the prediction of the WRS after cochlear implantation. For
the lateral-wall electrode arrays evaluated, the insertion depth did not influence the WRS with a CI.

Keywords: cochlear implant; WRS prediction; insertion depth; word recognition score; lateral wall;
digital volume tomography

1. Introduction

Cochlear implantation is an established treatment option for patients with hearing loss
for which hearing aids (HAs) or other less invasive options have failed to restore speech
perception to a sufficient degree [1]. The vast majority of cochlear implant (CI) recipients
show improved word recognition scores (WRSs) if the pre-operative-aided scores at a
conversational level of 65 dB (WRS65(HA)) and post-operative scores with a CI (WRS65(CI))
are compared [2–9]. A number of pre-, intra- and post-operatively assessed outcome-
predicting factors have been identified [2–7]. Blamey et al. found five intrinsic factors
that had an impact on the post-operative word recognition score: the duration and age of
onset of severe-to-profound hearing loss, age at the time of surgery, aetiology, and implant
experience. Additionally, Holden et al. [3] identified extrinsic factors, such as scalar location,
insertion depth, array insertion depth, angular position of the basal electrode’s contact, and
wrapping factor as affecting word recognition.

Recent studies [10–12] have revealed the variability in electrode array positioning.
This is partially due to differences in cochlear size, scalar shifts, and different electrode
designs [13–15]), causing different electrophysiological findings [16] and different intra-
cochlear trajectories of the electrode array [17]. In measurements in vivo, the insertion
depth angle (AID) was found to vary by up to 300◦ for certain electrode arrays [10].

Placement shift due to scalar shift did not result in coherent findings with respect
to speech comprehension. Liebscher et al. [12] did not find measurable differences in the
WRS, whereas Aschendorff et al. [18] reported a detrimental effect of dislocation of up to
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10 percentage points (pp) for the WRS of patients with scalar dislocations. Furthermore,
the surgeon represents another source of variability in the electrode’s position; this might
be intended for certain techniques, such as the pull-back technique [19,20], or be due to the
placement of the electrode array in the markings specified by the implant manufacturers,
which can cause variability in the distance between the first electrode’s contact and the
round window, depending on the electrode array.

The position of the electrode array does affect electrophysiological measures, such as
electrically evoked compound action potential, ECAP [11]. Therefore, the question arises of
whether the electrode position has an influence on a CI’s performance.

However, for the comparison of both perimodiolar and lateral-wall electrode arrays
and the influence of insertion depth, no consistent results have been shown; this may be
due in part to the inhomogeneity of the patient groups analysed.

To account for the variability in audiological outcomes, significant efforts in recent
years have focused on developing valid and reliable predictive models. In recent studies,
Hoppe et al. proposed [5] and validated [9] a prediction model with a comparatively low
prediction error (mean absolute error, MAE) of 11.5 pp [7,9].

WRS65(CI)[%] =
100

1 + e−(β0+β1·WRSmax+β2·age+β3·WRS65(HA))
(1)

with β0 = 0.84 ± 0.18 β1 = 0.012 ± 0.0015 1/% β2 = −0.0094 ± 0.0025 1/years β3
= 0.0059 ± 0.0026 1/%.

The model is based on pre-operative audiometric measures only: the maximum
word recognition score (WRSmax), the WRS65(HA), and the recipient’s age at implanta-
tion. This outcome prediction model can facilitate the pre-operative counselling of HA
users [5,21]. Furthermore, Hoppe et al. found that the WRSmax is a highly reliable mini-
mum predictor [4]. Both of these measures can be used within post-operative CI aftercare
to set an expectation value (and post-operative objective) for WRS65(CI). This predicted
WRS65(CI) can be used to monitor and reference the patient’s progress and, if appropriate,
to reallocate clinical resources to improve outcomes [9]. In a recent study [22], the model
was applied to investigate the systematic differences between CI recipients’ reaching or
missing the predicted WRS65(CI). For this purpose, Dziemba et al. [22] expanded the expo-
nential term in Equation (1) with additional factors representing post-operative audibility
and loudness growths. They found that there are systematic differences between poor- and
well-performing subjects; these differences are basically due to CI system fitting.

To our knowledge, this model has not yet been used to investigate contributing factors
such as electrode positioning [3].

In the evaluation of the electrode array position, a distinction must be clear between
lateral-wall and perimodiolar electrode arrays. While Liebscher et al. [12] determined the
relationships between surgical technique, speech perception, electrophysiological param-
eters, and scalar translocations for perimodiolar electrode arrays, no information exists
yet on the influence of surgical insertion on outcomes when a lateral-wall electrode of
the same implant generation is used. On one hand, prediction models can contribute to
more precise patient counselling, and on the other, they can be used for quality assurance
measures, since a precise therapy target can be defined. In cases of deviation from the
prognosis, pre-operative parameters (anamnesis, aetiology, and anatomy), intra-operative
factors (electrode array insertion), and post-operative aspects (fitting and rehabilitation
strategy) have to be examined.

Consequently, this study aimed to answer the question of whether optimising intra-
operative process quality (i.e., in this case, by optimising the insertion depth) can reduce
the deviation from the predicted WRS. Furthermore, one must ask whether the insertion
depth contributes to the variability in the deviation from the prediction. The relationship
between angular insertion depth and cochlear size, as well as the influence of the surgeon,
was investigated. By varying the insertion depth alone, the surgeon could potentially
contribute to the variability in the outcome of cochlear implantation.
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In this study, we analysed the WRS to determine the influence of electrode position
(the angular insertion depth and the distance between the most basal electrode contact and
the round window).

2. Materials and Methods
2.1. Subjects

We reviewed all adult patients who received a Cochlear™ Nucleus® implant (Cochlear
Ltd., Sydney, Australia) with lateral-wall electrode arrays (CI522 or CI622) at the University
Hospital of Dresden between May 2015 and June 2021. The two implant types have identical
lateral-wall electrode arrays and functions. The receiver/stimulator housings differ. The
inclusion criteria for this study were: sensorineural origin of hearing loss, post-lingual onset
of deafness, native German speaker, imaging of the cochlea without pathological findings or
malformations, age at implantation ≥18 years, and regular visits to the rehabilitation centre
for fitting, audiometric testing, and hearing therapy. The hearing loss for air conduction
was determined as the mean value over the frequencies 0.5, 1, 2, and 4 kHz (PTA4). For
hearing thresholds beyond the maximum possible presentation levels of the audiometers, a
value of 120 dBHL was assigned. With respect to pure tone and speech audiometry, only
patients with WRSmax > 0% or PTA4 ≥ 80 dBHL were included. Furthermore, only patients
with correct intracochlear electrode positioning were included. This was verified using a
digital volume tomography image.

This study was conducted in accordance with the Declaration of Helsinki (2013) on
research involving human subjects and was approved by the local ethics committee (SR+BO-
260052021). The study was also registered under DRKS00026741 with the German register
of clinical studies.

2.2. Audiometric Measures

Speech audiometry was performed using the Freiburg monosyllabic word test. The
pre-operative WRS was measured with headphones in the unaided condition. To identify
WRSmax, the presentation level was increased in steps of 10 dB until the maximum score
achievable (WRSmax) below the patient’s loudness discomfort level was reached [5]. The
WRS in the aided condition, i.e., with hearing aids (WRS65(HA)) and with the cochlear
implant (WRS65(CI)) was measured in an anechoic soundproof booth at a loudspeaker
presentation level of 65 dB SPL, with the patient seated 1.0 m in front of the loudspeaker.
The measurements were performed monaurally. If necessary, the contralateral ear was
appropriately masked with wideband noise presented through the headphones (DT48;
beyerdynamic GmbH & Co. KG, Heilbronn, Germany). Speech audiometry was performed
with an AT900 or AT1000 clinical audiometer (Auritec GmbH, Hamburg, Germany). The
WRS with the cochlear implant referred to the score measured twelve months after the first
activation of the CI system. To calculate the prognoses of the WRS65(CI), Equation (1) was
used. Significant differences between WRSs were determined according to their critical
differences according to Winkler and Holube [23].

2.3. Imaging

The flat panel volume tomography (digital volume tomography, DVT) examinations
were carried out on the first day after implantation using a Flat Panel Computer Tomograph
3D Accuitomo 80 (J. Morita MFG. CORP., Kyoto, Japan). The imaging was performed with
a tube current of 8 mA and a tube voltage of 90 kV. The raw projection images were
reconstructed using i-dixl software (version 2.8., J. Morita MFG. CORP. Kyoto, Japan),
resulting in a voxel size of 125 µm.

2.4. Measurement of Cochlear Diameter and Electrode Position

The angle and length measurements were performed according to the consensus
paper [24] using the cochlear view, which is defined as the plane through the basal turn
and perpendicular to the modiolus. Figure 1 shows an example of this measurement. The
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zero-degree reference angle was chosen at the centre of the round window according to
the consensus paper. To quantify the cochlear size, the diameter of the basal turn of the
cochlear was measured. This diameter is illustrated with the line that starts at the centre of
the round window and crosses the position of the helicotrema and the ends of the lateral
wall on the opposite side, as shown in earlier studies [25]. The distance, d, between the
round window and the most basal electrode contact, was measured as shown in Figure 2.
d is a parameter that describes how deeply the surgeon inserted the electrode array into
the cochlea.
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All analyses and figure creations were produced using OriginLab (version 2019, 

OriginLab software, Northampton, MA, USA). The correlation analysis was performed 
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Figure 1. Cochlear view of the DVT image with the red dots indicating the position of the modiolus
and the position of the round window. (a) Measurement of the insertion depth angle. (b) Measurement
of the diameter of the cochlear basal turn (A) and the distance between the round window and the
most basal electrode contact (d).
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Figure 2. Relationship between pre- and post-operative audiometric measures. (a) Box plot comparing
the pre-operative WRS65(HA) and post-operative WRS65(CI); the boxes show the quartiles and the
whiskers show the 5th and 95th percentile; the median for HA lies on the lower edge of the box.
(b) Scatter plot showing the same comparison. (c) Comparison between the pre-operative WRSmax

and post-operative WRS65(CI). In (b,c), the overlapping points are shifted apart horizontally, with a
small vertical line representing their actual position.

2.5. Data Analysis

All analyses and figure creations were produced using OriginLab (version 2019, Origin-
Lab software, Northampton, MA, USA). The correlation analysis was performed using
Spearman’s rank correlation method.
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3. Results
3.1. Study Cases

Of 312 cochlear implantations carried out in the study period, 53 cases (i.e., individual
ears; 34 right, 19 left) were identified that met the inclusion criteria. In all cases, implantation
was carried out via round window insertion or via the extended round window approach.
The implanted device was the CI522 in 37 cases and the CI622 in 16 cases. The age of the
patients at implantation ranged from 26 to 80 years (mean: 61.4 years). The mean hearing
loss for air conduction using the PTA4 was 80 ± 15 dBHL.

Figure 2 shows the relationship between the pre- and post-operative WRSs. The
median score achieved with the CI was 70% with the first quartile at 60% and the third
quartile at 80%, as shown in Figure 2. Comparing the pre- and post-operative scores
achieved in the aided condition showed a median improvement of 65 pp. In all cases, 90%
improved by at least 20 pp. With respect to the minimum prediction, 96% of the recipients
reached or exceeded the WRSmax while 83% of the recipients significantly exceeded the
pre-operative WRS65(HA) [23].

Figure 3 shows the distribution of differences between the measured and predicted
WRSs (measured minus predicted). The differences range from −57 pp to +35 pp. The
MAE was 11 pp. Three patients missed the predicted score by more than 20 pp.
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below the predictions.

3.2. Insertion Depth and Cochlear Size

Figure 4 shows the angular insertion depth as a function of the diameter (A) and of
the distance, d, as defined in Figure 1. The diameter ranged from 8.05 mm to 10.34 mm.
The median diameter was 8.96 mm. The distances, d, ranged from 1.5 mm to 8.3 mm. The
median distance was 4.7 mm. The angular insertion depth ranged from 365◦ to 568◦. The
median angle was 460◦.

A positive correlation was found between the distance, d, and the resulting angular
insertion depth. A negative correlation was found between the cochlear diameter and
angular insertion depth. The data show that the correlation between d and the angular
insertion depth was stronger (r = 0.673, p < 0.0001) than the weak correlation between the
angular insertion depth and cochlear diameter (r = 0.306, p = 0.0254).
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3.3. Dependence of the WRS on the Electrode’s Position and Cochlear Size

Figure 5 shows the difference between the measured and predicted WRSs as a function
of the distance, d, and the angular insertion depth. The correlation analyses showed no
significant correlation between the deviation from the predicted WRS and the distance d
(r = −0.256, p > 0.05) and the angular insertion depth (r = −0.185, p > 0.05).
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4. Discussion

The extension of the CI indication to patients who still have a capacity for speech
perception inevitably creates enormous demands on the quality of care. In addition to
pre-operative selection and counselling based on current audiological performance with
and without a hearing aid, knowledge of potential surgical influencing factors and electrode
array characteristics potentially contribute to the best possible hearing result by modulating
these factors as necessary.

This study showed that 83% (44/53) of patients had clinically significantly ([23]; see
also Methods) better WRSs after cochlear implantation than before with conventional
hearing aids. The median improvement was 65 pp, and 90% of the patients showed
an improvement of at least 20 pp. This is consistent with the results of earlier studies
that also analysed word recognition with CIs in patients with residual hearing [4,8,26].
WRS65(HA) alone is not suitable for predicting WRS65(CI) post-operatively. Regression
models only explain up to 10 pp of the WRS65(CI) [5]. More than half of our patients had
a pre-operative WRS65(HA) of 0% even though the WRSmax was larger than zero. This
finding, i.e., that the WRSmax is not met by the WRS65(HA), is in accordance with the results
of previous studies [4,5,8]. However, even this patient group was able to achieve a mean
WRS65(CI) of 65%, with a range from 0% to 90%. The inclusion of additional pre-operative
speech audiometry measures may help to improve outcome prediction in this subgroup
of recipients [26]. In contrast to WRS65(HA), a stronger association of WRS65(CI) with
the pre-operative WRSmax was shown. Other research groups have already been able to
identify this correlation [4,8,26]. These results suggest that patients with a pre-operatively
great difference between WRS65(HA) and WRSmax (speech perception gap) benefit from
cochlear implantation [27]. Especially in patients with severe hearing loss, sufficient hearing
aid fitting often fails, owing to technical limitations (feedback), the lack of acceptance of
high sound levels, and a low dynamic range [28]. In our study, the WRS65(CI) was below
the WRSmax in only two patients. With respect to the minimum prediction, 96% of the
recipients reached or exceeded their WRSmax.

The majority of patients achieved or exceeded the WRS65(CI) predicted according to
Equation (1). Three patients missed the predicted score by more than 20 pp. The prediction
model was thus also confirmed with our study. In the validation process of the prediction
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model, Hoppe et al. [9] determined an MAE of 11.5 pp in a patient group with a WRSmax
above zero. Additionally, they reported that 14 out of 85 patients missed the predicted
score by more than 20 pp. For all patients with WRSmax = 0%, they reported an MAE of
23 pp. In our study, in cases with WRSmax > 0 or PTA4 ≥ 80 dB HL, the MAE was 11 pp.

The modelling of prognosis prediction by Hoppe et al. was based on a group of
patients fitted with a perimodiolar electrode array. Our investigations confirm that the
model can also be applied to patients with lateral-wall electrode arrays. In the current
literature, no significant difference in speech comprehension between perimodiolar and
lateral-wall electrode arrays can be found, although the heterogeneous quality of the studies
does not allow a conclusive evaluation [29,30]. Especially for perimodiolar electrode arrays,
the optimisation of the electrode array position is aimed at improving surgical techniques,
e.g., the pullback technique, to achieve the smallest possible distance between the electrode
array and the modiolus [19,31]. The results of our study suggest that such procedures
are probably not necessary for the CI522/CI 622 implants, as the electrode array position
ultimately has no influence on the audiological outcome.

While the pre-operative WRSmax could be confirmed as a strong minimum predictor,
the insertion depth had no influence on the post-operative WRS65(CI) in our study. The
cochlear coverage could be influenced by the cochlear duct length (CDL) and the insertion
depth of the electrode array. For CI systems with different available electrode lengths, the
coverage is of course influenced by the chosen electrode’s length. For the CI622/CI522
implants, the cochlear coverage is determined basically only by the CDL and the distance,
d (first electrode contact to the round window). Up to now, no information has become
available on the extent to which d, which ultimately is determined by the surgeon, influences
post-operative performance. According to the physician’s guide [32] provided by the
implant company, the white markers, which are positioned 20 mm and 25 mm away from
the apical tip of the electrode array, are currently used as a guide for insertion depth, and
a maximum insertion depth of 25 mm is assumed. Deeper insertion was not considered
necessary by the implant company, although no study data were presented to support
this recommendation.

For other electrode manufacturers, especially those with different electrode lengths in
their portfolio, the exact pre-operative planning of the electrode array position based on
the CDL and the residual hearing was discussed [33]; however, this does not seem to be
necessary for the CI622/CI 522 implants with normal cochlear anatomies. The influence of
insertion depth on word recognition after implantation is frequently discussed in the current
literature. While some authors have demonstrated better word recognition with deeper
insertion in lateral-wall electrode arrays [34–37], this effect has been disputed by other
research groups [38–40]. Some studies even showed a worse speech audiometric outcome
with deeper insertion [38,41]. In most of these studies, all lateral-wall electrode arrays of all
the available manufacturers were combined, so that no implant-specific recommendations
could be derived from them. Other studies focused exclusively on implants from other
manufacturers so the results cannot be applied to Nucleus implants, especially to the
CI522/CI622 implants used in this study. Last but not least, the level of evidence of
the current studies on the influence of insertion depth on audiological performance is
currently not satisfactory [42]. Often, there is a lack of adequate consideration of additional
known confounding factors and an adequate control group. The practice of switching
off the apical electrode contacts to simulate a shortened insertion depth must also be
critically questioned [40] since it is known that the number of active electrode contacts also
contributes to word recognition.

Various hypotheses exist to explain the possible influence of insertion depth on post-
operative word recognition. On the one hand, a greater insertion depth is considered
to afford a better coverage of the spiral ganglia in the low-frequency range and a more
physiological frequency assignment [40,43]. However, other authors presume a greater
trauma for cochlear structures with deeper insertion [44]. In the case of shorter electrode
arrays, individual authors have found a poorer outcome with deeper insertion, since the
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basal region is not sufficiently covered, owing to the greater distance between the first
electrode contact and the round window [3,41]. This could not be confirmed in our study
for the investigated electrode array of the CI622/CI 522 implants with an active length
of 19.1 mm. Here, however, we should point out that these results cannot simply be
transferred to electrode arrays from other companies. It should finally be observed that
the debate regarding the ideal length of an electrode array and its ideal cochlear coverage,
which has been going on for years (partly for reasons of marketing strategy) cannot at
present be resolved.

The distance, d, from the first electrode contact to the round window, is the aspect
of the insertion depth of the electrode array that can be determined and controlled by
the surgeon himself. In our study, d was found to vary from 1.5 mm to 8.5 mm. When
evaluating the scatter of d and insertion depth, the measurement error of the angle and
length measurement based on the post-operative DVT must also be taken into account. In
the literature, interrater differences of −0.5 to 0.5 mm for length measurements and 12◦ to
30◦ for angle measurements can be found [45].

In addition to the insertion depth, the aspect of structural preservation through atrau-
matic electrode insertion is currently under discussion. Therefore, studies are currently
being performed to evaluate the influence of insertion speed and insertion force on the
outcome of cochlear implantation. The preservation of residual hearing is primarily evalu-
ated as a correlation of structural preservation. In recent years, electrocochleography has
been implemented as a system for monitoring residual hearing in individual clinics [46–50].
Structural preservation as a function of insertion depth or residual hearing preservation
was not assessed in our study. In the literature, the influence of insertion depth on resid-
ual hearing preservation is currently a topic of controversy. While some authors see the
advantages of a lesser insertion depth, which is associated with less severe intracochlear
trauma [44], other research groups have been able to demonstrate satisfactory residual
hearing retention even with deeper insertion [51–53]. To summarise, at the moment is not
clear how the WRS is affected by the factors discussed above. More studies are needed on
the effect of these different factors on the WRS. To mention one example, Dalbert et al. [54]
demonstrated better long-term speech understanding in patients with residual hearing
than in the group of patients without residual hearing for patients with electrical stimula-
tion alone. However, the significant positive effect in the study group was not seen until
18 months after CI activation.

Owing to the great heterogeneity of these studies, it is not currently possible to
conduct a high-quality meta-analytical review of the relationship between insertion depth
and speech comprehension. In a systematic review published in 2021 including seven
studies with results of speech comprehension after one year, the effect of insertion depth
could not be reliably assessed [42]. Because of the improvement in word recognition
within the rehabilitation process, an assessment after less than 12 months does not seem
to be very meaningful; however, after 12 months, stable speech comprehension can be
assumed [3]. Interestingly, Büchner et al. [55] observed that the initially positive effect of
a longer electrode array length diminished over the course of rehabilitation. The authors
attributed this to cortical plasticity, which can compensate for any possible frequency
mismatch present [55].

One limitation of our study is the lack of a systematic analysis of the fitting. Some
studies have already shown the strong effect of fitting quality on the outcome of cochlear
implantation. Thus, currently, high variability in audiological outcomes due to a less-than-
optimum fitting is possible [22,56,57]. However, standardised quality indicators for the
evaluation of fitting quality must be developed and analysed in further studies with the
help of a prediction model. For example, by basing the adjustment on the electrode-specific
ECAP or a categorical loudness scale, it should be possible to reduce the error caused by
the adjustment.

It should also be mentioned that the sole outcome parameter was the WRS at 65 dB;
speech perception in noise and subjective hearing perception, e.g., music hearing, were
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not assessed. In further studies, one might investigate to what extent the position of the
electrode array affects these other outcome parameters since a frequency mismatch could
possibly be more important here.

5. Conclusions

Our results support the previously published model for predicting outcomes after
cochlear implantation. WRSmax plays a more important part than WRS65(HA), by allowing
the prediction of the outcome of cochlear implantation. With the help of the prediction
model, improved pre-operative counselling of patients on the expected outcome can be
provided for patients with a pre-operative WRSmax greater than zero. For the implants used
(CI622 and CI522) the insertion depth did not influence the post-operative outcome. The
surgeon did not influence the outcome positively or negatively according to the distance
(d) from the first electrode contact to the cochlear window within the observed range.
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