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Abstract: This study aimed to develop and temporally validate an electronic medical record (EMR)-
based insomnia prediction model. In this nested case-control study, we analyzed EMR data from
2011–2018 obtained from a statewide health information exchange. The study sample included
19,843 insomnia cases and 19,843 controls matched by age, sex, and race. Models using different
ML techniques were trained to predict insomnia using demographics, diagnosis, and medication
order data from two surveillance periods: −1 to −365 days and −180 to −365 days before the
first documentation of insomnia. Separate models were also trained with patient data from three
time periods (2011–2013, 2011–2015, and 2011–2017). After selecting the best model, predictive
performance was evaluated on holdout patients as well as patients from subsequent years to assess
the temporal validity of the models. An extreme gradient boosting (XGBoost) model outperformed
all other classifiers. XGboost models trained on 2011–2017 data from −1 to −365 and −180 to
−365 days before index had AUCs of 0.80 (SD 0.005) and 0.70 (SD 0.006), respectively, on the holdout
set. On patients with data from subsequent years, a drop of at most 4% in AUC is observed for all
models, even when there is a five-year difference between the collection period of the training and
the temporal validation data. The proposed EMR-based prediction models can be used to identify
insomnia up to six months before clinical detection. These models may provide an inexpensive,
scalable, and longitudinally viable method to screen for individuals at high risk of insomnia.

Keywords: insomnia; sleep; machine learning; electronic medical records; temporal validation

1. Introduction

Insomnia is a common sleep disorder, with 30 to 40% of American adults experiencing
symptoms in a given year [1] and as many as 50% of older adults reporting difficulty with
sleep [2]. Insomnia etiologies are numerous and can be linked to biological, psychological,
and social factors [3]. The risk of insomnia increases with age and is more common within
certain populations, such as those with depression, anxiety, or traumatic brain injury [1].
The consequences of insomnia are significant. Insomnia is associated with diminished
quality of life, impaired cognitive, physical, and occupational functioning, and an increased
risk of mood disorders [4–7]. Among the elderly, insomnia has also been linked to falls,
dementia, and institutionalization [8,9]. Annual insomnia-related costs are estimated to
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be 100 billion USD when considering both medical and indirect expenses (e.g., loss of
productivity) [5,10].

Several effective insomnia treatments exist. Medications commonly used for insomnia
include benzodiazepines, orexin antagonists, sedative-hypnotics, barbiturates, and mela-
tonin agonists, although other classes of medications are sometimes used off-label [11,12].
While effective, pharmacotherapy is typically recommended for short-term use since there is
the potential for adverse effects, dependency, and tolerance over time. Cognitive behavioral
therapy for insomnia (CBT-I), an adaptation of traditional CBT designed to address sleep
difficulties, is typically recommended as the first-line treatment option due to its superior
safety profile [13]. However, CBT-I is often less accessible to patients than pharmacotherapy
and requires sustained patient engagement for benefits to be realized [14].

Despite its prevalence and the widespread availability of effective therapies, insomnia
often remains undetected and untreated; an estimated 70% of patients with insomnia
report never discussing sleep with their doctor, and only 5% report scheduling a healthcare
visit specifically to discuss their sleep problems [15]. Given the substantial burden of
insomnia and the tendency of patients to not seek care, there is a significant opportunity
to improve quality of life and reduce costs through better recognition and diagnosis.
Identifying patients suffering from insomnia who have not yet received a formal diagnosis
from a physician could enable early intervention, potentially reducing disease burden and
healthcare utilization.

Several machine learning models have been developed to diagnose and screen for
insomnia. These models used primary data from polysomnograms, magnetic resonance
imaging, or electroencephalograms and achieved high accuracy [16–19]. Additionally,
one study (Huang 2023) developed machine learning models to identify risk factors for
patient-reported insomnia using the National Health and Nutrition Examination Survey
(NHANES) data and achieved an AUC of 0.87 with an extreme gradient boosting (XGBoost)
framework [20]. However, as these data sources are collected from surveys and expensive,
non-routine tests, they are not available at scale for all patients. The widespread availability
of electronic medical record (EMR) data offers an opportunity to develop inexpensive,
targeted, and scalable processes to identify patients at risk for insomnia using only routine
care data collected over a short surveillance period (i.e., 6 months to a year). Despite
this potential, very few studies have explored leveraging routine care data from EMR
for insomnia prediction; to date, only a single study has been published that developed
an EMR-based insomnia prediction model. Kartoun et al. (2018) created an algorithm to
identify patients with physician-documented insomnia using structured (i.e., demographics,
ICD codes, and prescriptions) and unstructured (medical notes) EMR data [21]. The model
achieved an AUC of 0.78 when relying on structured data alone, which increased to 0.83
when augmented with unstructured data from medical notes. The aim of this earlier study
was to facilitate the identification of a large insomnia cohort for research purposes. It
was limited to two hospitals and only included patients at risk of metabolic syndrome,
making it unclear whether the model would generalize to the general adult population.
Furthermore, the model was not temporally validated, so its longitudinal viability is
unknown. In the present study, we aimed to develop and temporally validate a model that
can identify insomnia in the general adult population using multi-institutional EMR data.
Our secondary aim was to identify EMR-based predictors of insomnia risk.

2. Materials and Methods

This study was approved by the Indiana University Institutional Review Board
(#11732) and adheres to the reporting standards described in the Transparent Reporting of
Individual Prognosis or Diagnosis (TRIPOD) guidelines [22].

2.1. Cohort Selection

Study data were obtained from the Indiana Network for Patient Care (INPC). The
INPC is one of the largest health information exchanges in the United States and includes
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EMR data for over 18 million patients across multiple healthcare systems [23]. This was a
retrospective nested case-control study where cases were matched to controls by age within
one year of the date of birth, sex, and race. Eligible cases were adults (≥18 years) with new
insomnia between 1 January 2011 and 31 December 2018, defined as:

• a new insomnia diagnosis code (international classification of diseases, 9th or 10th
clinical modification) or

• a new order for any of the following insomnia-specific medications: zolpidem, su-
vorexant, butabarbital, quazepam, estazolam, flurazepam, triazolam, tasimelteon,
eszopiclone, temazepam, ramelteon, secobarbital, zaleplon, chloral hydrate, and mela-
tonin. Antidepressants (e.g., doxepin, trazodone, and mirtazapine) and low-dose
antipsychotics (e.g., quetiapine and olanzapine) with hypnotic properties were ex-
cluded from the list of medications used to identify insomnia cases because these
off-label treatments may not be specific to insomnia.

Patients with insomnia diagnosis codes or medications before 2011 were considered
to have prevalent insomnia and were thus ineligible. All patients were required to have
at least one encounter with the INPC per year from 2010 to 2018 and have at least one
diagnosis and medication record available during that time. Patients missing age, sex, or
race information were excluded.

Patients without an insomnia diagnosis or medication were eligible to be selected as
controls. Controls were matched to insomnia cases on a 1:1 basis by sex, race, and age
within one year of the date of birth. If there was more than one potential control for a given
case, a control was selected randomly from the pool of potential matches. In these cases, the
index date was defined as the first date of an insomnia diagnosis code or medication. For
controls, the index date was defined as the encounter date occurring closest to the matched
case’s index date. EMR data from 2010 to 2018 was extracted to ensure that all patients had
at least one year of pre-index data. Pre-index demographics, diagnosis, and medication
data were processed to develop relevant exposure variables.

2.2. Socio-Demographic Variables

Demographic variables included age at index date, sex, and patient-reported race
(categorized as White, Black, Other, and Unknown for analysis purposes). A higher
cardinality for race is desirable. Unfortunately, since the data were collected from multiple
health care institutions with varying patient race distributions and reporting requirements,
there was a trade-off between a higher cardinality for the race variable and the number
of patients included in the study. In addition to the above-listed demographic variables,
we also considered insurance type, defined as the insurance reported at the visit closest to
the index date and categorized as government (Medicare/Medicaid), commercial, self-pay,
or other/unknown. The insurance type is a surrogate for the socioeconomic status of the
patient, which has been previously reported to influence the risk of insomnia [24].

2.3. Diagnosis Variables

ICD-9-CM/ICD-10-CM diagnosis codes were used to define the 31 disease group
variables (binary) that comprise the Elixhauser Comorbidity Index [25–27]. Elixhauser
mortality scores were also calculated using Van Walravan weights [27]. To represent
comorbidity burden, we also derived a new composite variable as the sum of the number
of unique (at the 3-digit level) ICD-9-CM/ICD-10-CM codes a patient had during the
pre-index period of interest. In total, 33 diagnosis variables were derived.

2.4. Medication Variables

Medication orders were extracted for all patients. Since these orders originated from
multiple healthcare institutions, a unified mapping of medication names to a drug taxon-
omy was unavailable. Instead, each medication was mapped to the Anatomical Therapeutic
Chemical (ATC) classification codes [28]. The ATC drug classification system is hierarchical
with multiple sub-levels. For this study, the first-level sub-groups of all 14 main ATC
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groups were included (e.g., A01: stomatological preparations, A02: drugs for acid-related
disorders, etc.). For each patient, the number of medication orders associated with a given
ATC sub-group was calculated over the surveillance period of interest. This processing led
to 98 medication variables.

2.5. Model Development and Evaluation

In total, 135 variables were derived from demographics, diagnosis, and medication
order data. One-hot encoding was performed on all categorical variables, and all continu-
ous variables were standardized. Initially, we explored five candidate machine learning
models to predict insomnia: logistic regression, support vector machine with the radial
basis function kernel, random forest, extreme gradient boosting (XGBoost), and a multilayer
neural network. For model selection, data from 2011–2017 (based on patient index date)
were randomly split into a training set (80%) and a holdout set (20%) while maintaining
1:1 case/control to avoid class imbalance. Each candidate model was evaluated by calcu-
lating the area under the receiver operating characteristic curve (AUC) on the holdout set.
XGBoost had the highest AUC out of the five candidates and was therefore selected as the
model of choice. A voting ensemble architecture consisting of the top three performing
models was also considered but demonstrated no significant (<1%) improvement over the
XGBoost model alone.

After deciding on XGBoost, the data were split into three subsets based on patient
index date (2011–2013, n = 15,008; 2011–2015, n = 25,372; and 2011–2017, n = 34,850). The
purpose of subsetting the data was to create models with different time periods and observe
their performance over subsequent time periods. For each of these subsets, we created
separate XGBoost models using data derived from the following surveillance periods before
the index date: (1) −1 to −365 days before index, and (2) −180 to −365 days before index,
thereby allowing for an understanding of how the surveillance period impacts the models’
ability to detect patients at risk for insomnia. Before training, each model’s data were
randomly split into a training set (80%) and a holdout set (20%) while again maintaining
1:1 case/control to avoid class imbalance. Hyperparameter tuning was performed using a
grid search approach with 5-fold cross-validation. We evaluated the predictive performance
of each model on its corresponding holdout set by creating 1000 bootstrapped samples
with replacement, calculating the AUC for each sample, and averaging the results. SHapley
Additive exPlanation (SHAP) [29] was used to determine which features had the strongest
influence on model predictions. Calibration was assessed using calibration curves.

2.6. Temporal Validation

Temporal validation was performed to examine how the models’ performances would
change over time. To achieve this, we evaluated each model’s performance on future data,
one year at a time, up to 2018. Relatively stable performance over time would indicate
that the model is low-maintenance and could potentially be used in production within
a healthcare system for several years without requiring retraining. Figure 1 shows the
workflow used for model development, internal validation, and temporal validation for
the insomnia prediction model trained on patient data from 2011–2017.
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Figure 1. Workflow for development and temporal validation of the model developed using data
from 2011 to 2017.

3. Results
3.1. Study Sample

There were 250,159 adult patients with at least one encounter per year during the study
period, 19,834 of whom had a new insomnia ICD-9-CM/ICD-10-CM code or insomnia
medication between 2011–2018. Of the identified insomnia cases, 913 were ineligible due
to not having any medication or diagnosis data (potentially due to data entry errors), and
nine were excluded for missing sex data. The final analysis sample included 39,668 patients
(19,834 insomnia cases and 19,834 matched controls, Figure 2). Overall, the cohort was
primarily female (70%), white (78%), and publicly insured (44%), with a median age of
59 years (Table 1). The five most common diagnoses in the study sample were hypertension
(33%), diabetes (17.1%), hypothyroidism (11%), and chronic pulmonary disease (9%).
Compared to controls, insomnia cases had a greater comorbidity burden (Table 2).

For most cases, the first instance of insomnia was defined by an order for an insomnia
medication (59.4%) rather than an ICD-9-CM/ICD-10-CM code (40.6%). When considering
the entire study period, 9543 (53.3%) cases had an ICD-9-CM/ICD-10-CM documented
at some point, and 13,213 (63.5%) cases were prescribed an FDA-approved insomnia
medication. Among those who received pharmacotherapy, the most frequently prescribed
insomnia-specific medications were zolpidem (61.7%), temazepam (13.5%), triazolam
(7.8%), and eszopiclone (7.6%).



J. Clin. Med. 2023, 12, 3286 6 of 12
J. Clin. Med. 2023, 12, x FOR PEER REVIEW 6 of 13 
 

 

 
Figure 2. Flow Diagram for Patient Inclusion in the Insomnia Risk Prediction Model. 

Table 1. Demographic Characteristics for Cases and Controls, Entire Cohort (2011–2018). 

Variables Control  
(n = 19,834) 

Case  
(n = 19,834) 

Total  
(n = 39,668) 

Age *, years, median (IQR) 59 (48–70) 59 (48–70) 59 (48–70) 
Female 13,897 (70%) 13,897 (70%) 27,794 (70%) 
Race group, n (%)    

     Black 1749 (8.8%) 1749 (8.8%) 3498 (8.8%) 
     White 15,553 (78%) 15,553 (78%) 31,106 (78%) 
     Unknown 2197 (11%) 2197 (11%) 4394 (11%) 
     Other 335 (1.7%) 335 (1.7%) 670 (1.7%) 
Insurance type, n (%)    

     Government 7630 (38%) 9791 (49%) 17,421 (44%) 
     Private 9321 (47%) 6255 (32%) 15,576 (39%) 
     Self-pay 598 (3.0%) 888 (4.5%) 1486 (3.7%) 
     Other/Unknown 2285 (12%) 2900 (15%) 5185 (13%) 

* At index date. Controls were matched to insomnia cases by age within 1 year, sex, and race. 

  

Figure 2. Flow Diagram for Patient Inclusion in the Insomnia Risk Prediction Model.

Table 1. Demographic Characteristics for Cases and Controls, Entire Cohort (2011–2018).

Variables Control
(n = 19,834)

Case
(n = 19,834)

Total
(n = 39,668)

Age *, years, median (IQR) 59 (48–70) 59 (48–70) 59 (48–70)
Female 13,897 (70%) 13,897 (70%) 27,794 (70%)
Race group, n (%)

Black 1749 (8.8%) 1749 (8.8%) 3498 (8.8%)
White 15,553 (78%) 15,553 (78%) 31,106 (78%)
Unknown 2197 (11%) 2197 (11%) 4394 (11%)
Other 335 (1.7%) 335 (1.7%) 670 (1.7%)

Insurance type, n (%)
Government 7630 (38%) 9791 (49%) 17,421 (44%)
Private 9321 (47%) 6255 (32%) 15,576 (39%)
Self-pay 598 (3.0%) 888 (4.5%) 1486 (3.7%)
Other/Unknown 2285 (12%) 2900 (15%) 5185 (13%)

* At index date. Controls were matched to insomnia cases by age within 1 year, sex, and race.
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Table 2. Clinical Characteristics for Cases and Controls, Entire Cohort (2011–2018).

Variables Control
(n = 19,834)

Case
(n = 19,834)

Total
(n = 39,668)

Elixhauser Comorbidity Score, median (IQR) 0 (0–0) 0 (0–5) 0 (0–3)
Number of Comorbidities, median (IQR) 3 (0–8) 8 (2–15) 5 (1–11)

Elixhauser Comorbidity Group, n (%)

Congestive heart failure 411 (2.1%) 1066 (5.4%) 1477 (3.7%)
Cardiac arrhythmias 1096 (5.5%) 2050 (10%) 3146 (7.9%)
Valvular disease 437 (2.2%) 685 (3.5%) 1122 (2.8%)
Pulmonary circulation disorders 146 (0.7%) 370 (1.9%) 516 (1.3%)
Peripheral vascular disorders 486 (2.5%) 947 (4.8%) 1433 (3.6%)
Hypertension, uncomplicated 4766 (24%) 7121 (36%) 11,887 (30%)
Hypertension, complicated 392 (2.0%) 795 (4.0%) 1187 (3.0%)
Paralysis 49 (0.2%) 158 (0.8%) 207 (0.5%)
Other neurological disorders 369 (1.9%) 969 (4.9%) 1338 (3.4%)
Chronic pulmonary disease 1108 (5.6%) 2474 (12%) 3582 (9.0%)
Diabetes, uncomplicated 1945 (9.8%) 3099 (16%) 5044 (13%)
Diabetes, complicated 553 (2.8%) 1076 (5.4%) 1629 (4.1%)
Hypothyroidism 1821 (9.2%) 2602 (13%) 4423 (11%)
Renal failure 699 (3.5%) 1219 (6.1%) 1918 (4.8%)
Liver disease 336 (1.7%) 702 (3.5%) 1038 (2.6%)
Peptic ulcer disease 27 (0.1%) 85 (0.4%) 112 (0.3%)
AIDS/HIV 68 (0.3%) 130 (0.7%) 198 (0.5%)
Lymphoma 207 (1.0%) 429 (2.2%) 636 (1.6%)
Metastatic cancer 98 (0.5%) 238 (1.2%) 336 (0.8%)
Solid tumor without metastasis 1272 (6.4%) 1800 (9.1%) 3072 (7.7%)
RA/collagen vascular disease 473 (2.4%) 930 (4.7%) 1403 (3.5%)
Coagulopathy 190 (1.0%) 412 (2.1%) 602 (1.5%)
Obesity 715 (3.6%) 1756 (8.9%) 2471 (6.2%)
Weight loss 180 (0.9%) 523 (2.6%) 703 (1.8%)
Fluid and electrolyte disorders 655 (3.3%) 1709 (8.6%) 2364 (6.0%)
Blood loss anemia 53 (0.3%) 140 (0.7%) 193 (0.5%)
Deficiency anemia 719 (3.6%) 1405 (7.1%) 2124 (5.4%)
Alcohol abuse 67 (0.3%) 227 (1.1%) 294 (0.7%)
Drug abuse 74 (0.4%) 329 (1.7%) 403 (1.0%)
Psychoses 147 (0.7%) 611 (3.1%) 758 (1.9%)
Depression 696 (3.5%) 2521 (13%) 3217 (8.1%)

Note: Comorbidity status was ascertained using data from −1 to −365 days before the index date. AIDS = acquired
immunodeficiency syndrome; HIV = human immunodeficiency virus; RA = rheumatoid arthritis.

3.2. Model Selection

The five candidate classifiers were developed and evaluated using data from 2011–2017
with a surveillance period of −1 to −365 days before the index. The training set consisted
of 13,940 cases and 13,940 controls; the holdout set consisted of 3485 cases and 3485 controls.
XGBoost produced the highest AUC (0.80) on the holdout set by a narrow margin compared
to the neural network and random forest models, which both had AUCs of 0.79. The
SVM and logistic regression models performed the worst, with an AUC of 0.74 and 0.68,
respectively. A voting ensemble architecture combining the top three models was also
evaluated. However, no significant (<1%) improvement was observed over the XGBoost
model alone. Therefore, this latter model was retained for further analysis.

3.3. Prediction Models

The holdout set AUCs for models trained on data from 2011–2013 (n = 14,970),
2011–2015 (n = 25,286), and 2011–2017 (n = 34,850) were nearly identical, although models
trained on fewer samples tended to have greater variability in performance (Table 3). The
models trained on data with a surveillance period of −1 to −365 days before the index had
AUCs of approximately 0.80, indicating good predictive performance. Models that used
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data closer to a patient’s index date performed better than those using data further from
the index date; when the surveillance period was limited to −180 to −365 days before the
index date, AUCs decreased (range 0.68–0.70, Table 3). The above two surveillance periods
correspond to 1-day and 6-month prediction horizons prior to the onset of the disease. For
clinical decision support, the earlier the risk prediction, the better. Unfortunately, extend-
ing the prediction horizon using a surveillance period of −730 to −365 days prior to the
index date (i.e., a one-year prediction horizon) resulted in an inconclusive risk prediction
model. We hypothesize that a surveillance period that is closer to the index date is needed
for insomnia risk prediction because trigger factors related to medications and comorbid
conditions are immediate rather than delayed. This is supported by the most important
predictors of the models (Table 4). The number of orders for analgesic medications was
the most important predictor for all models with a surveillance period of −1 to −365 days
before index. In comparison, insurance was the most important predictor for the models
with a surveillance period of −180 to −365 days. The models were well calibrated for both
surveillance periods (Figures S1 and S2).

Table 3. Evaluation and Temporal Validation of XGBoost Insomnia Prediction Models.

Training Data and Surveillance Period

2011–2013 (n = 14,970) 2011–2015 (n = 25,286) 2011–2017 (n = 34,850)

−1 to −365 −180 to −365 −1 to −365 −180 to −365 −1 to −365 −180 to −365

Holdout * AUC 0.80 (0.008) 0.70 (0.009) 0.79 (0.006) 0.68 (0.008) 0.80 (0.005) 0.70 (0.006)

2014 AUC 0.78 (0.007) 0.68 (0.008) – – – –

2015 AUC 0.76 (0.006) 0.69 (0.007) – – – –

2016 AUC 0.77 (0.006) 0.69 (0.007) 0.79 (0.006) 0.74 (0.007) – –

2017 AUC 0.77 (0.007) 0.71 (0.008) 0.79 (0.007) 0.74 (0.008) – –

2018 AUC 0.76 (0.007) 0.68 (0.008) 0.77 (0.007) 0.71 (0.007) 0.77 (0.007) 0.72 (0.007)

* Holdout sets were derived from the same time period as the training data. The mean AUC (SD) obtained from
1000 bootstrapped samples with replacement. A 1:1 ratio of cases to controls was maintained across all data.

Table 4. Top five Most Important Features in XGBoost models’ predictions by surveillance period.

Data Rank *
Surveillance Period

−1 to 365 Days −180 to −365 Days

2011–2013
(holdout)

1 Analgesic medications Private insurance
2 Psychoanaleptic medications Analgesic medications
3 Private insurance Psychoanaleptic medications
4 Psycholeptic medications Number of comorbidities
5 Antiepileptic medications Psycholeptic medications

2011–2015
(holdout)

1 Analgesic medications Private insurance
2 Psychoanaleptic medications Analgesic medications
3 Private insurance Psychoanaleptic medications
4 Psycholeptic medications Age
5 Number of comorbidities Psycholeptic medications

2011–2017
(holdout)

1 Analgesic medications Private insurance
2 Psychoanaleptic medications Analgesic medications
3 Number of comorbidities Psychoanaleptic medications
4 Private insurance Number of comorbidities
5 Psycholeptic medications Age

* Feature importance is measured using SHAP values.

3.4. Temporal Validation

In general, AUCs were stable over time. For example, the −1 to −365 model trained
on the fewest samples (2011–2013) had an AUC of 0.80 when making predictions using
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holdout patient data within the same period; see Table 3. For patient data one year (2014)
and five years (2018) in the future, AUCs of 0.78 and 0.76 are obtained using the same
model, respectively. These results indicate a minimal decrease in performance as the
patient populations shift over time. Similar results were observed for the 2011–2015 and
2011–2017 models.

4. Discussion

Our results indicate that multivariable prediction models can successfully identify
patients at high risk of insomnia using routine EMR data. In our experiments, an XGBoost
model trained using a combination of demographics, diagnosis, and medication data
captured −1 to −365 days before the index date achieved an average AUC of 0.80 over the
holdout dataset and was well calibrated. Furthermore, temporal validation demonstrated
that the model’s performance is stable when making predictions up to five years in the
future, suggesting that it may require relatively little maintenance once deployed. EMR-
based prediction models like those presented in this study have been successfully used
to detect prodromal Alzheimer’s disease [30]. To our knowledge, this is the first study to
develop and temporally validate an insomnia prediction model using multi-institutional
EMR data.

Psychotropic medications (psychoanaleptics and psycholpetics) and analgesic medi-
cations were strong predictors of insomnia in the model. The fact that these medication
groups correspond to conditions frequently associated with insomnia in the literature,
including mood disorders, chronic pain, and gastroesophageal reflux disease, or are known
to cause insomnia as a side effect (e.g., stimulants), supports these models being clinically
explainable [31–34]. Insurance type was also a top feature, which may reflect an association
between the ability to work and better health; while cases and controls were matched
by age, significantly more cases had government insurance (Medicare or Medicaid) than
controls (49% vs. 38%, respectively). Elixhauser mortality score was missing from the top
five most important features. However, the number of comorbidities appeared frequently.
This may suggest that the number of individual conditions matters more than aggregated
mortality scores when predicting insomnia. One possible explanation is that individuals
with a greater number of comorbidities experience greater psychological distress, which, in
conjunction with their underlying illnesses, increases their risk of insomnia.

Our results indicate that the length and proximity of the surveillance period to the
index date can significantly impact the accuracy of insomnia risk prediction when using
EMR data. All performance metrics increased with surveillance duration and proximity,
which was expected given that the −1 to −365 models had access to more recent information
than the −180 to −365 models. The fact that the −1 to −365 models performed better
suggests that the diagnoses and medications that best predict insomnia occur closer to the
index date and may not be consistently captured when considering a distant surveillance
period. This lack of documentation was reflected in the lists of important features; for
example, four of the five top features in the −1 to −365 models were clinical variables
(medication orders and number of comorbidities). In contrast, the model with a surveillance
period ranging from −180 to −365 days before the index had top features such as age and
insurance type, which are independent of the surveillance period and clinically agnostic.

As previously mentioned, the AUCs of the −1 to −365 models all indicate good
discriminative ability. However, it is also important to determine whether the model’s
performance is stable over time—that is, whether it will need frequent retraining after being
deployed in a healthcare system. Our models’ performance remained stable when making
predictions on data up to five years in the future, suggesting they are longitudinally viable.

While several studies have explored insomnia prediction using primary data, pub-
lished research using EMR data is limited. The model proposed by Kartoun et al. (2018)
mentioned earlier achieved an AUC of 0.78 when using structured EMR data, which is sim-
ilar to the present study [16]. However, compared to the present study, this earlier model
did not consider patients taking insomnia-specific medications without a documented
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diagnosis. Moreover, over 75% of patients in the study had at least ten years of EMR
records. This extended surveillance period should be compared to the 6- and 12-month
surveillance periods reported in the present study.

In summary, this study shows that a model that depends on a limited set of routinely
collected variables and a one-year surveillance period can deliver accurate insomnia risk
prediction. This finding is important because, even though insomnia is common, patients
are often reluctant to discuss sleep issues with their physicians and may delay seeking help
with their insomnia until it becomes severe [15]. The models presented in this study offer
an inexpensive and scalable method to screen for individuals at high risk of insomnia who
could benefit from additional, targeted assessment by a healthcare professional. Because it
uses routine EMR data, the model can be readily integrated into existing EMR systems to
support clinical decision-making and early treatment initiatives.

Our study has several strengths. First, the data were sourced from a statewide health
information exchange, resulting in a large and diverse study sample. Second, we compared
models with different surveillance periods to examine how surveillance length affects
predictive performance. We also used both ICD codes and insomnia-specific medications
to improve insomnia case identification and avoid potential misclassification. Finally,
we temporally validated the models to determine their stability over time, an important
practical consideration as a temporally sensitive model would require frequent retraining
and updates.

This study also has important limitations. While the INPC receives information from
most major healthcare systems in Indiana, encounters at non-INPC facilities may not have
been captured. Therefore, INPC may not be representative of independent healthcare
centers, so our results may not generalize to those populations. Additionally, routine
care EMR data may not include all relevant information for insomnia prognostication.
Off-label insomnia medications were not considered because they are indicated for the
treatment of depression, pain, psychosis, and other medical conditions and would require
a review of treatment causes from medical notes to ascertain their relevance to insomnia.
As such, insomnia patients without an insomnia ICD code who were treated with off-label
medications would have been missed. That said, off-label insomnia medication and the use
of medical notes as an additional source of data are being considered for future work.

Requirements for matching cases and controls enforced in the study design were
intended to limit biases related to age, sex, and race. However, biases resulting from other
criteria, such as off-label medications, insurance types, and health service providers, were
not considered.

Nonetheless, with a surveillance period of 1 year, the proposed model achieved an
AUC of 0.8 and was temporally validated over five years. As such, we believe it is suitable
as a pre-screening method. The model can be applied frequently to all patients without
any additional burden. The medical charts of patients identified as at risk by this method
should then be reviewed by a health care provider. In addition, we believe that the present
study demonstrates the potential of an algorithmic approach to insomnia prognostication
and provides a baseline for future enhancements, including the use of medical notes,
deep-learning models, and a larger cohort of patients.

5. Conclusions

Our findings suggest that EMR-based prediction models may provide an inexpensive,
scalable, and longitudinally viable method to identify individuals at risk of insomnia. Our
models demonstrated clinically useful discriminative performance in the general adult
population and remained stable over time. Clinical application of the proposed models
as an automated screening tool could facilitate targeted, physician-led assessments and
subsequent early intervention, thereby potentially reducing insomnia-related healthcare
burden and improving quality of life for patients.
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