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Abstract: Fetal magnetocardiography (fMCG) has proven to be an important tool for the prena-
tal monitoring of electrical cardiac activity; however, the high cost of superconducting quantum
instrumentation (SQUID) poses a limitation for the dissemination of fMCG as a routine clinical
technique. Recently, optically pumped magnetometers (OPMs) operating within person-sized, cylin-
drical shields have made fMCG more practical, but environmental magnetic interference entering
through the shield opening substantially degrades the quality of fMCG signals. The goal of this
study was to further attenuate these interferences by placing the OPM array within a small ferrite
shield. FMCG recordings were made with and without the ferrite shield in ten subjects inside a
person-sized, three-layer mu-metal cylindrical shield. Although the fetal signal was slightly attenu-
ated, the environmental interference was reduced substantially, and maternal interference was also
diminished. This increased the signal-to-noise ratio significantly and improved the resolution of the
smaller waveform components. The performance improvement was highest in the axial direction
and compensated for a major weakness of open-ended, person-sized shields. The ferrite shield is
especially beneficial for the deployment of triaxial OPM sensors, which require effective shielding in
all directions.

Keywords: magnetic shielding; ferrite; fetal magnetocardiography; optically pumped magnetometers;
arrhythmias

1. Introduction

Fetal magnetocardiography (fMCG) is a noninvasive modality that records the
magnetic activity of the fetal heart during pregnancy. It has emerged as an important
complementary diagnostic tool to fetal echocardiography, which records mechanical
activity and blood flow, and an alternative to fetal electrocardiography, which records
electrical activity but is not used clinically due to its poor signal quality. Numerous
studies have shown that fMCG can be recorded reliably throughout the last half of
pregnancy and provides valuable information, including assessments of fetal heart
rate, beat-to-beat fetal heart rate variability, fetal activity, and fetal rhythm. Clinically,
the most important application of fMCG is the diagnosis of fetal arrhythmia [1,2]. The
use of fMCG for this application was endorsed by the American Heart Association in
its inaugural statement on diagnosis and treatment of fetal cardiac disease [3].

Recently, fMCG technology has been revolutionized by the emergence of optically
pumped magnetometers (OPM) [4–6], a cryogen-free sensor with sensitivity similar to that
of superconducting quantum interference devices (SQUIDs), which are the sensors currently
in use [7–9]. In addition to reduced cost, size, and complexity, OPM-based systems enable
the use of smaller magnetic shields. Person-sized cylindrical magnetic shields have been
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demonstrated as cost-effective alternatives to magnetically shielded rooms (MSRs) [10,11];
however, to ensure patient comfort and avoid the risk of claustrophobia, one end of the
cylindrical shield is left open. This results in substantially reduced shielding performance
toward the open end of the shield.

Several methods have been investigated to improve the shielding performance of
open-ended, person-sized shields. It is well known from simulations that lengthening
the shield improves performance; however, this increases the cost and difficulty of
finding suitable space in a clinical setting. Adding a fourth layer of shielding to
a typical three-layer, person-sized shield can result in performance similar to that
of a large-size MSR [10], but again increases the cost and size of the shield. Another
approach implemented by several groups [12,13] is to add an extension that reduces the
diameter of the opening to approximately 60 cm. This was demonstrated in simulations
to improve the shielding by a factor of two and shift the optimal position towards the
center of the shield [14]. For fMCG, however, it is not feasible to appreciably narrow
the opening. The diameter of the inner shield needs to be 75 cm or greater to allow
a pregnant woman to comfortably enter. Lastly, the best shielding performance is
achieved with superconducting shields [15], but the cost at the moment exceeds that of
an MSR.

The problem of leakage interference from the shield opening is considerably more
severe for fMCG than for other applications. For magnetoencephalography (MEG) and
even MCG, the sensors can be positioned much closer to the closed than the open end
of the shield. For fMCG, however, the sensors are positioned near the middle of the
shield. The leakage interference is especially strong in the longitudinal direction because,
for cylindrical geometries, the shielding factor is approximately ten times higher in the
transverse direction than in the longitudinal. In the study by Strand and coworkers, the
sensors were oriented to record only the transverse components of the fMCG signal due to
the low signal-to-noise ratio (SNR) of the longitudinal component [11].

In this study, we investigated the use of a small ferrite shield to augment the perfor-
mance of a conventional person-sized magnetic shield. Small ferrite shields have been
used previously by Kornack and coworkers to circumvent the Johnson noise associated
with mu-metal shields [16]. To our knowledge, this is the first use of ferrite shields for a
biomagnetism application. We show that the method is practical and provides a major
benefit by allowing the longitudinal component of the fMCG to be recorded with SNR
similar to that of the transverse components.

2. Materials and Methods
2.1. Instrumentation

The measurements were performed within a cylindrical three-layer mu-metal
shield (Amuneal Inc., Philadelphia, PA, USA) with an inner diameter of 75 cm and
length of 2.5 m (Figure 1A). One end of the shield was closed, and the other was kept
open to avoid the risk of claustrophobia. It was placed on a custom-made support with
a detachable extension that allows the patient’s table to slide in and out of the shield.

The study took place at the Wisconsin Institute for Medical Research at the Univer-
sity of Wisconsin–Madison, where the earth’s magnetic field is ∼= 54 µT. The residual
field was reduced to approximately 10 nT by placing the shield perpendicular to the
earth’s magnetic field. A ferrite cylindrical shield (height: 12.5 cm; inner diameter:
15 cm; and thickness: 1 cm), depicted in Figure 1B, was placed inside the mu-metal
shield with its axis perpendicular to the mu-metal shield’s axis. The ferrite shield had
one end open and the other closed with a removable end cap of the same material and
thickness. The end cap had 12 access holes in it, allowing the cables to exit.
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shield, the interference will be strongly attenuated but the signal may also be diminished. 
If the sensors are positioned near the top of the shield, the signal loss will be minimal, but 
the shielding effectiveness will also be reduced. To help determine an optimal placement, 
we measured the shielding factor as a function of the vertical position of the sensor array 
with respect to the top of the ferrite shield, using an external magnetic coil to simulate 
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Figure 1. (A) Photograph showing the open-ended, 3-layer mu-metal cylindrical shield, the sliding
patient table, and the OPM sensors. (B) Photograph of the side wall and bottom cap of the ferrite
shield showing the sensors’ access hole. (C) Photograph of the sensors distributed within the ferrite
shield. (D) Diagram showing the directions with respect to the mu-metal shield. The longitudinal
direction is defined by the long axis of the cylinder. The vertical transverse direction is perpendicular
to the floor, and the horizontal transverse direction is parallel to the floor. The OPMs were oriented so
that their Y and Z outputs record the magnetic field in the horizontal and vertical transverse directions,
respectively, and the X output (Gen3 sensors) records the magnetic field in the longitudinal direction.

Three OPM sensor versions—Gen1, Gen2, and Gen3 (QuSpin Zero Field Magne-
tometer, QuSpin Inc., Louisville, CO, USA)—were used to record the fMCG. The Gen1
and Gen2 sensors were dual-axis sensors with an intrinsic magnetic field resolution of
10–15 fT/(Hz)1/2. Each sensor measures two orthogonal components of the magnetic field,
one parallel to the long axis of the sensor (Z) and the other parallel to the short axis (Y).
The Gen2 sensors were smaller than the Gen1 sensors. The Gen3 sensors became available
toward the end of the study. They are triaxial sensors (Z, Y, and X) and have a slightly lower
magnetic field resolution. A 3D-printed plastic holder accommodated 11 OPM sensors
arranged in an offset square grid pattern of 9 × 9 cm (Figure 1C). The sensors were oriented
so that the Z and Y outputs recorded the magnetic field in the horizontal and vertical
transverse directions of the mu-metal shield (Figure 1D), and the X component of the
triaxial sensors recorded the magnetic field in the longitudinal direction. The signals were
digitized at 1 kHz using a LabView data acquisition system (National Instruments, Austin,
TX, USA). Signal processing was performed using a custom computer program written in
Matlab (MathWorks Inc., Natick, MT, USA).

2.2. Vertical Placement of Sensor Array within Ferrite Shield

The vertical placement of the sensor array within the ferrite shield affects the shielding
effectiveness and signal fidelity. If the sensors are positioned well below the top of the
shield, the interference will be strongly attenuated but the signal may also be diminished.
If the sensors are positioned near the top of the shield, the signal loss will be minimal, but
the shielding effectiveness will also be reduced. To help determine an optimal placement,
we measured the shielding factor as a function of the vertical position of the sensor array
with respect to the top of the ferrite shield, using an external magnetic coil to simulate
environmental interference. The shielding factor is defined as the ratio of the magnetic field
in the absence of the ferrite shield to the field in the presence of the shield.
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2.3. Attenuation of Environmental Interference

The effectiveness of the ferrite shield in attenuating environmental interference was
assessed by placing the center of the OPM array 140 cm from the shield opening and
recording the interference with and without the ferrite shield. Five dual-axis and four
tri-axis OPMs were used to obtain the noise in all three directions. Each measurement
lasted 30 s. The power spectra for each direction in both cases were obtained using Welch’s
method in Matlab.

2.4. Human Studies
2.4.1. Subjects

The protocol was approved by the UW-Madison Health Sciences IRB, and informed
consent was obtained from all subjects. The subjects were 10 adult pregnant women,
studied at 21–36 weeks of gestation. Seven of the pregnancies were uncomplicated. One was
complicated by fetal long QT syndrome (LQTS). A second was complicated by endocardial
fibroelastosis and fetal AV block associated with isoimmune disease. A third was a case of
congenital heart disease, tetralogy of Fallot.

2.4.2. Data Collection

The data were collected with the mother lying prone on two sections of foam mattress
separated by a gap. The sensor array was covered by a thin piece of foam and placed within
the gap in contact with the mother’s abdomen from below. Airflow was applied to the
sensors to prevent them from overheating. After positioning the mother, the patient table
was slid into the mu-metal shield for data collection. The sensor array was approximately
140 cm from the mu-metal shield opening. Two 60 s runs were recorded—one with and
one without the ferrite shield.

2.4.3. Data Processing

The performance of the ferrite shield was assessed using four parameters: the am-
plitude of the fetal and maternal QRS complexes (fQRS and mQRS, respectively), the
amplitude of the environmental noise, and the SNR. The parameters were calculated
separately for each sensor and direction.

To analyze the effect of the shield, the parameters must be measured from the raw
signal. Thus, a 1–100 Hz band-pass filter was applied to remove the offset without removing
the main interferences. The amplitude of each fQRS and mQRS was measured as the
peak-to-peak amplitude. The environmental noise amplitude was defined as the root-mean-
square of each interval between the end of one QRS complex and the beginning of the
next. After excluding artifacts, all of the fQRS, mQRS, and noise amplitudes throughout
the signal were averaged, yielding one final value for each variable. Finally, the SNR was
calculated as the average fQRS amplitude divided by the average noise amplitude.

2.4.4. Statistical Analysis

We performed an ANOVA with a 2 × 2 factorial randomized block design where
the patients were considered blocks (random effects). The presence of the shield and
the direction, as well as the interaction between them, were considered fixed effects. All
analyses were performed using the mixed procedure of SAS.

3. Results
3.1. Vertical Placement of Sensor Array within Ferrite Shield

Figure 2 shows the shielding factor in each direction as a function of the vertical
position of the sensor array with respect to the top of the ferrite shield. The shielding
factors are modest in the transverse directions but substantial in the longitudinal direction.
Although the shielding factors increase when the sensors are positioned farther within the
shield, an additional, critically important consideration is the need to situate the sensors as
close as possible to the fetal heart. This is difficult unless the sensors are near the top of
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the shield. Based on these considerations, we chose to position the OPM sensors so that
they were approximately 1.2 cm below the top of the ferrite shield. At this position, the
shielding factors are approximately 1.7, 15.5, and 9.6, respectively, in the vertical transverse,
horizontal transverse, and longitudinal directions.
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Figure 2. Shielding factor in each direction for different vertical positions of the sensor array with
respect to the top/open end of the ferrite shield. Negative values indicate that the sensor array was
above the top of the shield. The data were fitted in a polygonal curve and the shielding factors
obtained for the vertical transverse, horizontal transverse, and longitudinal directions were 1.7, 15.5,
and 9.6, respectively.

3.2. Attenuation of Environmental Interference

Figure 3 shows the effect of the ferrite shield on the power spectra of the environmental
magnetic noise components near the center of the mu-metal shield. As expected, in the
absence of the ferrite shield, the longitudinal direction is much noisier than both transverse
directions. When using the ferrite shield, the interference in all directions is significantly
attenuated, but the degree of attenuation is much greater for the longitudinal direction.
Thus, the ferrite shield compensates for the poorer performance of the mu-metal shield in
the longitudinal direction so that the residual interference is similar in all directions.

3.3. Human Studies

Analysis and interpretation of the human data were complicated by several factors.
The data show occasional inconsistencies and anomalies, such as greater-than-expected
changes in the signal amplitude between the shielded and unshielded data. We largely
attribute this to the fact that removing the shield requires repositioning the subject, and
changes in the position and orientation of the fetus between measurements can result
in inconsistencies. furthermore, for reasons we do not completely understand, maternal
interference was absent in both shielded and unshielded data for two patients and was
present in the shielded data but absent in the unshielded data for one patient. Statistical
analysis was performed only in the five cases where maternal interference was present in
both unshielded and shielded data.
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Table 1 presents the results of the statistical analyses for the transverse directions. The
analysis could not be performed for the longitudinal direction because the environmental
interference was so strong that the unshielded signal could not be resolved. Using the
ferrite shield affected all parameters (p < 0.001): the fQRS and mQRS amplitudes and the
noise amplitude were reduced considerably, while the SNR increased significantly. The
fQRS amplitude was reduced by 47% in the horizontal transverse direction and 32% in
the vertical transverse direction, the mQRS amplitude was reduced by 47% and 29%, the
noise was reduced by 55% and 47%, and the SNR increased by 32% and 24%, respectively.
The direction did not affect the parameters, but the interaction between the presence of the
shield and the direction was significant for the fQRS amplitude (p = 0.034). The multiple
comparisons showed that after including the shield, the difference in the horizontal and
vertical transverse fQRS amplitudes became significant (p = 0.033).

Table 1. Statistical results for fetal and maternal QRS amplitudes (fQRS and mQRS, respectively),
noise amplitude, and signal-to-noise ratio (SNR) for horizontal and vertical transverse directions,
with and without the ferrite shield. The * indicates p-value < 0.05.

Variables

Effects
p-Value

Horizontal Transverse Vertical Transverse

Unshielded Shielded Unshielded Shielded Shield Direction Shield x Direction

fQRS (pT) 20.8 ± 1.1 11.1 ± 1.1 19.8 ± 1.2 13.4 ± 1.2 <0.0001 * 0.370 0.034 *

mQRS (pT) 22.8 ± 1.3 12.1 ± 1.3 23.0 ± 1.3 16.4 ± 1.3 <0.0001 * 0.072 0.098

Noise (pT) 8.0 ± 0.5 3.6 ± 0.5 7.1 ± 0.5 3.8 ± 0.5 <0.0001 * 0.313 0.119

SNR 2.7 ± 0.2 3.6 ± 0.2 2.9 ± 0.2 3.6 ± 0.2 <0.0001 * 0.081 0.313
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The effectiveness of the ferrite shield is clearly seen in the fMCG traces shown in
Figure 4. Without the shield, the longitudinal component is completely dominated by
noise. Although it is not possible to quantitatively compare the effect of the ferrite shield
on longitudinal parameters, the improvement is evident when comparing the traces.

J. Clin. Med. 2023, 12, x FOR PEER REVIEW 7 of 12 
 

 

Table 1. Statistical results for fetal and maternal QRS amplitudes (fQRS and mQRS, respectively), 
noise amplitude, and signal-to-noise ratio (SNR) for horizontal and vertical transverse directions, 
with and without the ferrite shield. The * indicates p-value < 0.05. 

Variables 

Effects 
p-Value 

Horizontal Transverse Vertical Transverse 

Unshielded Shielded Unshielded Shielded Shield Direction Shield x Di-
rection 

fQRS (pT) 20.8 ± 1.1 11.1 ± 1.1 19.8 ± 1.2 13.4 ± 1.2 <0.0001 * 0.370 0.034 * 
mQRS (pT) 22.8 ± 1.3 12.1 ± 1.3 23.0 ± 1.3 16.4 ± 1.3 <0.0001 * 0.072 0.098 
Noise (pT) 8.0 ± 0.5 3.6 ± 0.5 7.1 ± 0.5 3.8 ± 0.5 <0.0001 * 0.313 0.119 

SNR 2.7 ± 0.2 3.6 ± 0.2 2.9 ± 0.2 3.6 ± 0.2 <0.0001 * 0.081 0.313 

The effectiveness of the ferrite shield is clearly seen in the fMCG traces shown in 
Figure 4. Without the shield, the longitudinal component is completely dominated by 
noise. Although it is not possible to quantitatively compare the effect of the ferrite shield 
on longitudinal parameters, the improvement is evident when comparing the traces. 

 
Figure 4. Effect of the ferrite shield in all components of two triaxial (Gen3) OPMs in fMCG record-
ings of a fetus with tetralogy of Fallot in sinus rhythm. The strips are 1.2 s in duration and depict an 

Figure 4. Effect of the ferrite shield in all components of two triaxial (Gen3) OPMs in fMCG recordings
of a fetus with tetralogy of Fallot in sinus rhythm. The strips are 1.2 s in duration and depict an
average of 5 s of fMCG. A signal filter was applied prior to averaging. Components of the fetal signal
are depicted by red (QRS), green (T-wave), magenta (U-wave), and orange (P-wave) asterisks.

In the rhythm strips in Figure 5, the fetus presents with a slow fetal heart rate due to
a complete heart block, while the mother shows a relatively high heart rate. Figure 5A,B
show raw and signal-processed fMCG recordings obtained without the ferrite shield, while
Figure 5C,D show recordings made with the ferrite shield. The results in Table 1 are
compatible with the rhythm strips in Figure 5. The raw fMCG shows that the amplitudes of
the fQRS, mQRS, and interference were reduced by the ferrite shield. The processed fMCG
shows that, after applying signal processing to remove interferences, fetal T-waves (green
asterisks) could be resolved with the ferrite shield. Furthermore, maternal interference was
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completely removed by the ferrite shield but was visible (blue asterisks) in the unshielded
fMCG tracings.
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Figure 5. Effect of the ferrite shield around the OPMs in fMCG recordings of a fetus with complete
heart block and mother with high heart rate. The rhythm strips are 5 s in duration. A significant
reduction in maternal QRS and noise amplitude (blue asterisks) and a slight reduction in fetal QRS
(red) are observed in the raw rhythm in (A,C). The filtered rhythm in (B,D) shows that, with the ferrite
shield, the maternal interference was completely gone, and the fetal T-wave (green) was resolved.

Figure 6 shows averaged waveforms from fMCG recordings of a healthy fetus. Al-
though signal-processing techniques were applied to obtain the final waveform, it is evident
that the SNR improved with the use of the ferrite shield, and the P- and T-wave components
of the fMCG were better resolved.
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4. Discussion

In this study, we showed that placing an OPM array within a small ferrite shield
can significantly improve the performance of OPM-based fMCG systems that use person-
sized magnetic shields. The improvement is the result of the ferrite shield overcoming a
main weakness of cylindrical mu-metal shields, namely, the low shielding factor along
the longitudinal direction. As expected, the performance improvement is modest in the
transverse directions but substantial in the longitudinal direction. For this reason, the
shield is especially helpful when using triaxial OPM sensors, which have recently become
commercially available. These sensors allow all three components of the magnetic signal
to be recorded at the same location. In general, the signal components are independent,
and it is necessary to measure all three to extract all the information available in the signal.
This is problematic when using cylindrical, person-sized shields due to the low shielding
factor in the longitudinal direction; however, as demonstrated here, the ferrite shield can
compensate for this shortcoming, allowing all three channels of the triaxial output to
exhibit a similarly high SNR. In a prior study utilizing dual-axis OPMs, we oriented the
sensors to measure only the transverse components. This provided signals with a high
SNR at the expense of the measurement of the longitudinal signal component. When using
dual-axis OPMs, the ferrite shield allows flexible placement of the sensors, enabling both
the transverse and longitudinal signal components to be measured. This provides a more
complete characterization of the signal.

In some subjects, the increase in the signal quality resulting from use of the ferrite
shield provided significantly improved resolutions of the P- and T-waves. These small
waveform components are crucial to rhythm assessment. The differential diagnosis of most
bradycardias and supraventricular tachycardias is based on the relative timing of the atrial
and ventricular activations represented by the P-wave and QRS complex. Detection of
repolarization abnormalities, such as QTc prolongation in long QT syndrome or ST segment
changes due to ischemia, requires resolution of the T-wave. Fetuses with congenital heart
disease may also benefit from the fMCG evaluation because arrhythmia is a major cause of
morbidity and mortality in this population, although arrhythmia was not present in the
fetus studied here with tetralogy of Fallot. The technical improvements demonstrated in
this study can provide a meaningful increase in diagnostic capability and may allow fMCG
to be performed at earlier gestational ages.

A particular advantage of our method is the attenuation of maternal interference,
which is the dominant interference in fMCG recordings. Typically, it is not possible to
shield the sensors from maternal interference and other biological interferences emanating
from the subject. Instead, signal processing is relied upon. The most effective methods
utilize spatial filtering, such as independent component analysis (ICA). In many cases,
however, ICA cannot cleanly separate the fetal and maternal signals because their spatial
characteristics, i.e., signal topographies, are not sufficiently distinct. This results in the loss
of the fetal signal or the incomplete removal of maternal interference, depending on the
design of the filter. The ferrite shield can mitigate this problem by attenuating maternal
interference and/or altering its spatial characteristics to improve the ability of the spatial
filter to distinguish it from the fetal signal.

An additional advantage of the shield is improved signal visualization during data
acquisition. While signal processing is highly effective in improving the signal resolution,
it cannot be performed in real time. In addition to significant computation time, many
signal-processing methods require user input. Visualization of the signal during data
acquisition is especially important for clinical applications because it is critical to ensure
that the quality and quantity of data are adequate before the patient leaves the lab.

Despite our focus on fMCG, the ferrite shield is potentially useful for other bio-
magnetism measurements. As discussed above, it can help isolate the signal of interest
from sources of biological, as well as environmental, interference. For instance, it
can attenuate maternal and fetal cardiac interferences in fetal MEG and cardiac in-
terference in magnetogastography and magnetoenterography studies. A recently
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demonstrated technique of simultaneously recording fMCG and fetal echocardiog-
raphy [17]—magnetomechanical imaging—can also benefit from the ferrite shield to
attenuate interferences from the ultrasound probe. This may allow simultaneous,
real-time displays of fMCG, as well as pulsed Doppler and other echocardiography
modalities, by connecting the fMCG to the ECG input of the ultrasound scanner. A
significant limitation of the technique, however, is signal attenuation and/or distortion
of the signal topography because of the ferrite shield. These effects are relatively
small and inconsequential for fMCG, which utilizes the temporal information in the
signals; however, they are likely unacceptable for source-localization applications,
which require the highly accurate modeling of the signal topography.

The ferrite shield is a practical and cost-effective method of improving signal quality
in comparison to the alternative methods of enhancing shielding performance mentioned
in the introduction. It is simple and versatile. It can be used in conjunction with nearly
any existing shield and can be easily put in place and removed as needed. Subjects report
that the shield helps distribute the pressure on the abdomen and is more comfortable.
Additionally, as they enter the shield feet first, their head is near the opening and they can
see the outside, which minimizes the risk of claustrophobia. Using the ferrite shield may
also allow the use of shorter person-sized shields, which can also help with this issue. A
straightforward means of further improving the effectiveness of the method is to add a
second layer of shielding. Mu-metal is much more widely used for magnetic shielding than
ferrite because mu-metal is cheaper and has higher magnetic permeability. This suggests
constructing a two-layer shield using ferrite for the inner shield and mu-metal for the outer
shield, as implemented by Kornack and coworkers [16].

In conclusion, we demonstrated the use of a small ferrite shield as a simple, practical
method of overcoming the high level of environmental interference present in fMCG
recordings made using person-sized magnetic shields. The method allows users to take
full advantage of newly available OPM sensors that record all three components of the
signal and provide meaningful improvements in signal resolution and diagnostic capability.
This can help make fMCG more widely available as a new technique for evaluating life-
threatening fetal arrhythmia and other high-risk pregnancy conditions associated with
abnormal fetal heart rate and rhythm.
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