

Article Minimally Invasive Donors Right Hepatectomy versus Open Donors Right Hepatectomy: A Meta-Analysis

Chunyang Mu^{1,†}, Chuwen Chen^{1,†}, Jianghong Wan², Guoxin Chen³, Jing Hu⁴ and Tianfu Wen^{1,*}

- ¹ Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- ² Department of Outpatient, West China Hospital, Sichuan University, Chengdu 610041, China
- ³ Department of Vascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- ⁴ Department of Health Management, West China Fourth Hospital, Sichuan University, Chengdu 610093, China
- Correspondence: wentianfu@scu.edu.cn
- + These authors contributed equally to this work.

Abstract: Background: How to obtain a donor liver remains an open issue, especially in the choice of minimally invasive donors right hepatectomy versus open donors right hepatectomy (MIDRH versus ODRH). We conducted a meta-analysis to clarify this question. Methods: A meta-analysis was performed in PubMed, Web of Science, EMBASE, Cochrane Central Register, and ClinicalTrials.gov databases. Baseline characteristics and perioperative outcomes were analyzed. Results: A total of 24 retrospective studies were identified. For MIDRH vs. ODRH, the operative time was longer in the MIDRH group (mean difference [MD] = 30.77 min; p = 0.006). MIDRH resulted in significantly less intraoperative blood loss (MD = -57.86 mL; p < 0.00001), shorter length of stay (MD = -1.22 days; p < 0.00001), lower pulmonary (OR = 0.55; p = 0.002) and wound complications (OR = 0.45; p = 0.0007), lower overall complications (OR = 0.79; p = 0.02), and less self-infused morphine consumption (MD = -0.06 days; 95% CI, -1.16 to -0.05; p = 0.03). In the subgroup analysis, similar results were observed in pure laparoscopic donor right hepatectomy (PLDRH) and the propensity score matching group. In addition, there were no significant differences in post-operation liver injury, bile duct complications, Clavien–Dindo \geq 3 III, readmission, reoperation, and postoperative transfusion between the MIDRH and ODRH groups. Discussion: We concluded that MIDRH is a safe and feasible alternative to ODRH for living donators, especially in the PLDRH group.

Keywords: liver transplantation; right living donor resection; laparoscopic; laparoscopic-assisted; open living donor resection; meta-analysis

1. Introduction

Liver transplantation (LT) is an established treatment for patients suffering from endstage liver disease. Due to a paucity of deceased donors, particularly in Asian countries, living donor liver transplantation (LDLT) has become an important alternative [1]. The LDLT has drawn criticism for the risk it poses to healthy people who will have a major operation without any potential health benefits, including the risk of death. As donor safety is the cornerstone of LDLT, a surgery scheme with less perioperative complication occurrence is crucial.

Open donor liver resection has long been accepted as the classic procedure for obtaining liver for transplant recipients. However, with the conceptualization of minimally invasive liver surgery and the accumulation of laparoscopic techniques, minimally invasive donor left lateral hepatectomy (MIDLH) is considered as standard practice, once the team has fulfilled the adequate learning, because it is minimally invasive and results in less intraoperative blood loss, more rapid postoperative recovery, and a higher level of comfort to patients [2]. Previous physicians had struggled to perform laparoscopic-assisted living donor right hepatectomy, and [3] the first case of pure laparoscopic donor right liver resection (PLDRH) was not reported until 2013 [4] due to the highly complex procedure and

Citation: Mu, C.; Chen, C.; Wan, J.; Chen, G.; Hu, J.; Wen, T. Minimally Invasive Donors Right Hepatectomy versus Open Donors Right Hepatectomy: A Meta-Analysis. *J. Clin. Med.* **2023**, *12*, 2904. https:// doi.org/10.3390/jcm12082904

Academic Editors: Reinhold Függer, Kelvin K. NG and Matthias Biebl

Received: 27 December 2022 Revised: 6 March 2023 Accepted: 3 April 2023 Published: 17 April 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). intricate anatomy of the human liver. Because surgeons were concerned for the safety of the donor, they were hesitant to employ PLDRH in clinical settings. As a result, the application of minimally invasive donor right hepatectomy (MIDRH) is relatively lagging behind. It should be noted that recent investigations indicated that clinicians prefer MIDRH, in particular, PLDRH, more than open donor right hepatectomy (ODRH) when performing LT [5–7]. However, the choice between MIDRH and ODRH remains highly controversial in the liver surgeons' community.

Therefore, the current meta-analysis was carried out to thoroughly assess the potential advantages of MIDRH over ODRH in LDLT. Our conclusions provide evidence for the selection of clinical strategy that may be advantageous to clinical practitioners as well as patients.

1.1. Search Strategy and Study Selection

This study followed the PRISMA guidelines [8]. Published studies which compared MIDRH and ODRH for right liver donor were systematically searched in PubMed, Web of Science, EMBASE, Cochrane Central Register, and ClinicalTrials.gov databases before 30 April 2022, by two independent researchers (CWC, CYM). The combinations of the following key terms were used: laparoscopic, open, conventional, living donor, liver donor, minimally invasive. In order to find additional studies, the references of eligible studies were manually searched.

1.2. Inclusion and Exclusion Criteria

Two researchers (JHW, JH) individually screened all titles and abstracts to find papers that qualified: (1) studies focused on comparing MIDRH and ODRH; (2) types of studies that included randomized controlled trials (RCTs), retrospective studies, cohort studies, and case-control studies; (3) articles published in English. The exclusion criteria were as follows: (1) non-English or experimental studies; (2) studies without sufficient data; (3) the publication type was editorials, abstracts, letters, case reports, and expert opinion.

1.3. Data Extraction and Quality Assessment

The original data from all candidate articles were independently assessed and extracted by two reviewers (CYM, CWC) by using a unified datasheet which included the following: baseline characteristics (first author, country, publication year, research design, sample size, and mean age, gender, body mass index (BMI), PGV), intraoperative (intraoperative and operative time) and postoperative outcomes (peak AST, peak ALT, peak TB, hospital stay, self-infused morphine consumption, pulmonary complications, bile leak, Clavien–Dindo grade \geq III, re-hospitalization, reoperation, biliary stricture, postoperative transfusion, wound, postoperative bleeding, and total complications). The Newcastle– Ottawa Scale (NOS) [9] was used to evaluate the quality of included studies and a NOS score \geq 6 was considered as a high quality article.

1.4. Statistical Analysis

Statistical analysis was performed by using Review Manager 5.3 software. The weighted mean difference (WMD) with the 95% confidence interval (CI) and odds ratio (OR) were used to compare continuous variables and dichotomous, respectively. The method of converting medians with ranges into means with standard deviations was in accordance with a prior study carried by Hozo et al. [10] The Higgins I² index was used to quantify the statistical heterogeneity [11]. When heterogeneity is low or moderate (I² < 50%), the fixed-effects model (FEM) was adopted. In contrast, the random-effects model (REM) was adopted when the heterogeneity is high (I² \geq 50%).

2. Results

2.1. Search Results and Characteristics of the Included Studies

Our thorough literature search produced 1236 pertinent English publications in total. Finally, 24 retrospective studies [4–7,12–31] which involved 4392 patients comparing the MIDRH (1743 patients) and ODRH (2649 patients) were identified for further analysis (Figure 1). According to the different adoptions of laparoscopic techniques, MIDRH was further divided into two groups for categorical subgroup analysis: pure laparoscopic living donor right hepatectomy (PLDRH) and laparoscopic-assisted living donor right hepatectomy (PLDRH) and laparoscopic-assisted living donor right negatectomy (LADRH). The subgroup analysis of studies with propensity score matching encompassed seven studies (out of a total of 1411 patients, 688 and 732 underwent MIDRH and ODRH, respectively). The general information and quality assessment are listed in Table 1. The baseline data showed that the patients who underwent MIDRH were younger (MIDRH vs. ODRH: MD = -2.41; 95% CI, -3.74 to -1.09; p = 0.0004, I² = 76%; Table 2, Figure 2) and had a higher ratio of female donors (MIDRH vs. ODRH: 44.9% vs. 37.0%; OR: 1.31; 95% CI: 1.06-1.62; p = 0.01; I² = 42%; Table 2, Figure 3). We found that the MIDRH group and the ODRH group were similar with BMI and PGV [4,5,7,12–31] (Table 2).

Figure 1. Flowchart of study identification and selection.

Author-Year County Type Interval MIDRH ODRH	Author-Vear Count		Study	Study .	Sample		Sexy M/F		Age		BMI		PGV		NOC
	Author-Year	Country	Type	Interval	MIDRH	ODRH	MIDRH	ODRH	MIDRH	ODRH	MIDRH	ODRH	MIDRH	ODRH	NOS
									LADRH						
	Baker [7]-2009	USA	RS	2004-2007	33	33	15/18	13/20	37 ± 10.3	39.1 ± 11.1	25.8 ± 4.1	25.9 ± 4.3	900 ± 215	914 ± 160	8
	Choi [12]-2012	Korea	RS	2008-2011	60	90	35/25	58/32	32.23 ± 10.3	36.8 ± 12.01	23.33 ± 2.64	23.6 ± 2.94	NA	NA	9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nagai [13]-2012	USA	RS	2000-2011	28	30	15/13	9/21	34.3 ± 10.1	38.6 ± 9.4	24.0 ± 3.3	30.1 ± 5.1	915 ± 361	800 ± 184	8
	Ha [14]-2013	Korea	DCC	2012-2012	20	20	11/9	17/3	25 ± 5.5	29 ± 11.1	23.3 ± 4.0	23.6 ± 3.2	725.1 ± 135.5	755.3 ± 95.7	8
	Zhang [16]-2014	China	PSM	2011-2013	25	25	13/12	14/11	37.2 ± 8.7	37.4 ± 10.5	23.8 ± 2.6	22.6 ± 3.0	629.9 ± 128.9	575.2 ± 136.3	9
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Makki [15]-2014	India	RS	2011-2013	26	24	13/13	18/6	27.46 ± 9.40	32.42 ± 8.47	24.23 ± 3.64	24.46 ± 4.39	755.50 ± 87.94	725.79 ± 134.35	8
	Shen [19]-2016	China	RS	2011-2013	28	20	15/13	13/7	40.4 ± 11.1	38.3 ± 11.4	23.1 ± 1.8	21.9 ± 1.9	634.2 ± 124.2	572.9 ± 122.5	8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Song [20]-2018	China	RS	2001-2017	26	262	15/11	148/114	40.62 ± 11.08	36.21 ± 11.00	23.26 ± 2.55	22.95 ± 2.61	NA	NA	8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0								PLDRH						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Suh [17]-2015	Korea	RS	2010-2013	14	415	1/13	304/111	24.9 ± 8.7	32.43 ± 9.54	20.9 ± 2.9	23.08 ± 3.12	NA	NA	8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Chen [18]-2016	China	RS	2013-2015	13	54	4/9	24/30	NA	NA	21.94 ± 2.99	23.08 ± 3.52	605.64 ± 140.47	NA	8
	Song [20]-2018 *	China	RS	2001-2017	7	262	3/4	148/114	42.71 ± 5.65	36.21 ± 11.00	23.50 ± 3.23	22.95 ± 2.61	NA	NA	7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Kyungho [23]-2019	Korea	RS	2014-2016	6	13	3/3	6/7	30.33 ± 12.7	33.85 ± 11.8	23.1 ± 2.8	23.5 ± 3.4	NA	NA	8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Lee [21]-2019	Korea	RS	2010-2017	33	43	19/14	21/22	31.4 ± 9.76	35.81 ± 10.62	23.97 ± 6.76	23.07 ± 3.00	750.0 ± 194	725.4 ± 158	9
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Park [22]-2019	Korea	RS	2013-2017	91	197	49/42	123/74	27.23 ± 7.13	32.23 ± 6.18	22.69 ± 3.52	23.44 ± 3.57	696 ± 153	703 ± 168	9
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Rhu [25]-2019	Korea	RS	2014–2018	103	96	58/45	61/35	35.6 ± 13.2	33.3 ± 11.1	23.8 ± 2.9	23.7 ± 3.1	757 ± 171	745 ± 169	9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Hong [30]-2020	Korea	RS, PSM	2010-2018	198	198	119/79	120/78	33.1 ± 10.6	34.1 ± 11.2	23.7 ± 3.4	23.9 ± 3.2	NA	NA	9
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Yang [26]-2020	Korea	RS	2016-2017	53	66	25/28	36/30	32.79 ± 11.92	35.70 ± 12.71	23.49 ± 2.79	23.64 ± 2.68	NA	NA	7
Broering [31]-2021ItalyPSM2015-2019357022/1346/2429.09 ± 6.02 26.85 ± 5.91 23.4 ± 2.84 24.1 ± 3.20 701 ± 148 701 ± 133 9Han [4]-2021KoreaRS2012-2019267247151/116160/87 33.2 ± 10.8 34.9 ± 11.9 22.82 ± 2.94 23.4 ± 3.2 674.89 ± 130.12 722.1 ± 142.0 8Kwangpyo [6]-2021KoreaRS2012-2019267247151/116160/87 33.2 ± 10.8 34.9 ± 11.9 23.7 ± 3.3 23.3 ± 3.3 716.7 ± 140.1 732.9 ± 153.5 8Rho [28]-2021Republic of KoreaRS2016-201917062NANA 34.36 ± 11.78 28.7 ± 8.3 23.03 ± 2.41 22.1 ± 2.4 764.85 ± 136.43 731.3 ± 124.2 8Jinsoo Rhu [29]-2021KoreaRS2014-2019255188147/108116/72 30.12 ± 3.2 34.15 ± 4.05 23.4 ± 2.8 23.5 ± 3.0 NANANA8Japisatepun [5]-2022ThailandRS2015-2021921 $1/8$ $8/13$ 35.11 ± 4.52 40.64 ± 4.37 22.47 ± 1.0 22.02 ± 1.11 701.91 ± 50.56 724.94 ± 55.62 8Jeong [24]-2020KoreaRS, PSM2013-2018123 $71/52$ $73/50$ 30.24 ± 3.70 31 ± 3.11 NANANANAPark [22]-2019KoreaPSM2011-20132525 $13/12$ $4/11$ 37.2 ± 8.7 37.4 ± 10	Bang [27]-2021	Korea	RS	2015-2017	20	40	12/8	25/15	28.1 ± 9.2	34.55 ± 11.77	23.7 ± 2.7	23.75 ± 2.84	NA	NA	8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Broering [31]-2021	Italy	PSM	2015-2019	35	70	22/13	46/24	29.09 ± 6.02	26.85 ± 5.91	23.4 ± 2.84	24.1 ± 3.20	701 ± 148	701 ± 133	9
Kwangpyo [6]-2021KoreaRS2012–2019267247151/116160/87 33.2 ± 10.8 34.9 ± 11.9 23.7 ± 3.3 23.3 ± 3.3 716.7 ± 140.1 732.9 ± 153.5 8Rho [28]-2021of KoreaRS2016–201917062NANA 34.36 ± 11.78 28.7 ± 8.3 23.03 ± 2.41 22.1 ± 2.4 764.85 ± 136.43 731.3 ± 124.2 8Jinsoo Rhu[29]-2021KoreaRS2014–2019255188 $147/108$ $116/72$ 30.12 ± 3.2 34.15 ± 4.05 23.4 ± 2.8 23.5 ± 3.0 NANA8Lapisatepun[5]-2022ThailandRS2015–2021921 $1/8$ $8/13$ 35.11 ± 4.52 40.64 ± 4.37 22.47 ± 1.0 22.02 ± 1.11 701.91 ± 50.56 724.94 ± 55.62 8Jeong [24]-2020KoreaRS, PSM2013–201812371/52 $73/50$ 30.24 ± 3.70 31 ± 3.11 NANANANAPark [22]-2019KoreaPSM2011–2013252513/1214/11 37.2 ± 8.7 37.4 ± 10.5 23.8 ± 2.6 22.6 ± 3.0 629.9 ± 128.9 575.2 ± 136.3 9Park [22]-2019KoreaPSM2014–20186464 $39/25$ $38/26$ 33.6 ± 12.8 34.1 ± 11.4 23.3 ± 3.2 24 ± 3.2 761 ± 125 764 ± 172 8Hong [30]-2020KoreaRS, PSM2014–20186464 $39/25$ $38/26$ 33.6 ± 12.8 33.1 ± 10.6 34.1 ± 1	Han [4]-2021	Korea	RS	2012-2019	100	50	50/50	31/19	32.86 ± 9.82	33.0 ± 10.4	22.82 ± 2.94	23.4 ± 3.2	674.89 ± 130.12	722.1 ± 142.0	8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Kwangpyo [6]-2021	Korea	RS	2012-2019	267	247	151/116	160/87	33.2 ± 10.8	34.9 ± 11.9	23.7 ± 3.3	23.3 ± 3.3	716.7 ± 140.1	732.9 ± 153.5	8
	Rho [28]-2021	Republic of Korea	RS	2016-2019	170	62	NA	NA	34.36 ± 11.78	28.7 ± 8.3	23.03 ± 2.41	22.1 ± 2.4	764.85 ± 136.43	731.3 ± 124.2	8
Lapisatepun [5]-2022ThailandRS2015–2021921 $1/8$ $8/13$ 35.11 ± 4.52 40.64 ± 4.37 22.47 ± 1.0 22.02 ± 1.11 701.91 ± 50.56 724.94 ± 55.62 8Jeong [24]-2020KoreaRS, PSM2013–2018123123 $71/52$ $73/50$ 30.24 ± 3.70 31 ± 3.11 NANANANANA9Zhang [16]-2014ChinaPSM2011–20132525 $13/12$ $14/11$ 37.2 ± 8.7 37.4 ± 10.5 23.8 ± 2.6 22.6 ± 3.0 629.9 ± 128.9 575.2 ± 136.3 9Park [22]-2019KoreaPSM2013–20177272 $40/32$ $43/39$ 28.5 ± 15 29.5 ± 11.5 23.51 ± 2.83 23.36 ± 3.25 695.5 ± 154.5 716.5 ± 177.5 8Rhu [25]-2019KoreaPSM2014–20186464 $39/25$ $38/26$ 33.6 ± 12.8 34.1 ± 11.4 23.3 ± 3.2 24 ± 3.2 761 ± 125 764 ± 172 8Hong [30]-2020KoreaRS, PSM2010–2018198198119/79120/78 33.1 ± 10.6 34.1 ± 11.2 23.7 ± 3.4 23.9 ± 3.2 NANANABroering [31]-2021ItalyPSM2015–20193570 $22/13$ $46/24$ 29.09 ± 6.02 26.85 ± 5.91 23.4 ± 2.84 24.1 ± 3.20 701 ± 148 701 ± 133 8Jinsoo RhuKoreaPSM2014–2020171171 $104/67$ $105/66$ 34.12 ± 3.92 $34.12 \pm 3.$	Jinsoo Rhu [29]-2021	Korea	RS	2014-2019	255	188	147/108	116/72	30.12 ± 3.2	34.15 ± 4.05	23.4 ± 2.8	23.5 ± 3.0	NA	NA	8
Jeong [24]-2020KoreaRS, PSM2013–201812312371/5273/50 30.24 ± 3.70 31 ± 3.11 NANANANANANA9Zhang [16]-2014ChinaPSM2011–2013252513/1214/11 37.2 ± 8.7 37.4 ± 10.5 23.8 ± 2.6 22.6 ± 3.0 629.9 ± 128.9 575.2 ± 136.3 9Park [22]-2019KoreaPSM2013–20177272 $40/32$ $43/39$ 28.5 ± 15 29.5 ± 11.5 23.51 ± 2.83 23.36 ± 3.25 695.5 ± 154.5 716.5 ± 177.5 8Rhu [25]-2019KoreaPSM2014–20186464 $39/25$ $38/26$ 33.6 ± 12.8 34.1 ± 11.4 23.3 ± 3.2 24 ± 3.2 761 ± 125 764 ± 172 8Hong [30]-2020KoreaRS, PSM2010–2018198198119/79120/78 33.1 ± 10.6 34.1 ± 11.2 23.7 ± 3.4 23.9 ± 3.2 NANA8Broering [31]-2021ItalyPSM2015–2019357022/13 $46/24$ 29.09 ± 6.02 26.85 ± 5.91 23.4 ± 2.84 24.1 ± 3.20 701 ± 148 701 ± 133 8Jinsoo RhuKoreaPSM2014–2020171171 $104/67$ $105/66$ 34.12 ± 3.92 34.12 ± 3.92 23.3 ± 2.7 23.4 ± 3.0 NANA8Jeong [24]-2020KoreaRS, PSM2013–2018123 123 $71/52$ $73/50$ 30.24 ± 3.70 31 ± 3.11 NANA <td< td=""><td>Lapisatepun [5]-2022</td><td>Thailand</td><td>RS</td><td>2015-2021</td><td>9</td><td>21</td><td>1/8</td><td>8/13</td><td>35.11 ± 4.52</td><td>40.64 ± 4.37</td><td>22.47 ± 1.0</td><td>$\textbf{22.02} \pm 1.11$</td><td>701.91 ± 50.56</td><td>724.94 ± 55.62</td><td>8</td></td<>	Lapisatepun [5]-2022	Thailand	RS	2015-2021	9	21	1/8	8/13	35.11 ± 4.52	40.64 ± 4.37	22.47 ± 1.0	$\textbf{22.02} \pm 1.11$	701.91 ± 50.56	724.94 ± 55.62	8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Jeong [24]-2020	Korea	RS, PSM	2013-2018	123	123	71/52	73/50	$\begin{array}{c} 30.24 \pm 3.70 \\ \textbf{PSM} \end{array}$	31 ± 3.11	NA	NA	NA	NA	9
Park [22]-2019KoreaPSM2013-201772727240/3243/39 28.5 ± 15 29.5 ± 11.5 23.51 ± 2.83 23.36 ± 3.25 695.5 ± 154.5 716.5 ± 177.5 8Rhu [25]-2019KoreaPSM2014-20186464 $39/25$ $38/26$ 33.6 ± 12.8 34.1 ± 11.4 23.3 ± 3.2 24 ± 3.2 761 ± 125 764 ± 172 8Hong [30]-2020KoreaRS, PSM2010-2018198198119/79 $120/78$ 33.1 ± 10.6 34.1 ± 11.2 23.7 ± 3.4 23.9 ± 3.2 NANA8Broering [31]-2021ItalyPSM2015-20193570 $22/13$ $46/24$ 29.09 ± 6.02 26.85 ± 5.91 23.4 ± 2.84 24.1 ± 3.20 701 ± 148 701 ± 133 8Jinsoo RhuKoreaPSM2014-2020171171 $104/67$ $105/66$ 34.12 ± 3.92 33.1 ± 2.7 23.4 ± 3.0 NANA8Jeong [24]-2020KoreaRS, PSM2013-2018123 123 $71/52$ $73/50$ 30.24 ± 3.70 31 ± 3.11 NANANA8	Zhang [16]-2014	China	PSM	2011-2013	25	25	13/12	14/11	37.2 ± 8.7	37.4 ± 10.5	23.8 ± 2.6	22.6 ± 3.0	629.9 ± 128.9	575.2 ± 136.3	9
Rhu [25]-2019KoreaPSM2014–2018646439/2538/26 33.6 ± 12.8 34.1 ± 11.4 23.3 ± 3.2 24 ± 3.2 761 ± 125 764 ± 172 8Hong [30]-2020KoreaRS, PSM2010–2018198198119/79120/78 33.1 ± 10.6 34.1 ± 11.2 23.7 ± 3.4 23.9 ± 3.2 NANA8Broering [31]-2021ItalyPSM2015–20193570 $22/13$ $46/24$ 29.09 ± 6.02 26.85 ± 5.91 23.4 ± 2.84 24.1 ± 3.20 701 ± 148 701 ± 133 8Jinsoo RhuKoreaPSM2014–2020171171 $104/67$ $105/66$ 34.12 ± 3.92 34.12 ± 3.92 23.3 ± 2.7 23.4 ± 3.0 NANA8Jeong [24]-2020KoreaRS, PSM2013–2018123123 $71/52$ $73/50$ 30.24 ± 3.70 31 ± 3.11 NANANA8	Park [22]-2019	Korea	PSM	2013-2017	72	72	40/32	43/39	28.5 ± 15	29.5 ± 11.5	23.51 ± 2.83	23.36 ± 3.25	695.5 ± 154.5	716.5 ± 177.5	8
Hong [30]-2020KoreaRS, PSM2010-2018198198119/79120/7833.1 \pm 10.634.1 \pm 11.223.7 \pm 3.423.9 \pm 3.2NANA8Broering [31]-2021ItalyPSM2015-2019357022/1346/2429.09 \pm 6.0226.85 \pm 5.9123.4 \pm 2.8424.1 \pm 3.20701 \pm 148701 \pm 1338Jinsoo RhuKoreaPSM2014-2020171171104/67105/6634.12 \pm 3.9234.12 \pm 3.9223.3 \pm 2.723.4 \pm 3.0NANA8Jeong [24]-2020KoreaRS, PSM2013-201812312371/5273/5030.24 \pm 3.7031 \pm 3.11NANANA8	Rhu [25]-2019	Korea	PSM	2014-2018	64	64	39/25	38/26	33.6 ± 12.8	34.1 ± 11.4	23.3 ± 3.2	24 ± 3.2	761 ± 125	764 ± 172	8
Broering [31]-2021ItalyPSM2015-2019357022/13 $46/24$ 29.09 ± 6.02 26.85 ± 5.91 23.4 ± 2.84 24.1 ± 3.20 701 ± 148 701 ± 133 8Jinsoo Rhu [29]-2021KoreaPSM2014-2020171171 $104/67$ $105/66$ 34.12 ± 3.92 34.12 ± 3.92 23.3 ± 2.7 23.4 ± 3.0 NANANA8Jeong [24]-2020KoreaRS, PSM2013-2018123123 $71/52$ $73/50$ 30.24 ± 3.70 31 ± 3.11 NANANANA8	Hong [30]-2020	Korea	RS, PSM	2010-2018	198	198	119/79	120/78	33.1 ± 10.6	34.1 ± 11.2	23.7 ± 3.4	23.9 ± 3.2	NA	NA	8
Jinsoo Rhu [29]-2021KoreaPSM2014–2020171171104/67105/66 34.12 ± 3.92 34.12 ± 3.92 23.3 ± 2.7 23.4 ± 3.0 NA <td>Broering [31]-2021</td> <td>Italy</td> <td>PSM</td> <td>2015-2019</td> <td>35</td> <td>70</td> <td>22/13</td> <td>46/24</td> <td>29.09 ± 6.02</td> <td>26.85 ± 5.91</td> <td>23.4 ± 2.84</td> <td>24.1 ± 3.20</td> <td>701 ± 148</td> <td>701 ± 133</td> <td>8</td>	Broering [31]-2021	Italy	PSM	2015-2019	35	70	22/13	46/24	29.09 ± 6.02	26.85 ± 5.91	23.4 ± 2.84	24.1 ± 3.20	701 ± 148	701 ± 133	8
Jeong [24]-2020 Korea RS, PSM 2013–2018 123 123 71/52 73/50 30.24 ± 3.70 31 ± 3.11 NA NA NA NA NA NA NA	Jinsoo Rhu	Korea	PSM	2014-2020	171	171	104/67	105/66	34.12 ± 3.92	34.12 ± 3.92	23.3 ± 2.7	23.4 ± 3.0	NA	NA	8
	Jeong [24]-2020	Korea	RS, PSM	2013-2018	123	123	71/52	73/50	30.24 ± 3.70	31 ± 3.11	NA	NA	NA	NA	8

Table 1. Characteristics of Included Studies Comparing MIDRH with ODRH for Donors.

*: Different data in the same article; MIDRH: minimally invasive donors right hepatectomy; ODRH: open donors right hepatectomy; PLDRH: pure laparoscopic living donor right hepatectomy; DCC: double-arm case-controlled study; SD: standard deviation; CI: confidence interval; NOS: Newcastle–Ottawa Scale; RS: retrospective study; PSM: propensity score-matching; NA: not available.

Variables	No. of Studies	No. of Patients [#]	MIDRH	ODRH	OR, M-H Fixed, 95% CI OR, Fixed, Random, 95% CI MD, Random, 95% CI	p Value	I ²
Age, years	23	4079	32.4 ± 9.8	34.0 ± 14.9	-2.41 [-3.74, -1.09]	0.0004	76%
PLDRH vs. ODRH	15	3329	32.1 ± 9.6	33.5 ± 15.6	-2.64[-4.23, 1.05]	< 0.00001	81%
LADRH vs. ODRH	8	750	34.3 ± 10.9	36.3 ± 11.1	-1.84[-4.36, 0.69]	0.04	76%
Gender (Female)	23	4260	706 (44.9%)	995 (37.0%)	1.31 [1.06, 1.62]	0.01	42%
PLDRH vs. ODRH	15	3510	592 (44.6%)	781 (35.8%)	1.35 [1.06, 1.73]	0.02	47%
LADRH vs. ODRH	8	750	114 (46.3%)	214 (42.5%)	1.20 [0.76, 1.89]	0.79	37%
BMI, kg/m ²	23	4146	23.4 ± 3.2	23.4 ± 3.3	-0.14 [-0.53 , 0.24]	0.46	64%
PLDRH vs. ODRH	15	3396	23.4 ± 3.2	23.3 ± 3.1	-0.08 [$-0.41, 0.25$]	0.63	41%
LADRH vs. ODRH	8	750	23.8 ± 3.2	23.7 ± 3.6	-0.38[-1.58, 0.82]	0.54	81%
PGV	15	1973	730.5 ± 166.4	720.8 ± 159.3	-1.47 [-14.37 , 11.44]	0.82	30%
PLDRH vs. ODRH	9	1661	723.1 ± 149.3	717.3 ± 152.9	-7.25 [-21.36, 6.87]	0.31	21%
LADRH vs. ODRH	6	312	768.6 ± 231.9	740.3 ± 190.4	27.90 [-3.93, 59.74]	0.09	16%

Table 2. Pooled donors' preoperative characteristics.

[#]: in each group; CI: confidence interval; MIDRH: minimally invasive donors right hepatectomy; ODRH: open donors right hepatectomy; PLDRH: pure laparoscopic living donor right hepatectomy; LADRH: laparoscopic-assisted living donor right hepatectomy; BMI: Body Mass Index; PGV: prospecting liver graft volume.

	r	MIDRH		T.	ODRH			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% Cl
3.2.1 PLDRH										
Suh-2015	24.9	8.7	14	32.43	9.54	415	3.8%	-7.53 [-12.18, -2.88]	2015	
Song-2018*	42.71	5.65	7	36.21	11	262	4.0%	6.50 [2.11, 10.89]	2018	
Lee-2019	31.4	9.76	33	35.81	10.62	43	3.9%	-4.41 [-9.01, 0.19]	2019	
Park-2019	27.23	7.13	91	32.23	6.18	197	6.5%	-5.00 [-6.70, -3.30]	2019	-
Rhu-2019	35.6	13.2	103	33.3	11.1	96	4.9%	2.30 [-1.08, 5.68]	2019	1
Kyungho-2019	30.33	12.7	6	33.85	11.8	13	1.0%	-3.52 [-15.54, 8.50]	2019	
Yang-2020	32.79	11.92	53	35.7	12.71	66	4.0%	-2.91 [-7.35, 1.53]	2020	
Hong-2020	33.1	10.6	198	34.1	11.2	198	6.1%	-1.00 [-3.15, 1.15]	2020	-
Bang-2021	28.1	9.2	20	34.55	11.77	40	3.3%	-6.45 [-11.89, -1.01]	2021	1.1
Broering-2021	29.09	6.02	35	26.85	5.91	70	5.8%	2.24 [-0.19, 4.67]	2021	-
Han-2021	28.1	9.82	100	33	10.4	50	4.8%	-4.90 [-8.37, -1.43]	2021	
Kwangpyo-2021	33.2	10.8	267	34.9	11.9	247	6.2%	-1.70 [-3.67, 0.27]	2021	-
Rho-2021	28.7	8.3	170	34.36	11.78	62	5.1%	-5.66 [-8.85, -2.47]	2021	
Jinsoo-2021	30.12	3.2	255	34.15	4.05	188	7.1%	-4.03 [-4.73, -3.33]	2021	•
Lapisatepun-2022	35.11	4.52	9	40.64	4.37	21	4.8%	-5.53 [-9.02, -2.04]	2022	
Subtotal (95% CI)			1361			1968	71.5%	-2.64 [-4.23, -1.05]		•
Heterogeneity: Tau ² =	6.53; Ch	ni² = 73.	83, df =	= 14 (P ·	< 0.000	01); l ² =	81%			
Test for overall effect:	Z = 3.26	(P = 0.	001)	84						
3.2.2 LADRH										
Baker-2009	37	10.3	33	39.1	11.1	33	3.4%	-2.10 [-7.27, 3.07]	2009	
Choi-2012	32.23	10.3	60	36.8	12.01	90	4.7%	-4.57 [-8.17, -0.97]	2012	
Nagai-2012	34.3	10.1	28	38.6	9.4	30	3.5%	-4.30 [-9.33, 0.73]	2012	
Ha-2013	25	5.5	20	29	11.1	20	3.3%	-4.00 [-9.43, 1.43]	2013	
Zhang-2014	37.2	8.7	25	37.4	10.5	25	3.3%	-0.20 [-5.55, 5.15]	2014	
Makki-2014	27.46	9.4	26	32.42	8.47	24	3.6%	-4.96 [-9.91, -0.01]	2014	
Shen-2016	40.4	11.1	28	38.3	11.4	20	2.7%	2.10 [-4.37, 8.57]	2016	
Song-2018	40.62	11.08	26	36.21	11	262	4.0%	4.41 [-0.05, 8.87]	2018	
Subtotal (95% CI)			246			504	28.5%	-1.84 [-4.36, 0.69]		•
Heterogeneity: Tau ² =	6.78; Ch	ni² = 14.	56, df =	= 7 (P =	0.04); F	2 = 52%	,			
Test for overall effect:	Z = 1.42	(P = 0.	15)							
Total (95% CI)			1607			2472	100.0%	-2.41 [-3.74, -1.09]		•
Heterogeneity: Tau ² =	6.32; Ch	ni² = 90.	51, df =	= 22 (P	< 0.000	01); l ² =	76%		1	
Test for overall effect:	Z = 3.57	(P = 0.	0004)							-20 -10 0 10 20
Test for subaroup diffe	erences:	Chi ² = 0).28. df	= 1 (P =	= 0.60).	$ ^2 = 0\%$				Favours MIDRH Favours ODRH

Study or Subgroup		MIDRH ODRH				o dito i tatio		Odds Ratio					
	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl					
3.6.1 PLDRH													
Suh-2015	13	14	111	415	1.0%	35.60 [4.60, 275.33]	2015	· · · · · ·					
Chen-2016	9	13	30	54	2.2%	1.80 [0.49, 6.57]	2016						
Song-2018*	4	7	114	262	1.7%	1.73 [0.38, 7.89]	2018						
Park-2019	42	91	74	197	7.2%	1.42 [0.86, 2.36]	2019	↓ +					
Rhu-2019	45	103	35	96	6.4%	1.35 [0.77, 2.39]	2019	↓ ↓ •					
Kyungho-2019	3	6	7	13	1.1%	0.86 [0.12, 5.94]	2019						
Lee-2019	14	33	22	43	3.7%	0.70 [0.28, 1.75]	2019						
Yang-2020	28	53	30	66	5.0%	1.34 [0.65, 2.77]	2020						
Hong-2020	79	198	78	198	8.4%	1.02 [0.68, 1.53]	2020	· +					
Jeong-2020	52	123	50	123	7.1%	1.07 [0.64, 1.78]	2020	· +					
Kwangpyo-2021	116	267	87	247	8.9%	1.41 [0.99, 2.02]	2021	⊢					
Bang-2021	8	20	15	40	2.8%	1.11 [0.37, 3.34]	2021						
Broering-2021	13	35	24	70	4.1%	1.13 [0.49, 2.64]	2021						
Han-2021	50	100	19	50	5.3%	1.63 [0.82, 3.26]	2021	+					
Jinsoo-2021	108	255	72	188	8.6%	1.18 [0.81, 1.74]	2021						
Lapisatepun-2022	8	9	13	121	0.9%	66.46 [7.69, 574.58]	2022	· . —					
Subtotal (95% CI)		1327		2183	74.4%	1.35 [1.06, 1.73]		•					
Total events	592		781										
Heterogeneity: Tau ² =	0.10; Chi	² = 28.9	56, df = 1	5 (P = 0	0.02); I ^z =	47%							
Test for overall effect:	Z = 2.42 (P = 0.0	2)										
3.6.2 LADRH													
Baker-2009	18	33	20	33	3.4%	0.78 (0.29.2.07)	2009	- _					
Choi-2012	25	60	32	90 QN	5.5%		2000						
Nagai-2012	13	28	21	30	29%	0.37 [0.13, 1.09]	2012						
Ha-2013	9	20	3	20	1 7%		2013						
Makki-2014	13	26	6	24	2.5%	3 00 10 90 9 981	2014						
7hang-2014	12	25	11	25	2.8%	1 17 [0 39 3 58]	2014						
Shen-2016	13	28	7	20	2.5%	1 61 [0 49 5 25]	2016						
Song-2018	11	26	114	262	4.3%	0.95 [0.42, 2.15]	2018						
Subtotal (95% CI)		246		504	25.6%	1.20 [0.76, 1.89]		*					
Total events	114		214										
Heterogeneity: Tau ² =	0.16; Chi	² = 11.1	18. df = 7	(P = 0.	13); I ^z = 3	7%							
Test for overall effect:	Z = 0.79 (P = 0.4	3)	· -·	, ,								
Total (95% CI)		1573		2687	100.0%	1.31 [1.06, 1.62]		•					
T-4-1	706		995			. ,							
i otal events	100		000										

Test for overall effect: Z = 2.49 (P = 0.01)

Test for subaroup differences: $Chi^2 = 0.21$. df = 1 (P = 0.65). $I^2 = 0\%$

Figure 3. Forest plot of comparison of MIDRH versus ODRH for gender [1,4–7,12–15,17–27,29–31]. *: Different data in the same article.

Favours MIDRH Favours ODRH

2.2. Perioperative Outcomes

Intraoperative Blood Loss

Intraoperative blood loss was examined by all enrolled studies [4–7,12–31] (MIDRH 1620 donors vs. ODRH 2649 donors; subgroup: PLDRH 1497 donors vs. ODRH 2145 donors; LADRH 246 donors vs. ODRH 504 donors, respectively). The pooled estimates indicated that the MIDRH group experienced less intraoperative blood loss than the ODRH group (MD = -57.86; 95% CI, -77.58 to -38.1; p < 0.00001, I² = 81%, Table 3). Similarly, the intraoperative blood loss experienced by patients who received PLDR [5,6,17,18,20–32] and LADRH [7,12–16,19,20] was also lower than that experienced by those who received ODRH (PLDRH: MD = -60.05; 95% CI, -81.75 to -38.36; p < 0.00001, I² = 83%; LADRH: MD = -55.22; 95% CI, -106.89 to -3.56; p = 0.04, I² = 69%, Figure 4). Moreover, our results revealed that patients who received MIDRH had reduced intraoperative blood loss compared to those who underwent ODRH (MD = -67.38; 95% CI, -88.95 to -45.80; p < 0.00001, I² = 77%, Figure 4) in the PSM subgroup [16,22,24,25,29–31].

Variables	No. of Studies	No. of Patients [#]	MIDRH	ODRH	OR, M-H Fixed, 95% CI OR, Fixed, Random, 95% CI MD, Random, 95% CI	p Value	I ²
Intraoperative blood loss	24	4329	283.6 ± 221.8	431.4 ± 342.0	-57.86 [-77.58, -38.14]	< 0.00001	81%
Operative time	23	3858	330.5 ± 116.1	334.6 ± 96.1	30.77 [9.03, 52.51]	0.006	97%
Length of Hospital stay	20	3477	8.3 ± 3.0	9.7 ± 3.3	-1.22 [-1.62 , -0.83]	< 0.00001	89%
Pulmonary complications	9	2790	58 (6.7%)	146 (7.6%)	0.55 [0.38, 0.81]	0.002	0%
Wound	20	3125	20 (2.0%)	81 (3.8%)	0.45 [0.29, 0.71]	0.0007	0%
Total complications	22	3682	192 (14.7%)	448 (18.9%)	0.79 [0.64, 0.96]	0.02	0%
Postoperative	9	1553	20 (2.6%)	20 (1.6%)	1.78 [0.88, 3.59]	0.11	0%
	5	1017	17(4.2%)	11 (1 80/)	2 00 [1 15 7 28]	0.02	0%
	3	526	$\frac{17}{2} (4.2\%)$	11(1.0%)	2.90 [1.13, 7.26]	0.02	0%
PSM	4 2	470	3(2.176) 11 (4.7%)	9 (2.5%) 2 (0.85%)	0.00 [0.19, 2.41] 4 78 [1 20 18 95]	0.03	0%
Bleeding	13	2404	11(4.776) 11(1.5%)	2 (0.05%)	$\frac{4.78}{1.20}$ [1.20, 10.90]	0.03	0%
PLDRH vs. ODRH	8	1810	5 (0.9%)	17 (1.5%)	0.80[0.32, 2.40]	0.05	0%
LADRH vs. ODRH	6	594	6 (3.6%)	4 (0.94%)	2 56 [0.73, 9.05]	0.62	0%
Peak AST	18	3030	226.0 ± 104.6	219.2 ± 121.1	10.83[-12.57, 34.23]	0.36	96%
PLDRH vs. ODRH	11	2366	220.4 + 82.9	211.3 ± 107.8	13.43[-15.69, 42.56]	0.37	98%
LADRH vs. ODRH	7	664	250.1 ± 166.8	245.0 ± 154.3	0.39[-26.86, 27.65]	0.98	44%
PSM	5	1060	214.1 ± 80.9	219.2 ± 77.0	-16.97 [-59.34, 25.40]	0.43	98%
Peak ALT	18	3050	234.5 ± 112.5	225.7 ± 135.0	18.92 [-10.26, 48.10]	0.2	96%
PLDRH vs. ODRH	11	2366	226.8 ± 94.4	216.4 ± 123.4	21.07 [-15.99, 58.12]	0.27	97%
LADRH vs. ODRH	7	684	264.3 ± 161.9	255.9 ± 163.7	9.67 [-26.24, 45.57]	0.6	56%
PSM	5	1060	226.1 ± 93.2	234.4 ± 93.0	-23.43 [$-75.74, 28.89$]	0.38	99%
Peak TB	17	3010	3.1 ± 1.6	3.1 ± 1.6	-0.08[-0.26, 0.09]	0.36	83%
PLDRH vs. ODRH	11	2366	3.2 ± 1.6	3.0 ± 1.6	-0.04 [-0.25 , 0.18]	0.73	88%
LADRH vs. ODRH	6	644	2.6 ± 1.4	3.2 ± 1.6	-0.21 [-0.42 , -0.00]	0.05	0%
PSM	5	1060	3.3 ± 1.5	5.4 ± 12.2	0.08[-0.38, 0.53]	0.74	96%
Bile leak	17	2958	37 (3.9%)	56 (2.8%)	1.28 [0.84, 1.97]	0.26	15%
PLDRH vs. ODRH	12	2346	29 (3.8%)	38 (2.4%)	1.46 [0.88, 2.46]	0.14	21%
LADRH vs. ODRH	5	612	8 (4.7%)	18 (4.1%)	0.90 [0.38, 2.11]	0.81	5%
PSM	5	823	12 (3.0%)	10 (2.3%)	1.32 [0.57, 3.08]	0.52	0%
$\frac{Clavien-Dindo}{grade} \geq III$	18	2904	47 (4.8%)	89 (4.6%)	1.06 [0.71, 2.24]	0.93	0%
PLDRH vs. ODRH	13	2260	36 (4.5%)	58 (3.9%)	1.07 [0.67, 1.72]	0.77	0%
LADRH vs. ODRH	6	644	11 (5.7%)	31 (6.9%)	1.04 [0.48, 2.24]	0.93	0%
PSM	6	1165	32 (5.7%)	29 (4.8%)	1.14 [0.68, 1.91]	0.63	0%
Re-hospital	7	1340	21 (6.5%)	39 (3.8%)	1.18 [0.68, 2.04]	0.56	0%
PLDRH vs. ODRH	5	902	14 (5.9%)	27 (4.1%)	1.16 [0.60, 2.25]	0.66	0%
LADRH vs. ODRH	2	438	7 (8.1%)	12 (3.4%)	1.21 [0.45, 3.25]	0.71	0%
PSM	3	332	12 (7.7%)	15 (8.5%)	0.87 [0.40, 1.93]	0.74	0%
	13	2143 1521	22 (3%) 15 (2 (9/)	27(1.92%) 17 (1.797)	1.43 [0.79, 2.57]	0.23	U% 19/
I ADRU vs. ODRU	ð F	1531	13 (2.6%) 7 (4.0%)	17(1.7%) 10(2.2%)	1.47 [U.72, 2.99] 1.22 [0.47, 2.79]	0.29	1%
LADKH VS. UDKH	2	01Z	/ (4.0%) 5(2 10/)	10 (2.3%) 2 (1.0%)	1.33 [U.47, 3.78] 1.50 [0.41, 6.20]	0.59	U% 0%
r JIVI Biliany stricture	5	322 1467	S(3.1%) 8 (1 5%)	5 (1.9%) 5 (0.5%)	1.07 [0.41, 0.20] 2 38 [0.91 - 7.04]	0.50	0%
PI DRH ve ODRH	5	140/	0 (1.3%) 7 (1.5%)	5 (0.5%)	2.30 [0.01, 7.04] 2.18 [0.60 .6.00]	0.12	0 % 1%
I ADRH ve ODRH	1	1517	1 (1.5%)	0 (0.0%)	4 56 [0.09, 0.90]	0.19	1 /0 0%
LADKII VS. ODKII	1	130	1 (1.0 /0)	0 (0.0 /0)	4.00 [0.10, 110.07]	0.30	U /0

 Table 3. Comparison of patient outcomes between MIDRH and ODRH groups.

[#]: in each group; CI: confidence interval; MIDRH: minimally invasive donors right hepatectomy; ODRH: open donors right hepatectomy; PLDRH: pure laparoscopic living donor right hepatectomy; LADRH: laparoscopic-assisted living donor right hepatectomy; Peak ALT: peak alanine aminotransferase; Peak AST: peak aspartate aminotransferase; Peak TB: peak total bilirubin.

	,	MIDRH			ODRH			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	Year	IV, Random, 95% CI
1.1.1 PLDRH										
Suh-2015	298.3	118.8	14	328.42	209.93	415	5.7%	-30.12 [-95.55, 35.31]	2015	
Chen-2016	208.09	134.5	13	167.57	98.99	54	4.7%	40.52 [-37.21, 118.25]	2016	-
Song-2018*	378.6	177.1	7	798.6	483.7	262	1.9%	-420.00 [-563.68, -276.32]	2018	<u> </u>
Kyungho-2019	450	89	6	406	201	13	2.2%	44 00 [-86 42 174 42]	2019	
Lee-2019	572.2	438.9	33	558.8	484.6	43	1.0%	13.40 [-194.94, 221.74]	2019	
Park-2019	300	150	91	300	150	197	8.7%	0.00 [-37.26. 37.26]	2019	+
Rhu-2019	200	39.85	103	300	40.26	96	11.3%	-100.00 [-111.14, -88.86]	2019	•
Yang-2020	258.49	119.99	53	326.52	157.68	66	7.2%	-68.03 -117.94 -18.12	2020	
Jeona-2020	300	160	123	334	155	123	8.4%	-34.00 [-73.37, 5.37]	2020	-
Hona-2020	306.1	213.1	198	335.4	226.1	198	7.9%	-29.30 [-72.58, 13.98]	2020	
Bang-2021	350	174	20	372.5	514.18	40	1.3%	-22.50 [-199.15, 154.15]	2021	
Broering-2021	293.5	166.4	35	331.91	158.23	70	5.6%	-38.41 [-104.84, 28.02]	2021	
Han-2021	240.09	197.83	100	377.6	293	50	3.9%	-137.51 J-227.51, -47.511	2021	<u> </u>
Kwangpyo-2021	239.2	197	267	331.4	177	247	9.2%	-92.20 [-124.54, -59.86]	2021	+
Rho-2021	217.87	256.65	170	287.1	168.4	62	6.5%	-69.23 [-126.20, -12.26]	2021	
Jinsoo-2021	201.48	26.66	255	300	36.84	188	11.5%	-98 52 [-104 72 -92 32]	2021	•
Lanisatenun-2022	510.87	150.59		507.24	92.62	21	3.1%	3 63 [-102 43 109 69]	2022	
Subtotal (95% CI)			1497			2145	100.0%	-60.05 [-81.75, -38.36]		•
Heterogeneity: Tau ² =	1053 55	$Chi^2 = 9i$	4 42 di	(= 16 (P ·	< 0.0000	$1 \ge 1^2 = 8$	33%			
Test for overall effect:	Z = 5.43 ((P < 0.00)	DO1)	10 (1	0.0000					
Dalvas 2000	147	047			205		0.000	400.001.000.74 6.001	2000	
Baker-2009	417	217	33	550	305	33	8.9%	-133.00 [-260.71, -5.29]	2009	
Nagai-zui z	212	114	28	510	121	30	10.0%	-104.00 [-164.48, -43.52]	2012	-
Un 2012	200.4	493.3	20	031.7	322.59	90	1.970	30.30 [-03.20, 199.00]	2012	
Maluki 2014	290.1	00.9	20	200	405.70	20	10.9%	40.10[-10.81, 97.01]	2013	
Marki-2014 Zhong 2014	330.54	89.4	20	395.8	125.76	24	15.4%	-59.20 [-120.19, 1.67]	2014	
Zhang-Zui 4 Ohan 2046	3/0.4	112.5	20	422.0	139.3	20	14.4%	-44.20 [-114.39, 25.99]	2014	
Srien-2016	383.5	180.4	28	410.5	103.0	20	11.5%	-33.00 [-131.01, 65.01]	2010	
Sung-2018 Subtetet (05% CD	617.3	240.4	20	798.6	483.7	202	10.4%	-181.30 [-290.70, -71.90]	2018	
Subtotal (95% CI)	2520.20	0.67 - 01	240 200 44	- 7 (D -	0.0000.18	504	100.0%	-55.22 [-106.89, -5.56]		•
Teet for everall effect:	3538.30, 7 - 2.007	CHF= 2.	2.30, ui	= / (P =	0.002), F	= 69%				
restior overall ellect.	Z = 2.09 ((F = 0.04)								
1.1.3 PSM										
Zhang-2014	378.4	112.5	25	422.6	139.3	25	6.9%	-44.20 [-114.39, 25.99]	2014	
Park-2019	300	200	72	350	119	72	10.0%	-50.00 [-103.76, 3.76]	2019	
Rhu-2019	201.88	37.45	64	300	42.8	64	23.5%	-98.12 [-112.05, -84.19]	2019	•
Hong-2020	306.1	213.1	198	335.4	226.1	198	12.7%	-29.30 [-72.58, 13.98]	2020	
Jeong-2020	300	160	123	334	155	123	14.0%	-34.00 [-73.37, 5.37]	2020	
Broering-2021	293.5	166.4	35	331.91	158.24	70	7.5%	-38.41 [-104.84, 28.02]	2021	+
Jinsoo-2021	201.95	27.96	171	300	37.27	171	25.4%	-98.05 [-105.03, -91.07]	2021	•
Subtotal (95% CI)			688			723	100.0%	-67.38 [-88.95, -45.80]		•
Heterogeneity: Tau ² =	464.63; (Chi² = 26.	33, df =	= 6 (P = 0	1.0002); P	= 77%				
Test for overall effect:	Z = 6.12 ((P < 0.00)	001)							
										-500 -250 0 250 500
										Favours MIDRH Favours ODRH

Figure 4. Forest plot comparison of MIDRH versus ODRH for intraoperative blood loss [4–7,12–31]. *: Different data in the same article.

2.3. Operative Time

Twenty-three studies [4,5,7,12–31] reported that the length of operation revealed that the MIDRH group's operating duration was longer than the ORDH group's (MD = 30.77; 95% CI, 9.03 to 52.15; p = 0.006, Table 3), with high heterogeneity observed (I² = 97%). According to the subgroup analysis, the operative time of the PLDRH group [4,5,17,18,20–31] was also longer than that of the ODRH group (MD = 41.84; 95% CI, 13.68 to 69.99; p = 0.004, I² = 98%, Figure 5). However, the LADRH group [7,12–20] and the ODRH group did not differ from one another (MD = 7.43; 95% CI, -13.54 to 28.39; p = 0.49, I² = 68%, Figure 5). Besides, the pooled data of the PSM subgroup [16,22,24,25,29–31] encompassing 1411 patients suggested that there was no difference in operative time between the MIDRH group and the ODRH group (MD = 16.59; 95% CI, -26.28 to 59.47; p = 0.45, I² = 98%, Figure 5).

								Mean Difference		Mean Difference
Study or Subgroup	Moan	en.	Total	Mean	SDIVI CD	Total	Woight	M Random 05% Cl	Voar	W Random 95% Cl
121 PI DRH	meall	30	rotal	mean	30	TUI	TAGINUT	W, Nanuom, 55% CI	rear	
Sub-2015	333 0	61.7	1.4	260.72	15.9	415	6.404	64 09 121 46 09 201	2016	
Ohop 2016	500.14	110.65	19	4126	40.0	410	0.4%	166 54 101 66 241 421	2010	
Chen-2010 Cong-2010*	500.14	000	7	413.0	01 1	262	4.730	00.04 [51.00, 241.42]	2010	
3011g-2010	109.3	30.3	- 22	910.9	106.2	202	4.770 5.400	90.90 [10.90, 104.02]	2010	
Deels 2019	433.7	142.9	01	340.1	100.3	407	0.470 C C V	20.00 [29:41, 140:79]	2019	-
Dbu 2019	300	42.0	31	320	600	197	0.070	40.00 [01.40, 00.00]	2019	+
Kriu-Zuria Kriu-Zuria	202	42.0	103	201	03.3	90	0.0% 5.00	-49.00 [-04.12, -33.00]	2019	
Kyungho-zora Vena 2020	330.3	50.5	50	202.0	79	13	0.2%	93.70 [31.00, 150.34]	2019	-
rang-zuzu	312.28	53.5	23	290.57	50.0	100	0.8%	21.71 [2.28, 41.14]	2020	
HUNG-2020	289.9	04.9	198	270.8	50.3	198	0.9%	19.10[8.73, 29.47]	2020	
Jeong-2020	335	95	123	330	08	123	0.7%	5.00 [-15.65, 25.65]	2020	_
Han-2021	224.52	68.87	100	203	37.3	50	6.8%	21.52 [4.52, 38.52]	2021	
Rno-2021	398.02	113.65	170	404.4	47.4	62	6.7%	-6.38 [-27.14, 14.38]	2021	.1
JINS00-2021	261.97	16.88	255	308.11	16.03	188	7.0%	-46.14 [-49.23, -43.05]	2021	
Bang-2021	368.1	55	20	322.95	61.85	40	6.4%	45.15 [14.35, 75.95]	2021	
Broering-2021	504	73.5	35	331	65.1	70	6.5%	173.00 [144.27, 201.73]	2021	
Lapisatepun-2022	432.07	30.95	9	403.98	50.94	21	6.5%	28.09 [-1.63, 57.81]	2022	
Subtotal (95% CI)			1230			1898	100.0%	41.84 [13.68, 69.99]		◆
Heterogeneity: Tau² =	2958.29;	Chi ² = 6	27.46,	df = 15 (P	< 0.0001	01); I² =	98%			
Test for overall effect:	Z = 2.91 ((P = 0.00)	4)							
1.2.2 LADRH										
Baker-2009	265	48	33	316	61	33	14.9%	-51.00 [-77.48, -24.52]	2009	-
Choi-2012	313.5	80.66	40	303.2	61.49	90	14.5%	10.30 [-17.74, 38.34]	2012	Ŧ
Nagai-2012	371	52	28	363	53	30	14.8%	8.00 [-19.03, 35.03]	2012	+
Ha-2013	335.5	93.6	20	305.4	88.1	20	8.1%	30.10 [-26.23, 86.43]	2013	+
Makki-2014	702.5	124.1	26	675.2	117.5	24	6.5%	27.30 [-39.67, 94.27]	2014	
Zhang-2014	385.9	47.4	25	378.1	59	25	14.0%	7.80 [-21.87, 37.47]	2014	+
Shen-2016	386.1	49.5	28	366.4	45.3	20	14.8%	19.70 [-7.32, 46.72]	2016	* -
Song-2018	451.6	89.7	26	418.4	81.1	262	12.4%	33.20 [-2.65, 69.05]	2018	<u>↓</u>
Subtotal (95% CI)			226			504	100.0 %	7.43 [-13.54, 28.39]		•
Heterogeneity: Tau ² =	585.16; (Chi² = 22.	04, df=	= 7 (P = 0	.003); I ^z =	= 68%				
Test for overall effect:	Z = 0.69 ((P = 0.49))							
4.0.0.000										
1.2.3 PSM			_							
Zhang-2014	385.9	47.4	25	378.1	59	25	13.9%	7.80 [-21.87, 37.47]	2014	Ť
Rhu-2019	252.2	41.9	64	304	66.5	64	14.5%	-51.80 [-71.06, -32.54]	2019	*
Park-2019	345	125	72	328	99	72	13.4%	17.00 [-19.83, 53.83]	2019	
Hong-2020	289.9	54.9	198	270.8	50.3	198	14.8%	19.10 [8.73, 29.47]	2020	•
Jeong-2020	335	95	123	330	68	123	14.4%	5.00 [-15.65, 25.65]	2020	+
Broering-2021	504	73.5	35	331	65.1	70	14.0%	173.00 [144.27, 201.73]	2021	-
Jinsoo-2021	260.16	16.77	171	307.27	17.33	171	14.9%	-47.11 [-50.72, -43.50]	2021	• _
Subtotal (95% CI)			688			723	100.0 %	16.59 [-26.28, 59.47]		◆
Heterogeneity: Tau ² =	3205.64;	Chi ² = 3	81.92, (df = 6 (P <	< 0.0000°	1); l² = 9	38%			
Test for overall effect:	Z = 0.76 ((P = 0.45))							
										Favours MIDRH Favours ODRH
Test for subaroup diff	erences:	Chi ² = 3.3	71. df=	2 (P = 0.	16). I ^z = 4	6.1%				

Figure 5. Forest plot comparison of MIDRH versus ODRH for operative time [4,5,7,12–31]. *: Different data in the same article. *: Different data in the same article.

2.4. Length of Hospital Stay (LOS)

Twenty studies [4,5,7,12–14,16–25,27,29–31] revealed that the LOS of patient who underwent MIDRH was shorter than those who underwent ORDH (MD = -1.22; 95% CI, -1.62 to -0.83; p < 0.00001, I² = 88%, Table 3). Additionally, categorical subgroup analysis indicated the LOS of the donors in the PLDRH group [4,5,17,18,20–25,27,29–31] (MD = -1.30; 95% CI, -1.79 to -0.81; p < 0.00001, I² = 91%, Figure 6) and the LADRH group [7,12–14,16,19,20] (MD = -1.00; 95% CI, -1.81 to -0.26; p < 0.0001, I² = 79%, Figure 6) was shorter for both than that of the ORDH group. Furthermore, the PSM subgroup [16,22,25,29–31] that included six studies with 1665 patients revealed that the LOS in the MIDRH group was shorter than in the ORDH group (MD = -1.34; 95% CI, -2.00 to -0.69; p < 0.0001, I² = 81%, Figure 6).

10 of 18

	N	IIDRH		0	DRH			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	Year	IV, Random, 95% Cl
1.6.1 PLDRH										
Suh-2015	10.2	4.4	14	8.98	2.84	415	3.1%	1.22 [-1.10, 3.54]	2015	
Chen-2016	7	0.6	13	7.5	1.1	54	9.3%	-0.50 [-0.94, -0.06]	2016	-
Song-2018*	7.72	1.1	7	11	0.89	262	7.9%	-3.28 [-4.10, -2.46]	2018	
Kyungho-2019	8.5	3.2	6	8.92	2	13	2.4%	-0.42 [-3.20, 2.36]	2019	
Lee-2019	9.7	4.35	33	9.14	3.03	43	4.5%	0.56 [-1.18, 2.30]	2019	
Park-2019	10	4	91	10	5	197	6.8%	0.00 [-1.08, 1.08]	2019	
Rhu-2019	8	0.4	103	10.1	1	96	9.9%	-2.10 [-2.31, -1.89]	2019	•
Hong-2020	7.5	2.4	198	8.6	2	198	9.3%	-1.10 [-1.54, -0.66]	2020	-
Jeong-2020	9.05	0.58	123	10	0.78	123	10.0%	-0.95 [-1.12, -0.78]	2020	•
Bang-2021	9.1	3.1	20	11.8	4.7	40	3.8%	-2.70 [-4.69, -0.71]	2021	
Broering-2021	5.54	2.14	35	5.85	2.95	70	7.2%	-0.31 [-1.30, 0.68]	2021	
Han-2021	6.36	1.99	100	7.7	1.2	50	9.1%	-1.34 [-1.85, -0.83]	2021	-
Jinsoo-2021	8.9	3	255	11	5.4	188	7.7%	-2.10 [-2.96, -1.24]	2021	
Lapisatepun-2022	5.44	0.67	9	8	0.53	21	9.2%	-2.56 [-3.05, -2.07]	2022	-
Subtotal (95% CI)			1007			1770	100.0%	-1.30 [-1.79, -0.81]		•
Heterogeneity: Tau ² =	: 0.62; C	hi² = 1	52.23,	df = 13 (P < 0.1	00001);	; I² = 91%			
Test for overall effect:	Z = 5.18	8 (P < 0	0.0000)						
1.6.2 LADRH										
Baker-2009	5	1.1	33	5.6	2.3	33	15.6%	-0.60 [-1.47, 0.27]	2009	
Nagai-2012	5.9	1.2	28	7.8	2.3	30	15.1%	-1.90 [-2.84, -0.96]	2012	
Choi-2012	11.9	3.96	60	12	3.61	90	12.9%	-0.10 [-1.35, 1.15]	2012	
Ha-2013	10.7	2.6	20	10.9	2.5	20	10.8%	-0.20 [-1.78, 1.38]	2013	
Zhang-2014	7	1.4	25	8.7	2.4	25	14.0%	-1.70 [-2.79, -0.61]	2014	
Shen-2016	7.4	2.5	28	7.3	1.6	20	13.5%	0.10 [-1.06, 1.26]	2016	
Song-2018	8.82	1.14	26	11	0.89	262	18.1%	-2.18 [-2.63, -1.73]	2018	-
Subtotal (95% CI)			220			480	100.0%	-1.03 [-1.81, -0.26]		-
Heterogeneity: Tau ² =	: 0.82; C	hi ² = 2	8.37, d	f=6(P	< 0.00I	01); I ² =	79%			
Test for overall effect:	Z = 2.60) (P = ().009)							
4.6.3 DCM										
7bong 2014	7	1.4	25	07	24	26	11.20	4 70 [2 70 0 64]	2014	
Zhang-Zu14 Bork 2010	10	1.4	20	0.7	2.4	20	14.2%	-1.70[-2.78,-0.01]	2014	
Park-2019 Dbu 2010	0.00	J 064	12	10.11	1 4 0	12	11.8%		2019	• I
Kilu-2019 Hene 2020	0.00	0.04	100	10.11	1.10	100	22.1%	-2.03 [-2.30, -1.70]	2019	· · · · · · · · · · · · · · · · · · ·
Hong-2020 Vinese 2024	1.5	2.4	198	8.0		198	21.2%	-1.10[-1.54,-0.66]	2020	
JINSOO-ZUZT Dreeving 2024	8.8 5.5.4	3.3	171	11.Z	0.0	171	15.4%	-2.40 [-3.37, -1.43]	2021	-
Subtotal (95% CI)	5.54	2.14	35 565	5.85	2.95	600	15.3% 100.0%	-0.31 [-1.30, 0.68] -1.34 [-2.00, -0.69]	2021	◆
Heterogeneity: Tau ² =	0.48; C	hi ² = 2	6.20, d	f= 5 (P -	< 0.00	01); I² =	81%	-		
Test for overall effect:	Z = 4.01	(P < ().0001)							
										Favours MIDRH Favours ODRH

Figure 6. Forest plot and funnel plot comparison of MIDRH versus ODRH for length of hospital stay [4,5,7,12–14,16–25,27,29–31]. *: Different data in the same article.

2.5. Pulmonary Complications

Pulmonary complications included pleural effusion and pulmonary infection. The pooled data encompassed sixteen studies [4,5,12–17,19–22,24,26,27,30] with a total of 2790 donors and showed that the incidence of pulmonary complications in the MIDRH group was lower than in the ORDH group (OR = 0.55; 95% CI, 0.38 to 0.81; p = 0.002, $I^2 = 0\%$, Table 3). In categorical subgroup analysis, the PLDRH group [4,5,17,20–22,24,26,27,30] had a lower pulmonary complication rate (OR = 0.44; 95% CI, 0.28 to 0.69; p = 0.0004, $I^2 = 0\%$, Figure 7). Meanwhile, there was no difference between the LADRH group [12–16,19,20] and the ODRH group (OR = 0.99; 95% CI, 0.49 to 2.02; p = 0.98, $I^2 = 0\%$, Figure 7). Furthermore, the PSM subgroup analysis [16,22,30] suggested that the pulmonary complication rate in the MIDRH group (OR = 0.25; 95% CI, 0.06 to 1.04; p = 0.06, $I^2 = 0\%$, Figure 7).

	MIDR	н	ODR	н		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	Year	M-H, Fixed, 95% Cl
2.1.1 PLDRH								
Suh-2015	0	14	6	451	0.7%	2.36 [0.13, 43.98]	2015	
Song-2018*	1	7	24	262	1.8%	1.65 [0.19, 14.31]	2018	
Lee-2019	0	33	1	43	2.1%	0.42 [0.02, 10.72]	2019	
Park-2019	0	91	4	197	4.7%	0.23 [0.01, 4.41]	2019	
Hong-2020	1	198	5	198	8.2%	0.20 [0.02, 1.69]	2020	
Jeong-2020	39	123	67	123	75.7%	0.39 [0.23, 0.65]	2020	
Yang-2020	0	53	1	66	2.2%	0.41 [0.02, 10.22]	2020	
Dang-2021	1	20	2	40	2.1%	1.00 [0.09, 11.74]	2021	
Han-2021	2	100	0	50	1.1%	2.56 [0.12, 54.41]	2021	
Lapisatepun-2022	0	9	1	21	1.5%	0.72 [0.03, 19.34]	2022	
Subtotal (95% CI)		648		1451	100.0%	0.44 [0.28, 0.69]		•
Total events	44		111					
Heterogeneity: Chi ² =	5.44, df=	9 (P =	0.79); l² =	= 0%				
Test for overall effect:	Z = 3.57 ((P = 0.0)	0004)					
2.1.2 LADRH								
Choi-2012	3	60	4	90	20.1%	1.13 [0.24, 5.25]	2012	
Nagai-2012	1	28	1	30	6.1%	1.07 [0.06, 18.04]	2012	
Ha-2013	1	20	0	20	3.1%	3.15 [0.12, 82.16]	2013	
Zhang-2014	3	25	3	25	17.4%	1.00 [0.18, 5.51]	2014	
Makki-2014	1	26	2	24	13.2%	0.44 [0.04, 5.19]	2014	
Shen-2016	3	28	1	20	6.9%	2.28 [0.22, 23.68]	2016	
Song-2018	2	33	24	262	33.3%	0.64 [0.14, 2.84]	2018	
Subtotal (95% CI)		220		471	100.0%	0.99 [0.49, 2.02]		+
Total events	14		35					
Heterogeneity: Chi ² =	1.75, df=	6 (P =	0.94); l ² =	= 0%				
Test for overall effect:	Z = 0.02 ((P = 0.9	98)					
2.1.3 PSM								
Zhang-2014	1	25	2	25	20.5%	0.48 [0.04, 5.65]	2014	
Park-2019	0	72	2	72	26.5%	0.19 [0.01, 4.12]	2019	
Hong-2020	1	198	5	198	53.0%	0.20 [0.02, 1.69]	2020	
Subtotal (95% CI)		295		295	100.0%	0.25 [0.06, 1.04]		
Total events	2		9					
Heterogeneity: Chi ² =	0.34, df=	2 (P =	0.84); l ² =	= 0%				
Test for overall effect:	Z = 1.91 ((P = 0.0	06)					
								0.001 0.1 1 10 1000

Figure 7. Forest plot comparison of MIDRH versus ODRH for pulmonary complications [4,5,12–17,19–22,24,26,27,30]. *: Different data in the same article.

Favours MIDRH Favours ODRH

2.6. Postoperative Transfusion

Eight studies [5,12,15,19–21,25,29] encompassing 1553 donors covered the incidence of postoperative transfusion without heterogeneity ($I^2 = 0\%$). Our results revealed that there was no significant difference between the ODRH group and the MIDRH group (OR = 1.78; 95% CI, 0.88 to 3.59; p = 0.11, Table 3) in postoperative transfusion. The LADRH group [12,15,19,20] did not vary from the ODRH group in categorical subgroup analysis, (OR = 0.68; 95% CI, 0.19 to 2.41; p = 0.55, $I^2 = 0\%$, Figure 8). To be noted, the donors in the PLDRH [5,20,21,25,29] group had a lower postoperative transfusion rate than in the ODRH group (OR = 2.90; 95% CI, 1.15 to 7.28; p = 0.02, Figure 8). In addition, the PSM subgroup [25,29] analysis, which included two studies, also discovered that the MIDRH group had a lower transfusion rate than the ODRH group (OR = 4.78; 95% CI, 1.20 to 18.95; p = 0.03, Figure 8) without heterogeneity ($I^2 = 0\%$).

Figure 8. Forest plot comparison of MIDRH versus ODRH for postoperative transfusion [5,12,15,19–21,25,29]. *: Different data in the same article.

2.7. Wound

Nineteen studies [4,5,12–18,20–27,30,31] including 3125 donors reported wound complications (990 in MIDRH and 2135 in ODRH) without heterogeneity ($I^2 = 0\%$). It showed that the donors in MIDRH had fewer wound complications than in ODRH (OR = 0.45; 95% CI, 0.29 to 0.71; p = 0.0007, Table 3). In addition, in categorical subgroup analysis, the PLDRH group [4,5,17,18,20–27,30,31] also had fewer wound complications than the ODRH group (OR = 0.43; 95% CI, 0.25 to 0.73; p = 0.002, Figure 9). Besides, the PSM subgroup [16,22,25,30,31] analysis with pooled data of four studies indicated that the MIDRH group had fewer wound complications than the ODRH group (OR = 0.007, Figure 9). However, the LADRH group [12–16,20] had no significant difference from the ODRH group (OR = 0.52; 95% CI, 0.21 to 1.29; p = 0.16, Figure 9).

Figure 9. Forest plot and funnel plot comparison of MIDRH versus ODRH for wound complication [4,5,12–18,20–27,30,31]. *: Different data in the same article.

2.8. Overall Complication Rate

Twenty-two studies [4,5,7,12–30] with a total of 3682 donors (MIDRH vs. ODRH: 1306:2376) reported postoperative complications. The pooled data suggested that donors in the MIDRH group had lower incidence of overall complications than the ODRH group (OR = 0.79; 95% CI, 0.64 to 0.96; p = 0.02, $I^2 = 0\%$, Table 3). In categorical subgroup analysis, donors in the PLDRH group [4,17,18,20–31] had lower overall complications than in the ODRH group (OR = 0.77; 95% CI, 0.61 to 97; p = 0.003, $I^2 = 0\%$, Figure 10). Additionally, the PSM subgroup [16,22,25,29–31] analysis included six studies (MIDRH vs. ODRH: 565:600) and showed that donors had a lower overall complication rate than the ODRH group (OR = 0.69; 95% CI, 0.50 to 0.96; p = 0.03, $I^2 = 0\%$, Figure 10). Meanwhile, there was no difference between the LADRH group [7,12–16,19,20] and the ODRH group (OR = 0.85; 95% CI, 0.56 to 1.31; p = 0.47, $I^2 = 0\%$, Figure 10).

Figure 10. Forest plot and funnel plot comparison of MIDRH versus ODRH for overall complications [4,5,7,12–27,29–31]. *: Different data in the same article.

2.9. Self-Infused Morphine Consumption (Days)

Four studies [12,16,19,21] including 324 donors reported the use of self-infused morphine consumption. Our results revealed that the donors in the MIDRH group used morphine for fewer days than those in the ODRH group (WMD = -0.06; 95% CI, -1.16 to -0.05; p = 0.03, I² = 80%, Figure 11).

	N	IIDRH		0	DDRH			Mean Difference	Mean Difference			
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl		IV, Randon	n, 95% Cl	
Choi-2012	2.43	1.03	60	2.55	1.1	90	28.7%	-0.12 [-0.47, 0.23]		+		
Lee-2019	1.66	1.65	33	3.23	1.62	43	20.4%	-1.57 [-2.31, -0.83]				
Shen-2016	2.8	0.9	28	3	0.7	20	26.5%	-0.20 [-0.65, 0.25]		+		
Zhang-2014	2.4	1	25	3.2	1	25	24.4%	-0.80 [-1.35, -0.25]				
Total (95% CI)			146			178	100.0%	-0.60 [-1.16, -0.05]		•		
Heterogeneity: Tau ² =	= 0.25; C	hi ² = 1	-10	-5 0	5	10						
Test for overall effect: Z = 2.14 (P = 0.03)										Favours MIDRH	Favours ODRH	1

Figure 11. Forest plot and funnel plot comparison of MIDRH versus ODRH for self-infused morphine pump (days) [12,16,19,21].

2.10. Other Outcomes

Our analysis revealed that the MIDRH group and ODRH group were similar with rehospitalization (MIDRH vs. ODRH: 6.5% vs. 3.48%; OR: 1.18; 95% CI: 0.68–2.04; p = 0.56, Table 3), reoperation (MIDRH vs ODRH: 3% vs. 1.92%; OR: 1.43; 95% CI: 0.79–2.57; p = 0.23, Table 3), Clavien–Dindo grade \geq III (MIDRH vs. ODRH: 4.8% vs. 4.63%; OR: 1.06; 95% CI: 0.71–1.59; p = 0.77, Table 3), peak alanine aminotransferase (MIDRH vs. ODRH: 234.5 ± 112.5 vs. 225.7 ± 135.0; OR: 18.92; 95% CI: -10.26–48.10; p = 0.2, Table 3), peak aspartate aminotransferase (MIDRH vs. ODRH: 226.0 ± 104.6 vs. 219.2 ± 121.1; OR: 10.83; 95% CI: -12.57–34.23; p = 0.36, Table 3), peak total bilirubin (MIDRH vs. ODRH: 3.1 ± 1.6 vs. 3.1 ± 1.6; OR: -0.08; 95% CI: -0.26–0.09; p = 0.36, Table 3), bili elak (MIDRH vs. ODRH: 9.55% vs. 7.48%; OR: 2.57; 95% CI: 0.94–7.00; p = 0.07, Table 3), biliary stricture (MIDRH vs. ODRH: 1.55% vs. 0.53%; OR: 2.38; 95% CI: 0.81–7.04; p = 0.12, Table 3), and post-operation bleeding (MIDRH vs. ODRH: 1.49% vs. 7.48%; OR: 1.26; 95% CI: 0.59–2.45; p = 0.62, Table 3).

2.11. Publication Bias

Begg's funnel plot was drawn for each outcome and adopted to investigate publication bias. All studies lie inside the 95% CI in the funnel plot that indicated no obvious publication bias.

3. Discussion

Living donor right hepatectomy is currently the most common donor surgery in adult-to-adult living donor liver transplantation [32,33], in which about two-thirds of the working liver is removed from the donator [34]. Concerns about donor safety and ethical issues have persisted since the procedure was performed in 1996 [34]. Ensuring the safety of the donor is the cornerstone of LDLT. The safety and superiority of minimally invasive hepatectomy have been proved in liver tumor resection [35–38], and previous studies have also reflected the feasibility and safety of minimally invasive hepatectomy in donor liver resection [39–43]. Moreover, the consensus [2] on minimally invasive donor hepatectomy for living donor liver transplantation stated that "pure laparoscopic" donor hepatectomy is applicable to left lateral hepatectomy and should be considered standard practice once the team has fulfilled the adequate learning. But there is still a lack of high-level evidence to explain the advantages and disadvantages of laparoscopic or open hepatectomy for living right hepatectomy.

In our study, the demographic data showed that the donors who underwent MIDRH were younger and had a female predominance, which was consistent with previous research [44–49]. It is easy to understand this phenomenon because the MIDRH has the advantages of quick postoperative recovery, light pain, beautiful appearance, and minimal trauma, and is more favored by the younger and female. Reduced intraoperative blood loss and shorter LOS were found in the MIDRH group, and the average amount of estimated intra-operation blood loss from our pooled data was 283.6 ± 221.8 mL, and 431.4 ± 342.0 mL in the MIDRH and ODRH group. These results were similar to previous studies [44,47,50]. The small amount of estimated intra-operation blood loss may

be attributed to the fine dissection, which facilitates the identification and processing of tiny structures. And there were no significant differences in postoperative bleeding and postoperative blood transfusion events between the two groups.

Different from other meta-analyses [44,46,50,51], we found that the procedure time was longer in the MIDRH group than in the ODRH group, especially in PLDRH. However, in the PSM subgroup, the operation time showed no difference. In the encompassing literature, several studies [12,26,29,30] reported a shorter operation time in the PLDRH group than the ODRH group, which included a larger number of cases and is consistent with another study of Lai et al. [52]. This result may be caused by some small sample studies included in our analysis. Due to some limitations of laparoscopic surgery such as motion, visualization, and tactile sensation [53], the learning process for laparoscopy is relatively long. Currently, there are serval reports about the learning curve of PLDRH. Rhu et al. [26] thought that it was possible to reduce the operating time only after more than 50 PLDRH procedures. Lee et al. reported that operating time was stabilized for ODRH after 17 cases and for PLDRH after 15 cases [22]. In our study, there were only two studies with fewer than 15 PLDRH. Meanwhile, the operation time was also affected by the patient's own conditions. And in cases of tissue structure variation or other anatomical abnormalities, laparoscopy may lead to increased postoperative morbidity [54–56]. In general, the operation time of PLDRH will be reduced and the laparoscopic-related complications will be overcome with the accumulation of laparoscopic surgery experience.

Our pooled data indicated that MIDRH had fewer analgesic requirements than ODRH, which was in accordance with the results of previous studies [44–49]. MIDRH has a smaller incision without cutting the subcostal nerve and muscle which preserves the integrity of the abdominal wall as much as possible. Regardless of the differences between the operator and the patient, a small incision could promote postoperative rehabilitation, reduce postoperative pain, and improve respiratory status. Meanwhile, our study revealed that MIDRH demonstrated a better surgical incision; this seems to be more evident in PLDRH, with lower wound complication rates. Apparently, it was associated with the hidden benefits of small incision, such as reducing the psychological burden on patients, the rate of infection, and long-term discomfort at the incision site after surgery.

Our study found that the PLDRH group had a favorable advantage in pulmonary complications, which is consistent with previous studies [45,46,51]. This may be associated with the delicate operation being minimally invasive, producing light postoperative pain, and reducing irritation to the chest cavity. Meanwhile, our study found that there was no difference in peak AST, peak ALT, peak TB, bile leak, biliary stricture, Clavien–Dindo grade \geq III, rehospitalization, and reoperation between MIDRH and ODRH. These indicators had not been investigated in previous studies [46–51].

Cost–benefit analysis between MIDRH and ODRH was also important. Riquelme et al. [56] have shown that upfront intraoperative costs associated with ODRH were lower, but the overall costs between ODRH and PLDRH were equivalent after 3 months of follow-up. In our study, data of cost were not reported in the included studies, so we could not conduct a specific analysis on this issue.

There are some limitations in our study. All the articles were retrospective studies without randomized controlled trials. Potential bias exists in the intrinsic retrospective study. Due to time and the fact that times of liver blockage could not be obtained, it was impossible to conduct hierarchical analysis of this research. Some studies had small samples and the outcomes may have been affected by the learning curve. A high level of evidence is still needed to explore the merits of the two surgery procedures.

4. Conclusions

In conclusion, MIDRH is a safe and feasible alternative approach in donor right hepatectomy for its better performance in intra-operation blood loss, pulmonary complications, length of stay, postoperative pain, wound complications, and overall complications. **Author Contributions:** Conceptualization: T.W., C.C. and C.M.; Formal analysis: C.M., C.C. and J.W.; Writing—original draft: C.M., C.C., G.C. and J.H.; Data curation: C.M., C.C., J.W., G.C. and J.H.; Writing—review and editing: C.M., C.C., J.H. and T.W.; Methodology: C.C.; Investigation: J.W. and G.C.; Resources: J.W.; Visualization: J.W. and G.C.; Software: J.H.; Supervision: T.W.; Project administration: T.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: This study did not require ethical approval.

Informed Consent Statement: Patient consent was waived due to this study was a Meta-Analysis.

Data Availability Statement: The original contributions presented in the study are included in the article. Further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Lo, C.-M.; Fan, S.T.; Liu, C.L.; Yong, B.H.; Wong, Y.; Lau, G.K.; Lai, C.L.; Ng, I.O.; Wong, J. Lessons Learned from One Hundred Right Lobe Living Donor Liver Transplants. *Ann. Surg.* **2004**, *240*, 151–158. [CrossRef]
- Cherqui, D.; Ciria, R.; Kwon, C.H.D.; Kim, K.-H.; Broering, D.; Wakabayashi, G.; Samstein, B.; Troisi, R.; Han, H.S.; Rotellar, F.; et al. Expert Consensus Guidelines on Minimally Invasive Donor Hepatectomy for Living Donor Liver Transplantation from Innovation to Implementation: A Joint Initiative from the International Laparoscopic Liver Society (ILLS) and the Asian-Pacific Hepato-Pancreato-Biliary Association (A-PHPBA). *Ann. Surg.* 2021, 273, 96–108. [PubMed]
- 3. Soubrane, O.; Perdigao Cotta, F.; Scatton, O. Pure laparoscopic right hepatectomy in a living donor. *Am. J. Transplant.* **2013**, *13*, 2467–2471. [CrossRef] [PubMed]
- Han, E.S.; Lee, K.-W.; Suh, K.-S.; Yi, N.-J.; Choi, Y.; Hong, S.K.; Lee, J.-M.; Hong, K.P.; Hong, S.Y.; Suh, S. Shorter operation time and improved surgical outcomes in laparoscopic donor right hepatectomy compared with open donor right hepatectomy. *Surgery* 2021, 170, 1822–1829. [CrossRef] [PubMed]
- Lapisatepun, W.; Junrungsee, S.; Chotirosniramit, A.; Udomsin, K.; Lapisatepun, W.; Chanthima, P.; Boonsri, S.; Lorsomradee, S. Comparative outcomes of pure laparoscopic and open donor right hepatectomy: The first report from a Southeast Asian transplant center. *BMC Surg.* 2022, 22, 1–12. [CrossRef]
- 6. Hong, K.; Hong, S.K.; Han, E.S.; Suh, S.; Hong, S.Y.; Lee, J.-M.; Choi, Y.; Yi, N.-J.; Lee, K.-W.; Suh, K.-S. Pure Laparoscopic vs. Open Right Hepatectomy in Living Liver Donors: Bench-Surgery Time. *Front. Surg.* **2021**, *8*, 771026. [CrossRef]
- Baker, T.B.; Jay, C.L.; Ladner, D.P.; Preczewski, L.B.; Clark, L.; Holl, J.; Abecassis, M.M. Laparoscopy-assisted and open living donor right hepatectomy: A comparative study of outcomes. *Surgery* 2009, 146, 817–825. [CrossRef]
- Lo, C.K.; Mertz, D.; Loeb, M. Newcastle-Ottawa Scale: Comparing reviewers' to authors' assessments. BMC Med. Res. Methodol. 2014, 14, 45. [CrossRef]
- 9. Hozo, S.P.; Djulbegovic, B.; Hozo, I. Estimating the mean and variance from the median, range, and the size of a sample. *BMC Med. Res. Methodol.* **2005**, *5*, 13. [CrossRef]
- 10. Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. *BMJ* **2003**, 327, 557–560. [CrossRef]
- 11. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. *Int. J. Surg.* 2010, *8*, 336–341. [CrossRef] [PubMed]
- Choi, H.J.; You, Y.K.; Na, G.H.; Hong, T.H.; Shetty, G.S.; Kim, D.G. Single-port laparoscopy-assisted donor right hepatectomy in living donor liver transplantation: Sensible approach or unnecessary hindrance? *Transplant. Proc.* 2012, 44, 347–352. [CrossRef] [PubMed]
- 13. Nagai, S.; Brown, L.; Yoshida, A.; Kim, D.; Kazimi, M.; Abouljoud, M.S. Mini-incision right hepatic lobectomy with or without laparoscopic assistance for living donor hepatectomy. *Liver Transplant.* **2012**, *18*, 1188–1197. [CrossRef]
- 14. Ha, T.; Hwang, S.; Ahn, C.; Kim, K.; Moon, D.; Song, G.; Jung, D.; Park, G.; Namgoong, J.; Park, C.; et al. Role of Hand-Assisted Laparoscopic Surgery in Living-Donor Right Liver Harvest. *Transplant. Proc.* **2013**, *45*, 2997–2999. [CrossRef]
- 15. Makki, K.; Chorasiya, V.K.; Sood, G.; Srivastava, P.K.; Dargan, P.; Vij, V. Laparoscopy-assisted hepatectomy versus conventional (open) hepatectomy for living donors: When you know better, you do better. *Liver Transplant*. **2014**, *20*, 1229–1236. [CrossRef]
- Zhang, X.; Yang, J.; Yan, L.; Li, B.; Wen, T.; Xu, M.; Wang, W.; Zhao, J.; Wei, Y. Comparison of Laparoscopy-Assisted and Open Donor Right Hepatectomy: A Prospective Case-Matched Study from China. J. Gastrointest. Surg. 2014, 18, 744–750. [CrossRef] [PubMed]
- 17. Suh, S.; Lee, K.; Lee, J.; Choi, Y.; Yi, N.; Suh, K. Clinical outcomes of and patient satisfaction with different incision methods for donor hepatectomy in living donor liver transplantation. *Liver Transplant.* **2015**, *21*, 72–78. [CrossRef] [PubMed]
- Chen, P.; Wu, C.; Hu, R.; Ho, C.; Lee, P.; Lai, H.; Lin, M.; Wu, Y. Robotic liver donor right hepatectomy: A pure, minimally invasive approach. *Liver Transplant.* 2016, 22, 1509–1518. [CrossRef] [PubMed]

- 19. Shen, S.; Zhang, W.; Jiang, L.; Yan, L.; Yang, J. Comparison of Upper Midline Incision with and without Laparoscopic Assistance for Living-Donor Right Hepatectomy. *Transplant. Proc.* **2016**, *48*, 2726–2731. [CrossRef]
- Song, J.-L.; Yang, J.; Wu, H.; Yan, L.-N.; Wen, T.-F.; Wei, Y.-G.; Yang, J.-Y. Pure laparoscopic right hepatectomy of living donor is feasible and safe: A preliminary comparative study in China. *Surg. Endosc.* 2018, 32, 4614–4623. [CrossRef]
- Lee, B.; Choi, Y.; Han, H.; Yoon, Y.; Cho, J.Y.; Kim, S.; Kim, K.H.; Hyun, I.G. Comparison of pure laparoscopic and open living donor right hepatectomy after a learning curve. *Clin. Transplant.* 2019, 33, e13683. [CrossRef] [PubMed]
- Park, J.; Kwon, D.C.H.; Choi, G.-S.; Kim, S.J.; Lee, S.-K.; Kim, J.M.; Lee, K.W.; Chung, Y.J.; Kim, K.S.; Lee, J.S.; et al. Safety and Risk Factors of Pure Laparoscopic Living Donor Right Hepatectomy: Comparison to Open Technique in Propensity Score–matched Analysis. *Transplantation* 2019, 103, e308–e316. [CrossRef] [PubMed]
- 23. Park, K.; Shehta, A.; Lee, J.-M.; Hong, S.K.; Yoon, K.C.; Cho, J.-H.; Yi, N.-J.; Lee, K.-W.; Suh, K.-S. Pure 3D laparoscopy versus open right hemihepatectomy in a donor with type II and III portal vein variations. *Ann. Hepato-Biliary-Pancreat. Surg.* 2019, 23, 313–318. [CrossRef] [PubMed]
- Jeong, J.S.; Wi, W.; Chung, Y.J.; Kim, J.M.; Choi, G.-S.; Kwon, C.H.D.; Han, S.; Gwak, M.S.; Kim, G.S.; Ko, J.S. Comparison of perioperative outcomes between pure laparoscopic surgery and open right hepatectomy in living donor hepatectomy: Propensity score matching analysis. *Sci. Rep.* 2020, 10, 5314. [CrossRef]
- 25. Rhu, J.; Choi, G.; Kwon, C.H.D.; Kim, J.M.; Joh, J. Learning curve of laparoscopic living donor right hepatectomy. *Br. J. Surg.* 2020, 107, 278–288. [CrossRef]
- 26. Yang, J.; Kim, J.M.; Rhu, J.; Kim, S.; Lee, S.; Choi, G.-S.; Joh, J.-W. Comparison of liver regeneration in laparoscopic versus open right hemihepatectomy for adult living donor liver transplantation. *Ann. Hepato-Biliary-Pancreat. Surg.* 2020, 24, 33–37. [CrossRef]
- Bang, Y.J.; Jun, J.H.; Gwak, M.S.; Ko, J.S.; Kim, J.M.; Choi, G.S.; Joh, J.W.; Kim, G.S. Postoperative outcomes of purely laparoscopic donor hepatectomy compared to open living donor hepatectomy: A preliminary observational study. *Ann. Surg. Treat. Res.* 2021, 100, 235–245. [CrossRef]
- 28. Rho, S.Y.; Lee, J.G.; Joo, D.J.; Kim, M.S.; Kim, S.I.; Han, D.H. Outcomes of Robotic Living Donor Right Hepatectomy from 52 Consecutive Cases: Comparison with Open and Laparoscopy-Assisted Donor Hepatectomy. *HPB* **2021**, *23*, S105. [CrossRef]
- 29. Rhu, J.; Kim, M.S.; Choi, G.; Kim, J.M.; Kwon, C.H.D.; Joh, J. Laparoscopic Living Donor Right Hepatectomy Regarding the Anatomical Variation of the Portal Vein: A Propensity Score–Matched Analysis. *Liver Transplant.* **2021**, *27*, 984–996. [CrossRef]
- Hong, S.K.; Tan, M.Y.; Worakitti, L.; Lee, J.M.; Cho, J.H.; Yi, N.J. Pure Laparoscopic Versus Open Right Hepatectomy in Live Liver Donors: A Propensity Score-matched Analysis. *Ann. Surg.* 2020, 275, e206–e212. [CrossRef]
- Broering, D.C.; Elsheikh, Y.; Alnemary, Y.; Zidan, A.; Elsarawy, A.; Saleh, Y.; Alabbad, S.; Sturdevant, M.; Wu, Y.M.; Troisi, R.I. Robotic Versus Open Right Lobe Donor Hepatectomy for Adult Living Donor Liver Transplantation: A Propensity Score-Matched Analysis. *Liver Transplant.* 2020, 26, 1455–1464. [CrossRef]
- Yeow, M.; Soh, S.; Starkey, G.; Perini, M.V.; Koh, Y.X.; Tan, E.K.; Chan, C.Y.; Raj, P.; Goh, B.K.P.; Kabir, T. A systematic review and network meta-analysis of outcomes after open, mini-laparotomy, hybrid, totally laparoscopic, and robotic living donor right hepatectomy. *Surgery* 2022, 172, 741–750. [CrossRef] [PubMed]
- 33. Lo, C.-M.; Fan, S.-T.; Liu, C.-L.; Wei, W.; Lo, R.J.W.; Lai, C.-L.; Chan, J.K.F.; Ng, I.O.-L.; Fung, A.; Wong, J. Adult-to-adult living donor liver transplantation using extended right lobe grafts. *Ann. Surg.* **1997**, *226*, 261–270. [CrossRef]
- 34. Nguyen, K.T.; Gamblin, T.C.; Geller, D.A. World review of laparoscopic liver resection-2804 patients. *Ann. Surg.* 2009, 250, 831–841. [CrossRef] [PubMed]
- Li, N.; Wu, Y.-R.; Wu, B.; Lu, M.-Q. Surgical and oncologic outcomes following laparoscopic versus open liver resection for hepatocellular carcinoma: A meta-analysis. *Hepatol. Res.* 2012, 42, 51–59. [CrossRef] [PubMed]
- Mirnezami, R.; Mirnezami, A.H.; Chandrakumaran, K.; Abu Hilal, M.; Pearce, N.W.; Primrose, J.N.; Sutcliffe, R.P. Short- and long-term outcomes after laparoscopic and open hepatic resection: Systematic review and meta-analysis. *HPB* 2011, 13, 295–308. [CrossRef]
- Mizuguchi, T.; Kawamoto, M.; Meguro, M.; Shibata, T.; Nakamura, Y.; Kimura, Y.; Furuhata, T.; Sonoda, T.; Hirata, K. Laparoscopic hepatectomy: A systematic review, meta-analysis, and power analysis. *Surg. Today* 2011, *41*, 39–47. [CrossRef]
- Marubashi, S.; Nagano, H. Laparoscopic living-donor hepatectomy: Review of its current status. Ann. Gastroenterol. Surg. 2021, 5, 484–493. [CrossRef]
- 39. Au, K.P.; Chok, K.S.H. Minimally invasive donor hepatectomy, are we ready for prime time? *World J. Gastroenterol.* **2018**, *24*, 2698–2709. [CrossRef]
- 40. Hori, T.; Kaido, T.; Iida, T.; Yagi, S.; Uemoto, S. Comprehensive guide to laparoscope-assisted graft harvesting in live donors for living-donor liver transplantation: Perspective of laparoscopic vision. *Ann. Gastroenterol.* **2017**, *30*, 118–126. [CrossRef]
- Cauchy, F.; Schwarz, L.; Scatton, O.; Soubrane, O. Laparoscopic liver resection for living donation: Where do we stand? World J. Gastroenterol. 2014, 20, 15590–15598. [CrossRef] [PubMed]
- 42. Lai, Q.; Pinheiro, R.; Sandri, G.B.L.; Spoletini, G.; Melandro, F.; Guglielmo, N.; Di Laudo, M.; Frattaroli, F.M.; Berloco, P.B.; Rossi, M. Laparoscopy in Liver Transplantation: The Future Has Arrived. *HPB Surg.* **2012**, *2012*, 1–7. [CrossRef] [PubMed]
- 43. Gao, Y.; Wu, W.; Liu, C.; Liu, T.; Xiao, H. Comparison of laparoscopic and open living donor hepatectomy: A meta-analysis. *Medicine* **2021**, *100*, e26708. [CrossRef]

- Li, H.; Zhang, J.-B.; Chen, X.-L.; Fan, L.; Wang, L.; Li, S.-H.; Zheng, Q.-L.; Wang, X.-M.; Yang, Y.; Chen, G.-H.; et al. Different techniques for harvesting grafts for living donor liver transplantation: A systematic review and meta-analysis. *World J. Gastroenterol.* 2017, 23, 3730–3743. [CrossRef] [PubMed]
- Zhang, W.; Xu, L.; Zhang, J.; Che, X. Safety and feasibility of laparoscopic living donor right hepatectomy for adult liver transplantation: A meta-analysis. *HPB* 2021, 23, 344–358. [CrossRef] [PubMed]
- 46. Zhao, X.; Lei, Z.; Gao, F.; Yang, J.; Xie, Q.; Jiang, K.; Jie, G. Minimally invasive versus open living donors right hepatectomy: A systematic review and meta-analysis. *Int. J. Surg.* **2021**, *95*, 106152. [CrossRef]
- 47. Menon, K.; Papoulas, M.; Hakeem, A.; Heaton, N. Pure laparoscopic versus open donor hepatectomy for adult living donor liver transplantation–A systematic review and meta-analysis. *J. Minimal Access Surg.* **2022**, *18*, 1. [CrossRef]
- Zhang, B.; Pan, Y.; Chen, K.; Maher, H.; Chen, M.-Y.; Zhu, H.-P.; Zhu, Y.-B.; Dai, Y.; Chen, J.; Cai, X.-J. Laparoscopy-Assisted versus Open Hepatectomy for Live Liver Donor: Systematic Review and Meta-Analysis. *Can. J. Gastroenterol. Hepatol.* 2017, 2017, 1–12. [CrossRef]
- Xu, J.; Hu, C.; Cao, H.-L.; Zhang, M.-L.; Ye, S.; Zheng, S.-S.; Wang, W.-L. Meta-Analysis of Laparoscopic versus Open Hepatectomy for Live Liver Donors. *PLoS ONE* 2016, 11, e0165319. [CrossRef]
- 50. Peng, Y.; Li, B.; Xu, H.; Chen, K.; Wei, Y.; Liu, F. Pure Laparoscopic Versus Open Approach for Living Donor Right Hepatectomy: A Systematic Review and Meta-Analysis. *J. Laparoendosc. Adv. Surg. Tech. Part A* **2022**, *32*, 832–841. [CrossRef]
- 51. Lai, Q.; Giovanardi, F.; Mennini, G.; Berardi, G.; Rossi, M. The impact of mini-invasive right hepatectomy in the setting of living donation: A meta-analysis. *Updat. Surg.* 2022, 74, 23–34. [CrossRef] [PubMed]
- 52. Nezhat, C.; Nezhat, F.; Nezhat, C.; Seidman, D.S. Operative laparoscopy: Redefining the limits. J. Soc. Laparoendosc. Surg. 1997, 1, 213–216.
- Rhu, J.; Choi, G.S.; Kim, J.M.; Joh, J.; Kwon, C.H.D. Feasibility of total laparoscopic living donor right hepatectomy compared with open surgery: Comprehensive review of 100 cases of the initial stage. *J. Hepato-Biliary-Pancreat. Sci.* 2020, 27, 16–25. [CrossRef] [PubMed]
- Kwon, C.H.D.; Choi, G.-S.; Kim, J.M.; Cho, C.W.; Rhu, J.; Soo Kim, G.; Hyun, S.D.; Jae-Won, J. Laparoscopic Donor Hepatectomy for Adult Living Donor Liver Transplantation Recipients. *Liver Transplant.* 2018, 24, 1545–1553. [CrossRef] [PubMed]
- 55. Hong, S.K.; Lee, K.W.; Choi, Y.; Kim, H.S.; Ahn, S.W.; Yoon, K.C.; Yi, N.J.; Suh, K.S. Initial experience with purely laparoscopic living-donor right hepatectomy. *Br. J. Surg.* 2018, *105*, 751–759. [CrossRef] [PubMed]
- 56. Riquelme, F.; Muñoz, C.; Ausania, F.; Hessheimer, A.J.; Torres, F.; Calatayud, D.; Sandomenico, R.; Pérez, R.G.; Ferrer, J.; Fuster, J.; et al. Laparoscopic versus open hemihepatectomy: Comprehensive comparison of complications and costs at 90 days using a propensity method. *Updat. Surg.* 2020, *72*, 1041–1051. [CrossRef] [PubMed]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.