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Abstract: Background: This ex vivo experimental study sought to compare screw planning accuracy
of a self-derived deep-learning-based (DL) and a commercial atlas-based (ATL) tool and to assess
robustness towards pathologic spinal anatomy. Methods: From a consecutive registry, 50 cases
(256 screws in L1-L5) were randomly selected for experimental planning. Reference screws were
manually planned by two independent raters. Additional planning sets were created using the
automatic DL and ATL tools. Using Python, automatic planning was compared to the reference
in 3D space by calculating minimal absolute distances (MAD) for screw head and tip points (mm)
and angular deviation (degree). Results were evaluated for interrater variability of reference screws.
Robustness was evaluated in subgroups stratified for alteration of spinal anatomy. Results: Planning
was successful in all 256 screws using DL and in 208/256 (81%) using ATL. MAD to the reference for
head and tip points and angular deviation was 3.93 ± 2.08 mm, 3.49 ± 1.80 mm and 4.46 ± 2.86◦

for DL and 7.77 ± 3.65 mm, 7.81 ± 4.75 mm and 6.70 ± 3.53◦ for ATL, respectively. Corresponding
interrater variance for reference screws was 4.89 ± 2.04 mm, 4.36 ± 2.25 mm and 5.27 ± 3.20◦,
respectively. Planning accuracy was comparable to the manual reference for DL, while ATL produced
significantly inferior results (p < 0.0001). DL was robust to altered spinal anatomy while planning
failure was pronounced for ATL in 28/82 screws (34%) in the subgroup with severely altered spinal
anatomy and alignment (p < 0.0001). Conclusions: Deep learning appears to be a promising approach
to reliable automated screw planning, coping well with anatomic variations of the spine that severely
limit the accuracy of ATL systems.

Keywords: pedicle screw accuracy; deep-learning; machine-learning; atlas planning; spinal navigation;
robotic surgery; spinal instrumentation

1. Introduction

Pedicle screws for posterior instrumentation is a routine procedure in spine surgery.
The increased use of navigation for pedicle screw placement has significantly contributed
to the safety profile of the procedure by reducing the risk for severe screw misplacement
and resulting neuronal or vascular injury in recent years [1,2]. Moreover, the role of
screw dimensions and placement accuracy for optimization of construct strength has
been pointed out in complex surgical cases with compromised bone quality [3–5]. In this
regard, dedicated planning of screw dimensions and trajectories prior to the procedure
should be pursued to tap the full potential of navigation systems and to achieve optimal
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results. Similarly, screw planning becomes mandatory in robot-assisted surgeries for
communicating desired screw trajectories to the robot [6].

Since manual screw planning is a time-consuming procedure on navigation or robotic
workstations, several image-based approaches have been described in the literature to
facilitate and expedite pedicle screw planning. These comprise detection of geometrical
and structural landmarks in spinal imaging or involve registration to anatomical or screw
trajectory atlases to derive screw paths and dimensions [7–10].

Machine learning was used in one approach for vertebra segmentation and pedicle
identification and provided screw suggestions [10]. However, anatomic variations, pre-
vious surgeries and altered spinal alignment were mutual impediments to image-based
approaches substantially influencing planning accuracy. Consequently, this limited clinical
applicability since those conditions are common findings in everyday spine surgery.

Our group previously described a novel approach to pedicle screw planning using
deep learning. Leveraging a large dataset of virtually planned screws enabled the prediction
of screw dimensions and trajectories from the context of unlabeled spinal images using a
nnU-net. While proposed screws were noninferior to manual reference screws in the initial
validation, robustness to variations in spinal anatomy and alignment was not tested in
particular [11].

In this study, we aimed to compare the self-derived deep-learning-based (DL) tool
for pedicle screw planning to a commercially available atlas-based (ATL) approach and
validate results using manually planned reference screws by spine surgeons. Furthermore,
our focus was on evaluating the robustness of automatic planning tools to different spinal
pathologies, anatomic variations and spinal alignment.

2. Materials and Methods
2.1. Cases and Study Design

This study was designed as an ex vivo analysis of screw planning tools processing
existing data of lumbar and sacral instrumentations from real clinical cases.

The institutional review board approved the processing of anonymized data for
evaluation of screw accuracy in spinal instrumentation and the requirement for informed
consent was waived (S-723/2017).

Data was retrieved from a consecutive institutional registry of CT-navigated spinal
instrumentations performed at the authors’ institution between January 2010 and December
2018 (n = 1660). The registry contained instrumentation surgeries for various indications
ranging from fracture stabilization and degenerative spine disease to adult spondylolisthe-
sis and degenerative spinal deformity. Juvenile idiopathic deformity was not evaluated in
this study.

In total, n = 50 cases were randomly selected for this study. Subsequently, cases were
stratified to either of the following 3 arbitrary categories according to the underlying spinal
pathology, anatomic variations and degree of disturbed alignment. Categorization was
performed in agreement by 2 authors specialized in spine surgery.

Category I (normal vertebra anatomy and alignment): vertebral body fractures with
intact adjacent vertebras for screw instrumentation (index level spared), minor degen-
erative disease (Schizas grade A [12]) or minor previous surgery (single level unilateral
decompression), normal spinal alignment and no relevant scoliosis (L3 obliquity < 15
degrees according to Schwab et al. [13])

Category II (altered vertebra anatomy or alignment): moderate to severe degenera-
tive disease (Schizas grade B-C), extended previous surgeries (multilevel decompression,
laminectomy), moderate disturbance of spinal alignment (grade I listhesis according to
Meyerding [14]),and moderate lumbar scoliosis (L3 obliquity 15–25 degrees).

Category III (severely altered vertebra anatomy or alignment): severe degenerative
disease (Schizas grade D), significant to severe disturbance of spinal alignment (≥grade II
listhesis) and severe lumbar scoliosis (L3 obliquity > 25 degrees).
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2.2. Image Processing Workflow

For this ex vivo study, initial surgical concepts were extracted from the registry and
defined segments addressed and construct length for screw planning in this comparative
analysis. All screw planning in this study was performed blinded to previous results
on naïve spine CTs (2 mm slice thickness). Screw planning was performed manually by
2 independent raters to create reference screws for each case. Additional screw plans were
created by a self-derived planning tool based on deep learning [11] and a commercial
atlas-based tool. This analysis was limited to segments L1–L5 for comparison of automatic
planning tools in this study.

2.3. Manual Planning of Reference Screws

Reference screws were created by2 independent experts in spine surgery with >10 years
of surgical experience in navigated instrumentations. For experimental screw planning
in this study, we chose the identical setup used during real surgical procedures, which
was familiar to both raters (Stryker Spinemap 3D, Stryker, Kalamazoo, MI, USA). Both
raters planned screws independently and blinded to previous results. Manual planning
created 3D screw segmentation masks representing the desired screw location, trajectory
and dimension within the CT data set. Screw parameters were retrieved from the software
for further comparison.

2.4. Automatic Planning by Self-Derived Approach Based on Deep Learning

We deployed a self-derived tool based on deep learning (DL) for automated screw
planning, which was integrated into the open-source software Medical Imaging and Interac-
tion Toolkit (MITK, mitk.org). The tool processes screw planning as an image segmentation
task and applies a deep neural network (nnU-Net) on naïve spine CTs as an input vol-
ume. Technical details to algorithm development and validation have been reported
previously [11,15].

In short, the algorithm was initially trained using 155 spine-CTs with 1052 manually
labeled screw trajectories. Using a DL approach, the algorithm learned to derive screw
trajectories from the general context of the images provided during training, rather than
relying on shape restraints, landmark regression or cortical bone segmentation used in
previous approaches [7–10].

When using the DL algorithm for planning of new cases, desired segments for screw
planning are selected by setting vertebra centroids in a graphic user interface and the net
proposes 3D segmentation masks representing screw pairs in desired vertebras as a result.
Screw parameters (i.e., screw head and tip points, screw direction, length and diameter)
used in this study are derived from the paired segmentation masks using connected
component filter and principal component analysis for further evaluation described below.

2.5. Automatic Planning by a Commercial Atlas-Based Approach

We used a commercial atlas-based (ATL) approach for screw planning available on
Brainlab’s Elements Spine & Trauma 3D screw planning app (v1.0.0.172) (Brainlab, Feld-
kirchen, Germany). On a graphic user interface, the app processed naïve spine CT data
and enabled the manual selection of desired vertebras for screw planning, when atlas
registration was successful for respective segments. Suggested screws were illustrated
as masks in desired vertebras and respective screw parameters were transcribed to the
DICOM header information by the app. From the DICOM header, screw parameters were
retrieved for further analysis.

2.6. Three-Dimensional Quantitative Evaluation of Screw Plans

For evaluation of different screw planning methods, screw plans from DL and ATL
were compared to corresponding manually planned screws serving as the reference in
this study.
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Since a ground truth definition of an ideal screw position does not exist in the literature,
deviations observed between automatically and manually planned screws were evaluated
in comparison to the interrater variance of manually planned screws rather than exclusively
assessing absolute differences to the manual reference. This sought to test the clinical
value of automatic planning tools to replace manual planning. Interrater evaluation was
performed for manual screw plans created by rater A vs. rater B. For comparison of screw
plans, minimal absolute distances (MAD) were computed for corresponding screw head
and tip points (in millimeters) as well as the angular deviation of screw direction (in
degrees) in 3D space. MAD was calculated by customizing Python scripts from the NumPy
Package (v1.20) as the Euclidean distance between 2 points in 3D space (x, y, z coordinates
and their differences d) according to the following formula (Formula (1)):

MAD =

√
d(x)2 + d(y)2 + d(z)2 (1)

2.7. Qualitative Evaluation of Screw Plans

In a screw-by-screw analysis, all results from automatic and manual screw planning
were evaluated according to the Gertzbein–Robbins Classification (GR) in agreement by
2 authors specialized in spine surgery. The Gertzbein–Robbins Classification grades the
positioning of pedicle screws in relation to cortical bone margins as within (grade A) and
<2 mm (grade B), <4 (grade C), <6 mm (grade D), and ≥6 mm (grade E) cortical breach,
respectively [16]. Moreover, the direction of pedicle perforations (medial, lateral, superior,
inferior) was recorded as previously described in all non-GR grade A screws [17,18]. Ante-
rior screw breaches and screw violation of proximal facet joints were rated separately on a
binary scale [19]. All screws scored GR grade A or B were rated clinically acceptable for im-
plantation, whereas screws scored GR grade C, D or E as well as all anterior screw breaches
and proximal facet violations were deemed to require a revised plan prior to implantation.

2.8. Statistics

All continuous variables from quantitative screw evaluation were evaluated by their
means and standard deviation. Normality distribution was tested by the Shapiro–Wilk
test and nonparametric comparisons were chosen in absence of normally distributed data.
Kruskal–Wallis tests followed by Dunn’s post-test for multiple comparisons was used
for evaluation of intergroup variances in quantitative analysis and evaluation of MADs
in different spine pathology categories. Selected intergroup differences of quantitative
screw measures and qualitative GR grades were evaluated by the t-test. Distributions of
qualitative measures across different planning tools were assessed with the X2 or Fisher’s
exact test. p-values < 0.05 were regarded as statistically significant. Data composition was
performed using Excel (Microsoft Corp., Redmond, WA, USA) and the statistical analysis
was performed with Graph Pad Prism 9 (GraphPad Software, San Diego, CA, USA).

3. Results

In total, 256 screws in 50 randomly selected cases were evaluated in this study cov-
ering levels L1–L5. Median construct length covered 3 vertebras (i.e., 6 screws) (range
2–5 vertebras). Stratification of cases according to spinal pathology resulted in 18 cases
(36%) with normal vertebra anatomy and spinal alignment (category I), 16 cases (32%)
with altered (category II) and 16 (32%) with severely altered vertebra anatomy or spinal
alignment (category III) composing the cohort, respectively. Table 1 overviews descriptive
data. DL planning was successful in all targeted 256 screws (100%) in this study, while with
ATL, planning was successful in 208 screws (81%). ATL planning failed to produce screw
suggestions in 48 screws (19%), which affected planning in 12 cases. Since a quantitative
evaluation of automatic screws towards manual reference screws could only be performed
when automatic planning produced screw results, this led to an imbalance of DL and ATL
subgroups in the following analysis.
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Table 1. Descriptive Data.

Variable n %

Selected Cases 50 100

Spine Pathology Category

Category I
(normal vertebra anatomy and spinal alignment) 18 36

Category II
(altered vertebra anatomy or spinal alignment) 16 32

Category III
(severely altered vertebra anatomy or spinal alignment) 16 32

Construct Length (Vertebras)

2 20 40

3 16 32

4 13 26

5 1 2

Planned Screws 256 100

L1 2 1

L2 18 8

L3 54 21

L4 88 34

L5 94 36

3.1. Quantitative Evaluation of Screw Plans

In 3D quantitative evaluation, successfully planned screws by DL (n = 256, 100%) and
ATL (n = 208, 81%) were compared to manually planned reference screws and evaluated
according to the interrater variance of manual planning.

The quantitative evaluation is summarized in Table 2 and illustrated in Figure 1.

Table 2. Quantitative Screw Evaluation.

Interrater
Variance

Manual Planning

Deep-Learning
Planning

(vs. Manual
Planning)

Atlas-Based
Planning

(vs. Manual
Planning)

Mean ± S.D. p-Value p-Value

Screw Direction
(∆ in degree) 5.27 ± 3.20 4.46 ± 2.86 0.07 6.70 ± 3.53 0.001

Screw Head Point
(∆ in mm) 4.89 ± 2.04 3.93 ± 2.08 <0.001 7.77 ± 3.65 <0.001

Screw Tip Point
(∆ in mm) 4.36 ± 2.25 3.49 ± 1.80 0.007 7.81 ± 4.75 <0.001

Screw Length
(absolute in mm) 49.65 ± 3.80 46.36 ± 2.79 <0.001 48.79 ± 4.51 <0.001

Screw Diameter
(absolute in mm) 6.51 ± 0.68 6.10 ± 0.42 <0.001 5.50 ± 0.00 <0.001

∆ calculated as deviation to manual reference screws for DL and ATL, respectively and as interrater variance
between independent raters for manual planning. Significance (p < 0.05) is illustrated in bold face.
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Figure 1. Comparison of screw planning results using screw direction (A), screw head (B) and
screw tip points (C) as benchmarks. Violin plots illustrate mean absolute differences for deep-
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Kruskal–Wallis tests followed by Dunn’s post-test for multiple comparisons.

Evaluating screw trajectories, we observed a mean 5.27 ± 3.20◦ interrater variance
in manual planning, which was statistically comparable to a mean 4.46 ± 2.86◦ deviation
observed in DL when compared to manually planned reference screws (p = 0.07). In
contrast, ATL-planned screws exhibited a significantly greater 6.70 ± 3.53◦ mean deviation
compared to the interrater variance of manually planned screws (p < 0.001) (Figure 1A).

Mean interrater variance for screw head points was 4.89 ± 2.04 mm in manual screw
planning. In comparison, mean deviation of DL to reference screw head points was signif-
icantly smaller (3.93 ± 2.08, p < 0.0001) while ATL-planned screws showed significantly
greater deviations from the manual reference (7.77 ± 3.65 mm, p < 0.0001), respectively
(Figure 1B).

A comparable observation was made for screw tip points. Mean interrater variance
was 4.36 ± 2.25 mm in manual planning. DL planning resulted in significantly smaller
mean deviations to reference screws (3.49 ± 1.80 mm, p = 0.007), while deviations in ATL
planning significantly exceeded ranges observed for interrater variance (7.81 ± 4.75 mm,
p < 0.001) (Figure 1C).

For screw length and diameter, mean absolute values were compared (Figure 2).
Manually planned reference screws had a mean length of 49.65 ± 3.80 mm, while both
DL and ATL produced significantly shorter screws (46.36 ± 2.70 mm, 48.79 ± 4.51 mm,
p < 0.001), respectively. Mean screw diameter was 6.51 ± 0.68 mm in manual reference
screws while DL suggested screws were significantly thinner (mean 6.10 ± 0.42 mm,
p < 0.001). ATL screws were set to a standard of 5.50 mm by default without case-specific
adjustment, which was also significantly thinner compared to the reference (p < 0.001).

3.2. Qualitative Evaluation of Screw Plans

Screw fit within the pedicle was evaluated using the Gertzbein–Robbins classification.
Manually planned screws all met GR grade A, setting the reference in this study. DL
planning produced 249 GR-A screws (97%) and showed minor cortical breach (<2 mm,
GR-B) in the remaining 7 screws (3%).
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Figure 2. Performance of deep-learning- and atlas-based tools in comparison to manual screw
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analysis. Statistical significance was tested with Kruskal–Wallis tests followed by Dunn’s post-test for
multiple comparisons.

ATL planning proposed 167 GR-A (65%), 29 GR-B (11%), 4 GR-C (2%), 6 GR-D (2%)
and 2 GR-E screws (1%) and failed in 48 screws (19%), respectively. This illustrates
a considerably higher variance of planning results in ATL compared to DL planning
(p < 0.0001 vs. non-GR-A screws). Table 3 summarizes qualitative evaluation of screw planning.

Table 3. Qualitative Screw Evaluation.

n = 50 Cases
n = 256 Screws

GR-Grade
A

GR-Grade
B

GR-Grade
C

GR-Grade
D

GR-Grade
E

Failed
Planning

Anterior
Breach

Proximal
Facet

Violation

Screws
Requiring
Revision

Manual
Planning

512 *
(100%) 0 0 0 0 0 0 0 0

Deep-Learning
Planning

249
(97%)

7
(3%) 0 0 0 0 0 15

(6%)
15

(6%)

Atlas-Based
Planning

167
(65%)

29
(11%)

4
(2%)

6
(2%)

2
(1%)

48
(19%)

89
(35%) 0 141

(55%)

GR: Gertzbein–Robbins Grade, * Reference screws were planned independently by two experts in spine surgery.

Regarding the direction of screw breaches, DL exhibited 2 lateral, 2 medial, 1 inferior
and 2 superior breaches, respectively. ATL showed 11 lateral, 4 medial, 22 inferior and
4 superior breaches, respectively. Bilateral breaches affecting both pedicles at a single
vertebra were significantly more frequent in ATL (30/41 screws, 73%) compared to DL
(2/7 screws, 29%) (p = 0.03). The L5 segment was predominantly affected by breaches
in 23/41 screws (56%) in ATL and in 7/7 screws (100%) in DL planning. Anterior screw
breaches penetrating the anterior vertebral wall were observed frequently in ATL planning
in 89 screws (35%) while this was not observed in DL planning. In contrast, proximal
facet violations were only observed in DL but not in ATL planning and affected 15 screws
(6%). Proximal facet violations were observed predominantly at L5 (12/15 screws, 80%),
underscoring L5 as a particular challenge for automatic planning.

Since anterior penetrations carry the risk of large vessel injury and proximal facet vio-
lations can contribute to adjacent segment degeneration [20], automatic screw suggestions
exhibiting either of these characteristics, or those rated GR-C or worse, were deemed to
require a revised plan prior to implantation. Accordingly for DL, 15 screws (6%) required
revision due to proximal facet violations. In ATL planning, 141 screws (55%) required
revision for GR violations (n = 12) and/or anterior breaches (n = 89) or needed new manual
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planning due to failure of automatic planning (n = 48). ATL required significantly more
revisions of planning compared to DL (p < 0.0001).

3.3. Robustness of Planning Tools to Anatomic Alteration

When analysis was performed in subgroups stratified for the amount of anatomic
alteration and disturbed spinal alignment (i.e., categories I–III in Figure 3), different perfor-
mances were observed for DL- and ATL-based planning tools.
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Figure 3. Comparison of screw planning results under consideration of the degree of alteration of ver-
tebra anatomy and spinal alignment. Screw direction (A), screw head (B) and tip points (C) were used
as benchmarks for comparison of mean absolute differences between deep-learning- and atlas-based
screws with their respective manually planned reference screws and interrater variance of manual
screw planning. Categories I–III reflect subgroups of cases with increasing alterations to vertebra
anatomy and spinal alignment. Note the reduced success in atlas-based planning (208/256 screws,
81%) available for analysis. Statistical significance was tested with Kruskal–Wallis tests followed by
Dunn’s post-test for multiple comparisons.
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DL-planned screws remained comparable to manually planned screws in all three
subgroups of increasing alteration to spinal anatomy, which was illustrated by mean
deviations which either matched or undercut interrater variance of manual planning in
screw direction, head and tip point analysis, respectively (Figure 3A–C). This illustrates
the particular robustness of DL to increasing anatomic variation and alteration of spine
alignment depicted by categories I–III in this study.

In contrast, we observed a marked susceptibility of ATL planning to alterations of
spinal anatomy. We observed planning failure in 48 screws (19%) affecting 12 cases. Failed
planning occurred in 2/18 category I (17%), 3/16 category II (25%) and was significantly
pronounced in in 7/16 category III cases (58%), respectively (p = 0.03). Accordingly,
planning failed in 10/100 screws (10%) in category I, in 10/74 screws (14%) in category
II and was significantly pronounced in 28/82 screws (34%) in category III (p < 0.0001).
ATL planning failure described above produced bias on quantitative results in subgroup
analysis since only successfully planned screws could be compared. Hence, an increase of
screw deviation directly correlating with the degree of alterations to spinal anatomy could
not be observed (Figure 3A–C).

Figures 4 and 5 provide illustrative cases for evaluation of screw planning accuracy
evaluated in this study.
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Illustrative Case I (Figure 4): Planning for a L4 + L5 instrumentation in axial (A + B),
sagittal (C) and coronal (D) planes in a category I case with normal vertebra anatomy. While
planning was concordant at L4 (A), an anterior breach occurred in atlas-based planning
and facet involvement was observed in deep learning at L5 (B).

Illustrative Case II (Figure 5): In this L4 + L5 instrumentation after a previous L5
laminectomy, acceptable screw suggestions were made by deep learning (Figure 5(A1)).
Atlas-based planning exhibited a bilateral offset at L4 causing a caudal pedicle breach
(Figure 5(A2)) suggesting an image-to-atlas registration error. Additionally, atlas-based
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planning failed at L5 in this case, illustrating susceptibility to anatomic alteration likely
attributable to previous laminectomy in this category II case with altered vertebra anatomy.

J. Clin. Med. 2023, 12, x FOR PEER REVIEW 11 of 16 
 

 

attributable to previous laminectomy in this category II case with altered vertebra 
anatomy. 

 
Figure 5. Illustration of screw evaluation in a L4 + L5 instrumentation after previous L5 laminectomy 
in axial (A), sagittal (B) and coronal (C) planes. Note the significant pedicle breach in atlas-based 
planning at L4 (A2,B,C). Deviations of screw head and tip points and angular deviation were 
automatically calculated in Python for deep-learning-(green outline) and atlas-based screws (red 
outline) vs. corresponding reference screws (blue outline), respectively. 

4. Discussion 
In this ex vivo study we simulated screw planning workflows for lumbar 

instrumentations and evaluated a self-derived DL-based approach and a commercial ATL-
based approach to automatic screw planning. We found that DL-proposed screws could 
be regarded noninferior to the manual reference, while screw suggestions made by the 
ATL tool would require manual adjustments prior to implantation in up to 55% of cases. 
Alterations to spine anatomy and alignment critically affected ATL results while robust 
planning was observed in DL.  

In this study evaluating automatic planning under consideration of actual spine 
pathology, we focused on clinical applicability of the respective tools. To this end, we 
calculated absolute differences for automatically planned screws and their corresponding 
reference screws but additionally put observed differences in perspective of the interrater 
variance of manual planning when performed by two independent spine surgeons. 
Interrater variance (e.g., mean 5.27 ± 3.20° for screw direction) in our study was 

Figure 5. Illustration of screw evaluation in a L4 + L5 instrumentation after previous L5 laminectomy
in axial (A1,A2), sagittal (B) and coronal (C) planes. Note the significant pedicle breach in atlas-
based planning at L4 (A2,B,C). Deviations of screw head and tip points and angular deviation were
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4. Discussion

In this ex vivo study we simulated screw planning workflows for lumbar instrumen-
tations and evaluated a self-derived DL-based approach and a commercial ATL-based
approach to automatic screw planning. We found that DL-proposed screws could be re-
garded noninferior to the manual reference, while screw suggestions made by the ATL tool
would require manual adjustments prior to implantation in up to 55% of cases. Alterations
to spine anatomy and alignment critically affected ATL results while robust planning was
observed in DL.

In this study evaluating automatic planning under consideration of actual spine pathol-
ogy, we focused on clinical applicability of the respective tools. To this end, we calculated
absolute differences for automatically planned screws and their corresponding reference
screws but additionally put observed differences in perspective of the interrater variance of
manual planning when performed by two independent spine surgeons. Interrater variance
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(e.g., mean 5.27 ± 3.20◦ for screw direction) in our study was comparable to respective
means 8.3 ± 7.5◦ and 3.2 ± 4.3◦ for sagittal and axial variance, respectively, previously
reported in thoracic screws [21]. In absence of a universal gold standard for screw planning,
this aimed at evaluating the noninferiority of automatic compared to manual planning [22].

4.1. Atlas-Based Planning

Various approaches to automatic pedicle screw planning have been described and
atlas-based tools have most frequently been used and evaluated in the literature. In princi-
ple, accurate coregistration of case-specific image data to the atlas is crucial in this approach
to derive conclusive screw information. While published series on ATL tools frequently rely
on normal patient anatomy or consist of small cohorts, anatomical variations and altered
alignment of vertebras post typical constraints to registration accuracy, consequently affect-
ing the accuracy of screw suggestions in previous studies [7–9]. While machine-learning
approaches have been shown to improve image-to-atlas coregistration, spinal deformity,
vertebral degeneration and alterations attributable to previous surgeries persistently pose
challenges leading to failure of ATL-based planning [10].

In our study, the ATL-based tool exhibited limitations attributable to its underlying
approach, translating into deviations from reference screws, which exceeded interrater vari-
ance for manual planning and led to the necessity for manual revision of screw suggestions
in 55% of cases (Tables 2 and 3). Particularly, anterior screw breaches were an issue in 35%
of ATL-planned screws (Figure 4B). Given concordant deviations from the reference found
for head and tip points (7.77 ± 3.65 mm and 7.81 ± 4.75 mm, respectively) along with the
clinically insignificant difference in suggested screw length of <1 mm, this could reflect
issues in atlas coregistration, imposing a positional offset on an otherwise correctly dimen-
sioned screw. In cases with pedicular screw breaches (41/256 screws, 16%), this affected
both pedicles of a segment in 73% of respective cases in ATL planning. This points in the
same direction, suggesting an image-to-atlas offset triggering bilateral screw misplacement
(Figures 4B and 5(A2)). Since a commercial system was used for ATL planning in this study,
no data on coregistration accuracy achieved in our cohort could be extracted for further
analysis or comparison to data from the literature [8,10].

4.2. Deep-Learning-Based Planning

Our group previously described a novel deep-learning-based approach to pedicle
screw planning, which implicitly learned screw placement from a large reference data set of
expert labeled screws [11]. In line with our results from the initial publication, we achieved
comparable screw accuracy results in the current cohort for DL planning regarding overall
performance in 3D-quantitative evaluation of respective screw directions, head and tip
points and also qualitative screw evaluation according to GR. This corroborates our initial
finding that DL-based planning can be regarded as noninferior to manual planning in a total
of 386 screws in two randomly selected surgical cohorts [11] (Figures 4 and 5). Nevertheless,
we determined DL plans to require revision in 15 screws (6%) of cases due to violations of
the proximal facet joints, which predominantly affected the L5 vertebra in 12/15 screws
(80%) in our current study (Figure 4B). The segmental accentuation of misplacement hints
at an inherited error originating from biased initial training data of the algorithm, which
is a known issue in training of deep-layered networks [23]. Training data was derived
from real surgical planning data, where screw placement in the vicinity of the facet at
L5 was individually tolerated reflecting the surgical decision weighting an ideal screw
trajectory against technical feasibility and invasiveness during the procedure [11]. While
the clinical relevance of isolated facet violations is equivocal, its association to adjacent
segment degeneration should lead to a refinement of the DL algorithm to eliminate this
sole issue triggering revisions in this series and to carefully spare facets in the future [20].

Even though current DL planning results are promising, the decision process of the
algorithm towards screw suggestions cannot be reconstructed. Since this is a common issue
for appliance of deep-learning in medicine, future work should focus on explainability
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measures to develop insights into the decision process and to reassure results for surgical
decision making [24].

4.3. Greater Robustness of DL Method

The evaluation of susceptibility of automatic planning tools to different amounts of
altered spinal anatomy and alignment was a focus of this study. From technical aspects,
DL-based approaches are expected to show greater robustness to structural variations of
the vertebras, since DL does not rely on explicitly defined constraints, the identification of
geometric components or atlas-based modeling [8,9,25,26]. Our findings could corroborate
this hypothesis showing robust screw proposals throughout all three categories of altered
spinal anatomy encompassing degenerative disease, spine fractures, spondylolisthesis and
degenerative deformity of the lumbar spine (Figure 3).

For ATL planning, we anticipated an increase of screw deviations from the reference
along with increasing anatomic complexity. However, we observed screw suggestions
of comparable accuracy throughout all subgroups. This can be explained by a positive
selection bias after failure of a substantial number of screws, particularly affecting quan-
titative results in category III with highest anatomic complexity (Figure 3). This led to
exclusive analysis of successfully planned screws, which mitigated possible differences
between subgroups. Nevertheless, pronounced rates of planning failure in category III
unveiled the marked susceptibility of ATL-based planning in our study, which reflected
known limitations of the methodology [8,9,21,25,26] (Figure 5).

Failure of automatic screw planning, along with screw breaches, led to a significantly
higher necessity to manually revise screws in ATL. After all, this particularly accounted for
the poorer performance in comparison to DL in this analysis.

Mutual restrictions were observed for both methods at L5, causing all observed screw
breaches in DL (7/7) and 23/41 (56%) of breaches in ATL. This illustrates the unique
challenges of automatic planning for this segment. To improve performance at this level
for DL, the training of a segment-specific model could be evaluated instead of the general
lumbar spine model currently applied in the algorithm.

4.4. Limitations

Our study has limitations originating from its ex vivo design and experimental nature.
First, reported results were based on a representative but small data set of lumbar screws,
which limits the generalizability of our results to lumbar instrumentations or other spine
segments in general. To perform planning as close to reality as possible, we selected
cases from a retrospective database and adopted the initial surgical concepts for simulated
planning. Both surgeons involved in manual planning were highly familiarized with
navigated instrumentation. While this warranted high quality manual planning in our
study, interrater variance may be higher than reported in other surgeons and/or setups [21].

This study sought to incorporate different levels of anatomical complexity to evaluate
robustness of automatic planning tools. While the stratification performed in this anal-
ysis was sufficient to generally elucidate increased robustness of DL over ATL towards
anatomical variation, heterogeneity of pathologies and variation of surgical concepts with
regards to the number of spinal segments addressed were a limitation to generalizability
of our results. Specifically, the impact of certain conditions (e.g., increasing degree of
spondylolisthesis) on screw planning accuracy could not be further quantified for both
automatic planning tools in this study. Further evaluation in matched cohorts for different
degrees of specific spine diseases is needed to corroborate data on robustness found in
this study.

5. Conclusions and Outlook

ATL-based planning was able to produce screw suggestions that frequently needed
manual corrections prior to implantation due to methodological constraints, making ATL-
based approaches susceptible to anatomic variability. Nevertheless, ATL can contribute
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to more efficient surgical workflows by expediting the planning process in comparison to
manual screw planning from scratch.

DL-proposed screws were comparable to expert-planned screws and exhibited higher
general robustness to anatomic alteration in this study. This makes DL a highly promising
approach to fully automate planning for navigated or robotic spine procedures, where the
remaining manual interaction could be the confirmation of generated screw plans by the
surgeon for liability reasons.

Beyond that, the DL framework enables incorporation of additional neural layers
to enhance various aspects of screw planning. For instance, consideration of local bone
mineral density could be used for optimization of screw dimensions and trajectory to
maximize fastening strength. This could further translate into improved clinical results
based on optimized and patient-specific surgical planning in the future [7,27].
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