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Abstract: Objective: Intracerebral hemorrhage (ICH) has a high mortality and long-term morbidity
and thus has a significant overall health–economic impact. Outcomes are especially poor if the exact
onset is unknown, but reliable imaging-based methods for onset estimation have not been established.
We hypothesized that onset prediction of patients with ICH using artificial intelligence (AI) may be
more accurate than human readers. Material and Methods: A total of 7421 computed tomography
(CT) datasets between January 2007–July 2021 from the University Hospital Basel with confirmed ICH
were extracted and an ICH-segmentation algorithm as well as two classifiers (one with radiomics, one
with convolutional neural networks) for onset estimation were trained. The classifiers were trained
based on the gold standard of 644 datasets with a known onset of >1 and <48 h. The results of the
classifiers were compared to the ratings of two radiologists. Results: Both the AI-based classifiers
and the radiologists had poor discrimination of the known onsets, with a mean absolute error (MAE)
of 9.77 h (95% CI (confidence interval) = 8.52–11.03) for the convolutional neural network (CNN),
9.96 h (8.68–11.32) for the radiomics model, 13.38 h (11.21–15.74) for rater 1 and 11.21 h (9.61–12.90)
for rater 2, respectively. The results of the CNN and radiomics model were both not significantly
different to the mean of the known onsets (p = 0.705 and p = 0.423). Conclusions: In our study, the
discriminatory power of AI-based classifiers and human readers for onset estimation of patients with
ICH was poor. This indicates that accurate AI-based onset estimation of patients with ICH based
only on CT-data may be unlikely to change clinical decision making in the near future. Perhaps
multimodal AI-based approaches could improve ICH onset prediction and should be considered in
future studies.

Keywords: artificial intelligence; onset prediction; intracerebral hemorrhage; machine learning

1. Introduction

Intracerebral hemorrhage (ICH) has an incidence of 10–30 per 100.000 people per year
worldwide [1,2]. The by far most common form is spontaneous primary ICH, caused by
rupture of small intraparenchymal arterial vessels and arterioles caused by preexisting
vascular damage in the setting of chronic arterial hypertension or amyloid angiopathy [3].
Compared with ischemic strokes, hemorrhagic strokes have a higher morbidity, and an over-
all mortality of more than 30% in the first 30 days [3–5]. Moreover, half of ICH-associated
mortality occurs during the first 24 h after the initial event [6], and a poor outcome with
persistent physical impairment in 75% of all patients after 1 year [7]. Therefore, ICH results

J. Clin. Med. 2023, 12, 2631. https://doi.org/10.3390/jcm12072631 https://www.mdpi.com/journal/jcm

https://doi.org/10.3390/jcm12072631
https://doi.org/10.3390/jcm12072631
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://orcid.org/0000-0002-8712-5759
https://orcid.org/0000-0003-0521-4051
https://orcid.org/0000-0002-3028-0539
https://doi.org/10.3390/jcm12072631
https://www.mdpi.com/journal/jcm
https://www.mdpi.com/article/10.3390/jcm12072631?type=check_update&version=1


J. Clin. Med. 2023, 12, 2631 2 of 9

in a significant financial burden on the health care system due to the long-term treatment
that is often required [8–10].

In many patients diagnosed with ICH by imaging, the exact onset is unknown [11].
However, therapeutic and triage decisions are based on factors such as the likelihood of
rebleeding, brain edema, and herniation which are associated with the time since onset
of the bleeding [12]. Thus, it has been shown that functional outcomes after 30 days are
significantly worse in patients with unclear onset compared to patients with a known
onset [13]. Possible treatment strategies [14] such as blood pressure reduction [15–17],
neurosurgical evacuation [18], and application of tranexamic acid [19] may reduce the
risk of hematoma expansion associated with neurological deterioration leading to poor
outcomes and death [12,20]. Even though promising manual [12,20–22] and machine
learning based algorithms have been developed and tested to predict the risk of hematoma
growth and functional outcomes [23], to our knowledge there is no study that tested
the reliability of machine-learning algorithms for onset estimation of patients with ICH
based on imaging features. An AI-based approach is therefore particularly interesting
and promising, as it can detect image information that may be hidden or primarily not
obvious and use it for analysis processes. This opens new possibilities for data analysis.
In recent years, AI-based applications have increasingly found their way into clinical
routine, especially in the field of radiology [24,25]. For example, the automated detection
of pulmonary artery emboli in CT scans of the thorax [26] or the detection and volumetry
of ICH in CT scans of the head [27–29].

Therefore, we hypothesized that onset estimation in patients with ICH using machine
learning may be feasible and may be more accurate than human readers.

2. Methods
2.1. Study Design

This study includes all consecutive patients diagnosed with ICH by computed tomog-
raphy (CT) at the University Hospital Basel between January 2007–July 2021. Patients were
identified using a self-programmed tool for internal Picture Archiving and Communication
System (PACS)-based data retrieval (PACS crawler). Further inclusion criteria were being
an age > 17 years at the timepoint of imaging and having a known onset of symptoms.
Patients who had declined the use of personal data for research purposes were excluded.

2.2. Data Processing, Classifier Training and Image Assessment

CT datasets were exported to a research server (NORA Imaging Platform, Freiburg,
Germany [10.1055/s-0037-1602977]). Manual segmentation of the hematoma in 1 mm thick
axial slices (soft tissue window) was performed in a random subset of 319 CT datasets to
train an algorithm for automatic ICH segmentation. All other CT datasets were segmented
using the trained classifier (as described below).

Clinical data including time points of symptom onset were extracted from patients’
clinical records.

For the automated segmentation of ICHs, we trained a nnU-Net on our manually
annotated dataset [https://arxiv.org/abs/1809.10486, accessed on 10 September 2021]
[10.1038/s41592-020-01008-z]. nnU-Net is a medical segmentation framework, which
automatically configures the data preprocessing as well as the hyperparameters for training
a U-Net. It can derive heuristics for optimally setting the data preprocessing parameters
(e.g., normalization and resampling) as well as the U-Net configuration (e.g., number of
layers and batch size) based on the characteristics of the input dataset. Furthermore, it
performs extensive data augmentations (image rotation, blurring, etc.). On more than
20 public imaging segmentation challenges, this automatically configured segmentation
pipeline was superior to other submissions. For this reason, the nnU-Net was used for the
ICH segmentation.

For estimation of the onset of the patients with ICH, two different algorithms were
tested: 1. Regression trees with radiomics features (Radiomics). 2. Convolutional neural

https://arxiv.org/abs/1809.10486
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network (CNN). The classifiers were trained based on the gold standard of 644 datasets
with (a) a known onset of >1 h and <48 h and (b) a hematoma volume of >15 mm3 (see
flowchart in Figure 1). Criterion (a) was defined to include only acute to subacute ICHs
in the training dataset as therapeutic and triage decisions are particularly relevant in this
time frame. Criterion (b) was defined because a cut-off of >15 mm3 provided reliable
automated ICH-segmentation. A 5-fold cross-validation was used for evaluation. No extra
validation set for hyperparameter optimization was used since only standard models and
hyperparameters were used.
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Figure 1. Flowchart of inclusion of patients. Overview study design: On a subset of the original study
population (1.) a hematoma segmentation model is trained (2.) which is used to generate hematoma
segmentations for the entire study population (3.) Then, the radiomics-, CNN-, and human-based
age prediction is performed (4.) (MAE: Mean absolute error; CNN: Convolutional Neural Network,
nnU-Net: Neural network for semantic segmentation).

The radiomics approach consisted of 32 radiomics features (14 shape features: elon-
gation, flatness, least axis length, major axis length, max 2d diameter column, max 2d
diameter row, max 2d diameter slice, max 3d diameter, mesh volume, minor axis length,
sphericity, surface area, surface volume ratio, voxel volume; 18 first order intensity features:
10th percentile, 90th percentile, energy, entropy, interquartile range, kurtosis, maximum,
mean absolute deviation, mean, median, minimum, range, robust mean absolute de-
viation, root mean squared, skewness, total energy, uniformity, variance), which were
extracted from the CT images and the ICH segmentation using pyradiomics [10.1158/0008-
5472.CAN-17-0339]. Those features were used to train a gradient boosted regression tree
using XGBoost [https://doi.org/10.1145/2939672.2939785, accessed on 10 September 2021]
(learning rate 0.01, number of trees 200, maximum depth 2. For the CNN approach, a
3d convolutional neural network regressor was trained. As architecture the CBR-tiny
model from [https://papers.nips.cc/paper/2019/hash/eb1e78328c46506b46a4ac4a1e378
b91-Abstract.html, accessed on 10 September 2021] was used by replacing the 2D convo-
lutions by 3D convolutions (network architecture: 4 sequential blocks of Convolution +
BatchNorm + MaxPooling followed by adaptive average pooling and a fully connected
layer). To improve the model performance, it was pretrained on a large dataset with an
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auxiliary task: on 7421 CT images containing ICHs the network was trained to predict
the volume of the ICH (Figure 1). The volume was derived from the ICH segmentation
generated by our segmentation model. After this first training, the model was finetuned on
the estimation of onset task. For training, the following hyperparameters were used: batch
size 8, learning rate 0.0005, number of epochs 15, learning rate decay to 0 over the entire
training with cosine scheduler.

For both the segmentation as well as the onset prediction, a 5-fold cross-validation
was used for evaluation.

In addition, a random subset of 117 CT datasets (Figure 1) was selected from the
training dataset and analyzed by two radiologists (4 and 5 years of experience in ICH
interpretation) regarding hemorrhage age based on their clinical–radiological experience
and secondary factors (perifocal edema: relatively large edema = advanced bleeding age;
Hounsfield Units (HU): acute bleeding approximately 60–70 HU, approximately 2 HU
drop per 24 h). The hemorrhage age was given in hours. An interrater comparison and a
comparison with the results of the AI-based age prediction were performed.

2.3. Statistics

For the calculation of confidence intervals, we used bootstrapping with 10,000 random
permutations and for the comparison of human raters as well as of the AI algorithms with
the baseline we used Wilcoxon signed-rank test since our data has no normal distribution as
tested with a Kolmogorow–Smirnow test. Results with p < 0.05 were considered statistically
significant. A paired test was used since different methods were compared on the same
patients. All statistical analyses were performed with python 3.8.

3. Results
3.1. Study Cohort

The PACS crawler query for patients diagnosed with ICH by CT between January
2007–July 2021 yielded a total of 7733 subjects. Of these, 312 subjects did not have consent
for the use of patient-related data for research purposes. Of the remaining 7421 subjects,
6121 had no or only an incomplete admission records with information on the symptom
onset and thus no identifiable gold standard. Of the remaining 1300 datasets, 644 subjects
fulfilled the final inclusion criteria (blood volume > 15 mm3 and onset > 1 h and <48 h) and
thus were used for the training model. The study workflow is summarized in Figure 1.

3.2. Onset Estimation of Classifiers and Human Raters

Both the AI-based classifiers and the radiologists had poor discrimination of the known
onsets, with a mean absolute error (MAE) of 9.77 h (95% CI (confidence interval) = 8.52–11.03 h)
for the convolutional neural network (CNN), 9.96 h (8.68–11.32 h) for the radiomics model,
13.38 h (11.21–15.74 h) for human rater 1 and 11.21 h (9.51–12.90 h) for rater 2, respectively
(see Table 1).

Table 1. Results of human raters and machine learning classifiers for onset estimation of patients
with intracerebral hemorrhage.

Mean Absolute Error
(MAE) in h

95% Confidence
Interval (CI)

Rater 1 13.38 11.21, 15.74
Rater 2 11.21 9.51, 12.90
CNN 9.77 8.52, 11.03

Radiomics 9.96 8.68, 11.32
Mean of known onset in entire cohort 9.81 8.62, 11.06

MAE in hours and confidence interval (95%) for human raters and AI-based models (CNN and Radiomics)

Rater 1 and rater 2 were both significantly more inferior than the mean of the known
onsets (p = 0.006 and p = 0.045, respectively). The results of the CNN and Radiomics
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model were both not significantly different to the mean of the known onsets (p = 0.705
and p = 0.423). The intraclass correlation between rater 1 and rater 2 was poor (intraclass
correlation coefficient, ICC = 0.251).

4. Discussion

Our study shows that both human raters and machine learning algorithms only have
poor discriminatory power to estimate the onset of patients with intracerebral hemorrhage
based on CT imaging features.

This may be partially explained by the nature and course of the disease. It is known
that acute ICH may show mixed densities on CT, representing blood of different
ages [20–22,30,31]. Thus, onset estimation based on density in CT may be misleading.
Another feature, perihematomal edema, is known to progress over time but also depends
on other factors such as anticoagulation status [32]. Further, several other factors such as
patient age [33], anticoagulation medication [34], and blood pressure [35] are also known
factors that impact imaging appearance of ICH beyond time. Regarding the manual rat-
ings available studies have shown promising interrater agreements for ICH shape and
density features [36,37]. However, so far, no published studies have found a rating based
or machine learning algorithm that could reliably determine the onset of ICH patients with
unknown symptom onset.

Even though currently limited, therapeutic and triage decisions are based on factors
such as the likelihood of rebleeding, brain edema and herniation which are associated
with the time since onset of the bleeding [12]. Possible treatment strategies include blood
pressure reduction [13,14], neurosurgical evacuation [16], and application of tranexamic
acid [17,38], which may reduce the risk of hematoma expansion associated with neurologi-
cal deterioration leading to poor outcomes and death [12,20]. These current approaches
target hematoma expansion which is more likely to occur in the earlier time window [36].
In this context, prediction of the onset in patients with ICH and unknown onset may have
had a great clinical relevance; however, the mean error of almost 10 h is probably too
imprecise to be used for clinical decision making. Instead, other features that are likely to
identify the risk of hematoma expansion will probably be used as an alternative. Also, for
the prediction of hematoma growth and functional outcomes, machine learning algorithms
have shown promising accuracy [23], most likely because several other features that can be
extracted from imaging determine outcomes more than time since onset.

Our study has several limitations. First, the underlying ground truth (gold standard)
of the timepoint of onset—on which the manual ratings and machine learning classifier are
based—may be imprecise in some cases. Basically, the quality of the ground truth is a very
important parameter for the performance and accuracy of an AI-based model. In other
words, the AI model is only as good as the quality of the data on which it is based. Since
the exact onset of ICH in our cohort could only be determined very imprecisely in part
and depended on many factors (medical history, report by emergency physician, unclear
clinical symptoms), the ground truth on which our AI-based model is based is also relatively
imprecise. This was also supported by the fact that, considering the bleeding age of our
total cohort, no decrease in density values (Hounsfield Units) could be reliably delineated
over time (Figure 2). However, improving ground truth in general is problematic, as the
exact onset of an ICH can never be determined with absolute certainty and will always be
relatively inaccurate due to factors mentioned above.

In general, the acuity of clinical symptoms may be comparable to ischemic strokes,
where reported symptom onsets are used for several studies that validated imaging-based
approaches for onset estimation [39–43]. Second, it may be argued that a larger number of
patients for training and validation of the classifier may have yielded more accurate results.
Basically, the larger the dataset on which the algorithm is trained, the better AI-based
methods perform. In other words, the data size of the cohort is a crucial factor. Some
studies have shown that when the data size is very large, AI-based algorithms perform
equally well or even better than the expert, for instance human rater [44]. In our training



J. Clin. Med. 2023, 12, 2631 6 of 9

data set, only 644 subjects were included for the ICB onset estimation. It would therefore
be interesting to see whether the results could be significantly changed or improved by
including a significantly larger number of subjects. However, the current study already
uses a comparably large dataset, and the results were still far from being clinically useful.
Third, we must note that an average density (Hounsfeild Units) decrease of acute ICH
would be expected over the time [45,46]. However, this is a crude measurement when
used for shorter timespans of a few hours. Moreover, ICH often consists of blood of mixed
densities which may bias the results even more [36]. Based on these factors and the above-
mentioned results, it can be assumed that the information content of the CT scans in which
ICH could be diagnosed does probably not contain or cover the information we are looking
for (ICH onset). In our example, the human raters were also unable to read the bleeding
age (onset time) from the CT dataset more accurately than approximately ±10 h. For this
reason, this information probably does not exist sufficiently in the image. Conversely, if the
human rater already cannot confidently read out the information, the AI-based approach
probably cannot either. In this context, only the analysis of extremely large and perfectly
annotated datasets would be promising (see discussion above). Fourth, we did not use
multimodal data for our AI-based approach, but only CT-based data. However, for ICH
onset prediction, other data such as perfusion indicators [47], hemodynamic metrics [48],
morphology and anatomical differences of intracranial arterial vessels especially with
regard to microvascular collateral circulation [49,50] or CT-derived secondary hemody-
namic parameters, and laboratory test results could be used and even combined. Such a
multimodal AI-based approach could again significantly improve ICH onset prediction
and should be considered in future studies.
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5. Conclusions

In our study, the discriminatory power of AI-based classifiers and human readers
for onset estimation of patients with ICH was poor. This indicates that accurate AI-based
onset estimation of patients with ICH based only on CT data may be unlikely to change
clinical decision making in the near future. Perhaps multimodal AI-based approaches could
improve ICH onset prediction and should be considered in future studies.
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AI Artificial intelligence
CI Confidence interval
CT Computed tomography
GCS Glasgow coma scale
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IVH Intraventricular hemorrhage
mRS Modified ranking scale
MAE Mean absolute error
MRI Magnetic resonance imaging
OAC Oral anticoagulants
PACS Picture Archiving and Communication System
HU Hounsfield Unit
RIS Radiological Information System
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