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Abstract: Targeted temperature management (TTM) is often considered to improve post-cardiac
arrest patients’ outcomes. However, the optimal timing to initiate cooling remained uncertain. This
retrospective analysis enrolled all non-traumatic post-cardiac arrest adult patients with either out-of-
hospital cardiac arrest (OHCA) or in-hospital cardiac arrest (IHCA) who received TTM from July 2015
to July 2021 at our hospital. The values of time delay before TTM and time to target temperature were
divided into three periods according to optimal cut-off values identified using receiver operating
characteristic curve analysis. A total of 177 patients were enrolled. A shorter time delay before TTM
(pre-induction time) was associated with a lower survival chance at 28 days (32.00% vs. 54.00%,
p = 0.0279). Patients with a longer cooling induction time (>440 minis) had better neurological
outcomes (1.58% vs. 1.05%; p = 0.001) and survival at 28 days (58.06% vs. 29.25%; p = 0.006). After
COX regression analysis, the influence of pre-induction time on survival became insignificant, but
patients who cooled slowest still had a better chance of survival at 28 days. In conclusion, a shorter
delay before TTM was not associated with better clinical outcomes. However, patients who took
longer to reach the target temperature had better hospital survival and neurological outcomes than
those who were cooled more rapidly. A further prospective study was warranted to evaluate the
appropriate time window of TTM.

Keywords: in-hospital cardiac arrest; out-of-hospital cardiac arrest; postcardiac arrest syndrome;
targeted temperature management; timing

1. Introduction

Targeted temperature management (TTM) has been the standard approach to improve
postcardiac arrest outcomes for years [1,2]. However, several issues have yet to be clar-
ified, including the optimal time to initiate cooling and the speed of reaching the target
temperature. Almost all animal studies suggest that early interventions can improve survival
and neurological outcomes [3]. However, human studies have shown that “the sooner the
better” is not always the correct approach, especially if TTM is initiated during the arrest [4,5].
In addition, whether a shorter time delay between the return of spontaneous circulation
(ROSC) and initiation of TTM is preferable also remains controversial, although most studies
suggest that a shorter delay may be better [6–9]. In addition, some studies have reported
that a faster cooling rate during TTM may be beneficial [7–10] for postcardiac arrest patients
because of theoretical reasons [11] and variable cooling device efficiency [12]. However, other
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studies [13–15] have reported opposite results. Furthermore, some studies have shown that
maintenance of afebrile instead of aggressive cooling does not lead to worse outcomes in
these patients [16,17]. Our institution has adopted TTM for a number of years and previously
reported the outcomes of TTM for out-of-hospital cardiac arrest (OHCA) [18] and in-hospital
cardiac arrest (IHCA) [19] patients. The aim of this study was to analyze whether the timing
and rate of TTM would modify the outcome of these patient groups.

2. Materials and Methods
2.1. Study Design

In this retrospective analysis, we enrolled all nontraumatic adult ROSC patients with
either OHCA or IHCA who received TTM at Mackay Memorial Hospital (MMH) Taipei
and Tamsui branches, Taiwan, from July 2015 to July 2021. The exclusion criteria were as
follows: (1) those aged < 18 years; (2) those who died within 24 h after ROSC; (3) those who
suffered from traumatic cardiac arrest; and (4) those who didn’t receive TTM. The study
plan was reviewed and approved by the Institutional Review Board of MMH (approval
reference No. 21MMHIS012e). The requirement for informed consent was waived because
of the retrospective nature of the study.

2.2. Protocol Description

At MMH, every comatose ROSC patient admitted to the intensive care unit is con-
sidered a potential candidate for TTM. Permission for TTM is obtained from the patient’s
next of kin. TTM was performed in accordance with the standard protocol at MMH
(Supplement S1). Briefly, TTM was initiated with 4 ◦C Ringer’s lactate solution (30 mL/kg)
given through an intravenous route, followed by wrapping the patient’s body in a surface
cooling blanket (Arctic Sun Model 2000/5000, Medivance, Louisville, CO, USA) for 24
or 48 h. The targeted temperature is set at 33 ◦C. After the preset hypothermia phase
was completed, the patients received controlled rewarming at a rate of 0.15 ◦C/h until
36.5 ◦C was reached. Active temperature management with medications to prevent fever
(>37.2 ◦C) is allowed for another 24 h. Magnesium sulfate is routinely given to prevent
shivering during the hypothermia phase. Propofol, fentanyl, and cisatracurium can be
given according to the preference of the physician in charge.

2.3. Data Collection and Outcome Assessment

Data includes the patient’s age, sex, arrest type (IHCA or OHCA), whether or not
the arrest was witnessed, presence of bystander chest compression, rhythm type when
the emergency medical service staff arrived, epinephrine administration before ROSC,
defibrillation, first available body temperature during cardiac arrest, and body temper-
ature at the time of initiating cooling and end of cooling. The timing of the entire TTM
course was recorded, including no-flow time (the time from cardiac arrest to initiation of
cardiopulmonary resuscitation), low-flow time (the time from CPR to ROSC), pre-induction
time (time from ROSC to initiation of cooling), and induction time (time from initiation of
cooling to the achievement of the target temperature) (Figure 1A).

Two clinical outcomes were used in this study, namely, 28-day survival and neuro-
logical outcomes. Associations of induction time and rate of cooling with the two clinical
outcomes were the secondary outcomes. Neurological outcomes were evaluated using
the Cerebral Performance Category (CPC) scale as follows: category 1, good cerebral per-
formance; category 2, moderate cerebral disability; category 3, severe cerebral disability;
category 4, coma or vegetative state; and category 5, death/brain death. A CPC score of
3–5 was defined as a poor neurological outcome [20,21].
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Figure 1. (A) Illustration of the time course from cardiac arrest to TTM. (B) Flowchart of patient inclu-
sion and exclusion in the study. Abbreviations: CPR: cardiopulmonary resuscitation; ICU: intensive
care unit; IHCA: in-hospital cardiac arrest; OHCA: out-of-hospital cardiac arrest; PCAS: post–cardiac
arrest syndrome; ROSC: return of spontaneous circulation; TTM: targeted temperature management.

2.4. Statistical Analysis

Differences in baseline demographics between the survivors and non-survivors were
analyzed using Pearson’s chi-squared test for categorical variables (presented as n (%)) and
the t-test for continuous variables (presented as the mean ± SD). The Mann–Whitney U test
was used for nonnormally distributed variables (presented as the median (interquartile
range)). The pre-induction time and induction time were divided into three periods
according to two optimal cut-off values identified using receiver operating characteristic
(ROC) curve analysis [22–24]. The rate of cooling was calculated by dividing the difference
between the temperature at ROSC and 33 ◦C by the time interval. The log-rank test was
used for time-to-event analysis to compare differences in the survival probability between
three groups of pre-induction and induction time. We also performed univariant and
multivariant Cox regression models. All variables with p < 0.05 in the univariate Cox
regression model were considered confounders and were included in the multivariant Cox
regression model. All statistical tests were two-tailed, and p-values < 0.05 were considered
statistically significant. Data extraction and processing were performed using SAS version
9.4 (SAS Institute Inc., Cary, NC, USA).



J. Clin. Med. 2023, 12, 2628 4 of 14

3. Results
Population, Demographics, Arrest Characteristics

There are 213 nontraumatic cardiac arrest patients admitted to the intensive care unit
and assessed. There are two patients excluded due to being less than 18 years old and
34 patients excluded from TTM treatment based on the criteria of our protocol. Finally,
177 PACS patients were enrolled, of whom 136 (76.8%) had OHCA and 41 (23.2%) had
IHCA. (Figure 1B). Overall, 68 (38.42%) patients survived, and 109 (61.58%) patients
died. There were no significant differences in 28-day survival (Supplement S2A–C) or
neurological outcomes between the IHCA and OHCA groups (Supplement S3A–C). Besides,
116 patients (65.53%) underwent TTM for 24 h, and 61 patients (36.47%) underwent TTM
for 48 h. Survival at 28 days was not significantly different in the 24-h group than in the
48-h group (57.76% vs. 54.10%, p = 0.8878).

The survivors had a significantly lower Acute Physiology and Chronic Health Evalu-
ation (APACHE II) score (30.13 ± 6.29 vs. 32.62 ± 7.07, p = 0.0189), shorter no/low flow
time (23.32 ± 20.71 vs. 39.97 ± 54.04 min, p = 0.0048), a slower rate of cooling (0.33 ± 0.18
vs. 0.42 ± 0.28◦C/h, p = 0.0097) and longer time from cardiac arrest to target tempera-
ture (728.5 ± 363.85 vs. 614.79 ± 296.65 min, p = 0.0254) (Table 1). Twenty-five (15.52%)
patients had good neurological outcomes, while 136 (84.47%) patients had poor neurologi-
cal outcomes. The patients with good neurological outcomes were significantly younger
(57.96 ± 13.59 vs. 66.02 ± 14.3 years. p = 0.0068), lower APACHE II score (27.4 ± 5.85 vs.
32.2 ± 6.66, p = 0.0007), shorter no/low flow time (20.52 ± 21.39 vs. 37.18 ± 49.47 min,
p = 0.0107), longer induction time (350 ± 224.25 vs. 259.79 ± 223.95 min, p = 0.0225), higher
body temperature at ROSC (36.34 ± 0.98 vs. 35.79 ± 1.34 ◦C, p = 0.0499), and higher body
temperature at the start of cooling (36.68 ± 1.15 vs. 35.65 ± 1.56 ◦C, p = 0.0023) compared
to the patients with poor neurological outcomes (Table 2).

Table 1. Comparisons of the survivors and non-survivors at day 28 with IHCA/OHCA.

Total n (%)

Non-Survivors
(n = 109)

Survivors
(n = 68)

p
OHCA
(n = 76)

IHCA
(n = 33)

OHCA
(n = 60)

IHCA
(n = 8)

Age (mean, std), years 65.55 (15.10) 67.25 (15.03) 62.83 (14.09) 0.0581

Sex, Male (number, percentage) 109 (61.58) 68 (62.39) 41 (60.29) 0.7807

APACHE II (mean, std) 31.67 (6.70) 32.62 (7.07) 30.13 (6.29) 0.0189

Rate of cooling, ◦C/h (mean, std) 0.39 (0.25) 0.42 (0.28) 0.33 (0.18) 0.0097

BT at cardiac arrest, min (mean, std) 36.23 (1.20) 36.25 (1.20) 36.19 (1.21) 0.7495

BT at ROSC, min (mean, std) 35.87 (1.31) 35.72 (1.39) 36.1 (1.13) 0.0674

BT at start of cooling, min (mean, std) 35.79 (1.55) 35.61 (1.62) 36.07 (1.40) 0.0539

From CPR to ROSC, min
(no/low flow time) (mean, std) 33.46 (44.77) 39.97 (54.04) 23.32 (20.71) 0.0048

From ROSC to initial cooling, min
(pre-induction time) (mean, std) 350.27 (216.72) 322.64 (174.08) 394.5 (267.0) 0.0510

From cooling to target, min
(induction time) (mean, std) 270.90 (229.53) 246.13 (229.27) 310.6 (225.9) 0.0690

Arrest to TTM target, min (mean, std) 659.22 (328.29) 614.79 (296.65) 728.5 (363.85) 0.0254

Abbreviations: OHCA: out-of-hospital cardiac arrest; IHCA: in-hospital cardiac arrest; APACHE II: acute physiol-
ogy and chronic health evaluation II; BT: body temperature; ROSC: return of spontaneous circulation; CPR: car-
diopulmonary resuscitation; TTM: targeted temperature management.
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Table 2. Comparisons of the patients with IHCA/OHCA with good and poor neurological outcomes
at day 28.

Good Neurological Function
(n = 25)

Poor Neurological Function
(n = 136)

p
OHCA
(n = 21)

IHCA
(n = 4)

OHCA
(n = 102)

IHCA
(n = 34)

Age, years, (mean, std) 57.96 (13.59) 66.02 (14.3) 0.0068

Sex, Male (number, percentage) 18 (72) 85 (62.5) 0.4948

APACHE II (mean, std) 27.4 (5.85) 32.2 (6.66) 0.0007

Rate of cooling, ◦C/h (mean, std) 0.015 (0.012) 0.0266 (0.036) 0.096

BT at cardiac arrest, min (mean, std) 36.47 (1.01) 36.26 (1.21) 0.6008

BT at ROSC, min (mean, std) 36.34 (0.98) 35.79 (1.34) 0.0499

BT at start of cooling, min (mean, std) 36.68 (1.15) 35.65 (1.56) 0.0023

From CPR to ROSC, min (no-low flow time)
(mean, std) 20.52 (21.39) 37.18 (49.47) 0.0107

From ROSC to initial cooling (min)
(pre-induction time) 401.84 (324.76) 346.85 (201.20) 0.239

From cooling to target, min (induction time)
(mean, std) 350 (224.25) 259.79 (223.95) 0.0225

Arrest to TTM target, min (mean, std) 772.36 (403.70) 648.40 (319.11) 0.107

Abbreviations: OHCA: out-of-hospital cardiac arrest; IHCA: in-hospital cardiac arrest; APACHE II: acute physiol-
ogy and chronic health evaluation II; BT: body temperature; ROSC: return of spontaneous circulation; CPR: car-
diopulmonary resuscitation; TTM: targeted temperature management.

ROC curve analysis was used to identify optimal cut-off values for pre-induction
time, which we then divided into three groups: 0–276 min, 276–390 min, and >390 min
(Supplement S4A). The rate of cooling was slower (0.50, 0.36, and 0.25◦C/h in the 0–276,
276–390, and >390 min groups, respectively, p < 0.001), survival was better (32.00%, 32.69%,
and 54.00%, p = 0.0279), and the mean CPC score was lower (4.40, 4.15, and 3.72, p = 0.0182)
in the longer pre-induction group (Table 3 A). However, after multivariate logistic regression
analysis, a pre-induction time > 390 min was associated with increased survival compared
to <276 min (adjusted odds ratio [AOR]: 2.41, 95% confidence interval [CI]: 1.14–5.08,
p = 0.02) (Table 3 B, Figure 2A,B).

Table 3. (A) Comparisons of the three pre-induction time groups. (B) Adjusted odds ratios of different
pre-induction times for survival and good neurological outcomes.

(A)

Pre-Induction Time
p0–276 Min

(n = 75)
276–390 Min

(n = 52)
>390 Min
(n = 50)

Age, years (mean, std) 67.5 (15.5) 63.2 (16.7) 65.2 (12.4) 0.2761

Gender, male (number, percentage) 48 (64.0) 31 (59.6) 30 (60.0) 0.8508

APACHE II score (mean, std) 32.13 (6.54) 32.83 (7.03) 30.77 (6.59) 0.2998

Rate of cooling (mean, std) 0.50 (0.31) 0.36 (0.16) 0.25 (0.13) <0.001

CPC score 28 days after cardiac arrest (mean, std) 4.40 (1.10) 4.15 (1.41) 3.72 (1.44) 0.0182

28-day survival (mean, std) 24 (32.00) 17 (32.69) 27 (54.00) 0.0279
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Table 3. Cont.

(B)

Time from ROSC to Cooling * (min) Odds Ratio 95% CI pValue

Odds ratios for survival

<276 1 (Reference group)

276–390 0.94 0.43–2.02 0.87

>390 2.41 1.14–5.08 0.02

Odds ratios for good neurological outcomes

<276 1 (Reference group)

276–390 1.55 0.51–4.75 0.44

>390 2.43 0.84–7.96 0.1

* Model adjusted for age, sex and time from ROSC to cooling. Abbreviation: APACHE: acute physiology and
chronic health evaluation II; CI: confidence interval; CPC: cerebral performance category; ROSC, return of
spontaneous circulation.
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Figure 2. Adjusted odds ratio plot for survival and good neurological outcomes. (A) Time from ROSC
to cooling for survival. (B) Time from ROSC to cooling for better neurological outcomes. (C) Time
from cooling to target for survival. (D) Time from cooling to target for better neurological outcomes.
Each black dots represent the odds ratio, and the horizontal line indicates the 95% confidence interval.
Abbreviations: ROSC, return of spontaneous circulation.

Similarly, we used ROC curve analysis to identify the optimal cut-off values for induc-
tion time, which we also divided into three groups: 0–260 min, 260–440 min, and >440 min
(Supplement S4B). The age was younger (68.1 ± 14.7, 62.9 ± 13.4, and 58.9 ± 16.2 years
in the 0–260, 260–440, and >440 min groups, respectively, p = 0.0030), the rate of cooling
was slower (0.48, 0.30, and 0.19 ◦C/h, respectively, p < 0.001), survival was better (29.25%,
47.50%, and 58.06%, respectively, p = 0.006), and the mean CPC score was lower (4.43,
3.85, and 3.48, respectively, p < 0.001), in the group of induction time > 440 min. The
mean APACHE II score (33.19, 28.62 and 30.35, respectively, p = 0.0003) was lower in
the 260–440 min induction time group (Table 4A). After multivariate logistic regression
analysis, an induction time of >440 min was associated with increased survival compared
to the <260 min group (AOR: 3.10, 95% CI: 1.32–7.30, p = 0.01). In addition, induction times
of 260–440 and >440 min were associated with higher rates of good neurological outcomes
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than induction times < 260 min (AOR: 3.17, 95% CI: 1.11–9.08, p = 0.03, and AOR: 3.10, 95%
CI: 1.02–9.63, p < 0.05, respectively) (Table 4B, Figure 2C,D).

Table 4. (A) Comparisons of the three induction time groups. (B) Adjusted odds ratios of different
induction times for survival and good neurological outcomes.

(A)

Induction Time
p0–260 Min

(n = 106)
260–440 Min

(n = 40)
>440 Min
(n = 31)

Age, years (mean, std) 68.1 (14.7) 62.9 (13.4) 58.9 (16.2) 0.0030

Gender, male (number, percentage) 62 (58.5) 24 (60.0) 23 (74.2) 0.2788

APACHE II score(mean, std) 33.19 (6.46) 28.62 (6.04) 30.35 (6.82) 0.0003

Rate of cooling (mean, std) 0.48 (0.28) 0.30 (0.12) 0.19 (0.10) <0.001

CPC score 28 days after cardiac arrest (mean, std) 4.43 (1.05) 3.85 (1.52) 3.48 (1.58) <0.001

28-day survival (mean, std) 31 (29.25) 19 (47.50) 18 (58.06) 0.0060

(B)

Time from Cooling to Target #(min) Odds Ratio 95% CI p Value

Odds ratio for survival
<260 1 (Reference group)

260–440 2.05 0.96–4.39 0.06
>440 3.10 1.32–7.30 0.01

Odds ratio for good neurological outcomes
<260 1 (Reference group)

260–440 3.17 1.11–9.08 0.03
>440 3.10 1.02–9.63 <0.05

Abbreviation: APACHE II: Acute Physiology and Chronic Health Evaluation II; CI: confidence interval; CPC: cere-
bral performance category. # Model adjusted for age, sex, and time from cooling to target.

In Kaplan–Meier analysis, the group with pre-induction time > 390 min had significantly
longer survival time compared to the group of 0–276 min in 28 days (p = 0.039) (Figure 3A),
while marginal longer survival time in 90 days and 180 days. (Supplement S5A,C). The
group with induction time > 440 min had significantly longer survival than the group of
0–260 min in 28 days (p < 0.001) (Figure 3B), 90 days (p = 0.001), and 180 (p = 0.001) days
(Supplement S5B,D). In Cox univariant regression model, pre-induction time, induction
time, age, initial rhythm, and APACHE II were significant and were considered confounders.
After multivariate analysis, only induction time > 440 min had a significantly lower hazard
ratio (0.382, 95% CI: 0.187–0.776, p = 0.008) to mortality through 28 days (Table 5).

Table 5. Univariant and multivariant Cox model results for mortality at 28 days.

Univariate Multivariate

Hazard ratio (95% CI) p Value Odds Ratio (95% CI) p Value

Pre-induction time
0–276 min 1 (Reference group) 1 (Reference group)

276–390 min 0.902 (0.572–1.423) 0.657 0.907 (0.570–1.444) 0.681
>390 min 0.594 (0.358–0.984) 0.043 0.636 (0.382–1.057) 0.081

Induction time
0–260 min 1 (Reference group) 1 (Reference group)

260–440 min 0.646 (0.389–1.072) 0.091 0.781 (0.458–1.332) 0.364
>440 min 0.304 (0.152–0.609) 0.001 0.382 (0.187–0.776) 0.008
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Table 5. Cont.

Univariate Multivariate

Hazard ratio (95% CI) p Value Odds Ratio (95% CI) p Value

Age 1.016 (1.002–1.030) 0.026 1.005 (0.990–1.021) 0.513
Sex, male 1.108 (0.741–1.655) 0.618
Witnessed 0.738 (0.493–1.104) 0.618

Initial rhythm, shockable 0.463 (0.267–0.802) 0.006 0.600 (0.336–1.071) 0.084
Basic life support 0.921 (0.539–1.574) 0.763

Duration of resuscitation effort 1.002 (0.998–1.006) 0.248
APACHE II 1.037 (1.007–1.067) 0.014 1.019 (0.986–1.053) 0.26

APACHE II: acute physiology and chronic health evaluation, CI: confidence interval.
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according to different pre-induction (A) and induction time (B).

4. Discussion

In this retrospective study of postcardiac arrest patients, we found that a faster drop
in body temperature during TTM was associated with worse outcomes, whereas a shorter
resuscitation time, slower cooling rate and lower APACHE II score at admission were
associated with better hospital survival. In contrast to previous reports, we found that
a shorter time delay before TTM and a faster rate of achieving the target temperature after
TTM did not lead to better clinical outcomes. Moreover, we found that a slower initiation
of TTM and a slower rate of reaching the temperature goal were associated with better
outcomes, at least until the 28th day after cardiac arrest.

Timing is a critical part of resuscitation, and delays in treatment, including patient
delay and prehospital system delay, have been shown to be major determinants of the
outcomes of ST-elevation myocardial infarction patients [25]. Reducing the time delay to
primary percutaneous coronary interventions among patients with ST-elevation myocardial
infarction, even by <60 to 90 min, has been shown to significantly improve outcomes [26].
TTM has been widely used for postcardiac arrest patients to improve hospital survival
and neurological outcomes in the last decade [1,2]. However, the optimal timing remains
uncertain. The mechanisms of hypothermia can mitigate brain injury at multiple levels,
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including the ability to reduce cerebral metabolism by 6–10% for each 1 ◦C reduction in
body temperature [11,27]. This is thought to be the main protective effect since oxygen
deprivation, and the accumulation of excitatory neurotransmitters play a significant role in
cell death after cerebral ischemia. Another important effect is the suppression of inflamma-
tory responses and associated free radical production during ischemia and repercussion
injury [11]. Some experimental studies have suggested that hypothermia can mitigate the
activation of apoptosis [28,29]. White et al. reported increased levels of arterial neuroprotec-
tion D1 in animal cardiac arrest models after 3 h of resuscitation, [30] and the level was three
times higher in hypothermic animals. Accordingly, the early implementation of TTM after
cardiac arrest, and even during arrest, has been shown to be beneficial, at least in animal
studies [9,31]. Sendelbach et al. reported that the odds of a poor neurological outcome
increased with each 5-min delay in initiating TTM (OR = 1.06, 95% CI 1.02–1.10) [9]. In a
post hoc analysis of nontraumatic OHCA patients, Stanger et al. found better neurological
outcomes in the early door-to-TTM group (<122 min, 48% and 38%, respectively) [32].
However, early TTM in human trials has not always shown positive results. The PRINCESS
trial reported that intra-arrest cooling initiated <20 min from the collapse was not associ-
ated with better neurological outcomes compared to cooling initiated at the hospital [33].
Moreover, Bernard et al. found that patients with prehospital cold fluid infusion tended to
have worse outcomes [6]. In the present study, we found that the delayed initiation of TTM
was associated with a higher short-term survival rate than a shorter pre-induction time,
but there were no significant differences in good/poor neurological outcomes between the
groups. Further studies are warranted to investigate these conflicting results.

Some animal studies have suggested that a pre-induction delay did not significantly
influence the outcomes of TTM [34,35]. Apoptosis can develop later during the postper-
fusion phase and continue for at least 48 h, [29,36] which suggests a wide window of
opportunity to mitigate this pathway. Lawrence et al. reported that the neuroprotective
effect of hypothermia is both optimal and equivalent when initiated between 1 and 8 h
after reoxygenation [37]. Che et al. also reported that a delay of up to 4 h did not signifi-
cantly influence outcomes [38]. In a human study, Perman et al. reported no significant
difference in pre-induction time between patients with good versus poor outcomes [14].
Our results showed that patients with a shorter pre-induction delay (<276 min) had a
nearly two-fold higher risk of death than those with a delay > 390 min. This suggests
that while hypothermia has a wide spectrum of pathophysiologic protective mechanisms,
there may also be deleterious effects. Singh et al. reported that hypothermia might protect
against conditions that generate reactive oxygen and nitrogen species and that this may
decrease the activity of cellular antioxidant defenses to attenuate the benefits of TTM [39].
A previous observational study also suggested that if TTM was started within 2 h of cardiac
arrest, the mortality rate was higher than if TTM was started later [40]. Since TTM may
have limited benefits after 12 h due to irreversible damage to nerve cells, [41] there may
be an optimal time frame to initiate TTM after ROSC. Our results suggest this possibility;
however, further investigations are needed for verification.

Several studies have suggested that the clinical benefits of TTM in postcardiac arrest
patients depended on whether the temperature target was achieved rapidly [7–10]. How-
ever, other studies have reported opposite results. In a retrospective study, Haugk et al.
found that cooling to 34 ◦C or below was slower (median time: 209 min) in patients with
favorable neurological outcomes than in those with unfavorable outcomes (158 min) [13].
In addition, Perman et al. reported that patients with a longer induction time (>300 min
to reach 33 ◦C) were associated with better neurological outcomes than those with an in-
duction time of <120 min [14]. Lin et al. also observed that a slower rate of cooling was
associated with improved neurological outcomes (OR, 0.73 ◦C/h) and survival [15]. Our
study results are consistent with these findings, and patients with a longer induction time,
especially >440 min, had a better survival rate (AOR, 3.10) than those with an induction
time < 260 min on the 28th day after cardiac arrest. The survival benefit of this group of
patients remained significant until 180 days after cardiac arrest. Moreover, they were more
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likely to have good neurological outcomes compared with those who were cooled rapidly.
The cooling rate was 0.2 ◦C/h in this group, almost half that of the rate in the <260 min
group (0.48 ◦C/h). One possible explanation may be compromised thermoregulation after
cerebral insult [13,14,42,43]. Among our patients, those who were cooled more rapidly had
significantly higher APACHE II scores than those who were cooled more slowly. These
characteristics are consistent with the aforementioned hypothesis. Besides, Benz-Woerner
et al. found that patients with poor neurological outcomes had a lower core temperature
upon ROSC [44]. Our results are in line with those of Lin et al. [15], and the patients with
good neurological outcomes had a higher core temperature upon ROSC. An intact ther-
moregulatory center allows the body to exhibit a normal response to temperature differences.
This may explain why shivering [45] and bradycardia [46] are more common in patients
with improved neurological outcomes during TTM. In summary, our patients with good
neurological outcomes were younger, had a lower APACHE II score, higher temperature
upon ROSC, and shorter no/low flow time, which are in line with the findings of Perman
et al. [14]. Thus, we hypothesize that a TTM target at <34 ◦C might be a ‘stress test’ to
recognize the integrity of the patient’s thermoregulatory center and that the cerebral insult
severity after cardiac arrest itself is the main prognostic factor. This speculation was in line
with the finding of the TTM-2 trial [17]. In the sub-group analysis of the TTM-2 trial, [47]
Simpson et al. divided included sites into six groups according to the speed of hypother-
mia, which was surrogated as the average temperature at four hours from ROSC in the
hypothermia group. Of the patients enrolled in the fastest sites, whose average temperature
was ≤34 ◦C at four hours, 49% of the patients died at six months in the hypothermia group
compared with 46% in the normothermia group. Compared to the patients enrolled in
the slowest sites, whose average temperature was 35.3, the mortality rate was 45% in the
hypothermia group and 56% in the normothermia group. The patients with faster speed to
target temperature didn’t show better survival compared to those with slower speed. Our
study also found that the non-survivors had a faster rate of cooling compared to survivors
(0.42 ± 0.28 vs. 0.33 ± 0.18 ◦C/h, p = 0.0097). However, there are inherent limitations
because both studies were post-hoc analyses or retrospective, and the number may be too
small to be underpowered. Further investigations are warranted to investigate whether a
lower temperature target in TTM is necessary for postcardiac arrest patients.

This study has some limitations. First, it is a retrospective study, and thus missing
data are inevitable. It was especially difficult to estimate no/low flow time as we did not
have access to the emergency medical service database. Second, the average pre-induction
time delay in our patient groups was approximately 6 h, even in the IHCA group. The
most common causes of delay were emergency room—hospital ward—ICU preparation
for patient transfer, surrogate availability to make decisions, and overcrowding. However,
our institution has long-term experience in TTM and has used the same protocol for
a decade [18,19]. The performance was not inferior to other similar studies of the same
period. We were surprised to find that delays in pre-induction and induction times of
TTM may be associated with better survival, albeit short-term. However, most experts
believe that “the sooner the better”, [41,48–50] the temperature target, devices used for
TTM, patient arrest location, no/low flow time limits and exclusion criteria have varied
between studies [1,2,4,6–11,14,15,18,19,22,32,33,40,51,52]. However, the length of the delay
of pre-induction time becomes statistically insignificant after multiple Cox regression
analysis. There might be a ‘time window’ in the timeline of patient management, which
suggests that an adequate delay may be able to attenuate the side effects of early cooling
without compromising the protective effects of hypothermia. But too much delay can be
detrimental again. An international registration network to record timing issues with TTM
would help to elucidate this issue. Third, 61 (36.5%) of our patients received 48 h instead of
24 h TTM which may interfere with clinical outcomes [53–55]. However, our results were
consistent with the results of the latest randomized clinical trial; [56] target temperature
management for 48 h did not significantly improve clinical outcomes compared with those
received TTM for 24 h.
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5. Conclusions

Among the enrolled patients with OHCA/IHCA who received TTM in this retrospec-
tive study with a limited sample size, we found that a shorter pre-induction delay was not
associated with improved survival outcomes. Patient outcomes were primarily determined
by disease severity and no/low flow time. The patients with a longer time delay before
TTM initiation had a higher hospital survival rate, but their neurological outcomes were
not different from those with a shorter delay. Patients with a longer induction time had
a higher hospital survival rate and better neurological outcomes. However, our results
were not suggesting clinicians delay or abandon TTM, and further prospective study was
warranted to evaluate the appropriate time window of TTM.
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www.mdpi.com/article/10.3390/jcm12072628/s1, Supplement S1: Protocol of targeted temperature
management in MacKay Memorial Hospital.; Supplement S2: 28-day survival in the IHCA and
OHCA groups; Supplement S3: Neurological outcomes in the IHCA and OHCA groups; Supplement
S4: ROC curve analysis for optimal cut-off values of pre-induction and induction time; Supplement
S5: Kaplan–Meier curves of the cumulative probability of survival to day 90 and day 180 after cardiac
arrest according to different pre-induction and induction time.
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