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Abstract: Objects: To evaluate the prognostic value of radiomics features extracted from 18F-FDG-
PET/CT images and integrated with clinical characteristics and conventional PET/CT metrics in
newly diagnosed multiple myeloma (NDMM) patients. Methods: We retrospectively reviewed base-
line clinical information and 18F-FDG-PET/CT imaging data of MM patients with 18F-FDG-PET/CT.
Multivariate Cox regression models involving different combinations were constructed, and stepwise
regression was performed: (1) radiomics features of PET/CT alone (Rad Model); (2) Using clinical
data (including clinical/laboratory parameters and conventional PET/CT metrics) only (Cli Model);
(3) Combination radiomics features and clinical data (Cli-Rad Model). Model performance was evalu-
ated by C-index and Net Reclassification Index (NRI). Results: Ninety-eight patients with NDMM
who underwent 18F-FDG-PET/CT between 2014 and 2019 were included in this study. Combining
radiomics features from PET/CT with clinical data showed higher prognostic performance than
models with radiomics features or clinical data alone (C-index 0.790 vs. 0.675 vs. 0.736 in training
cohort; 0.698 vs. 0.651 vs. 0.563 in validation cohort; AUC 0.761, sensitivity 56.7%, specificity 85.7%,
p < 0.05 in training cohort and AUC 0.650, sensitivity 80.0%, specificity 78.6%, p < 0.05 in validation
cohort) When clinical data was combined with radiomics, an increase in the performance of the model
was observed (NRI > 0). Conclusions: Radiomics features extracted from the PET and CT components
of baseline 18F-FDG-PET/CT images may become an effective complement to provide prognostic
information; therefore, radiomics features combined with clinical characteristic may provide clinical
value for MM prognosis prediction.

Keywords: multiple myeloma; 18F-FDG-PET/CT; radiomics features; prognostic value

1. Introduction

Multiple myeloma (MM), the second-most frequent hematologic tumor, is an incurable
malignancy of the plasma cells. Over the past decade, the prognosis of MM has notably
improved, due to the emergence of new therapeutic options. However, the improvement
has not been uniform, and 15% to 20% of all patients have a predicted OS of less than
3 years [1]. Early identification of patients with high-risk features is needed to develop
individualized and risk-adapted treatment strategies in newly diagnosed MM. Currently,
several prognostic models have been used to stratify myeloma patients into subgroups
with distinct risk profiles [2–4]. However, the performance of these models for identifying
high-risk MM is not satisfactory.

18F-FDG PET/CT (18F-fluoro-deoxy-glucose positron emission tomography/computed
tomography) is a useful diagnostic imaging procedure providing both tomographic and
functional information in patients with MM. It may be regarded as a useful tool in the

J. Clin. Med. 2023, 12, 2280. https://doi.org/10.3390/jcm12062280 https://www.mdpi.com/journal/jcm

https://doi.org/10.3390/jcm12062280
https://doi.org/10.3390/jcm12062280
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://doi.org/10.3390/jcm12062280
https://www.mdpi.com/journal/jcm
https://www.mdpi.com/article/10.3390/jcm12062280?type=check_update&version=1


J. Clin. Med. 2023, 12, 2280 2 of 14

workup at diagnosis parameters and the follow-up of MM, especially for the detection
of para-medullary and extramedullary disease or solid organ involvement. Various stud-
ies have demonstrated image-based standardized uptake value (SUV), extramedullary
disease (EMD), and numbers of focal bone lesions (FLs) have been served as prognostic
factors [5–8].

18F-FDG PET/CT was recommended by IMWG as the actual “gold standard” method
for evaluating and monitoring response to anti-myeloma therapy [9]. As MM is highly
heterogeneous, quantitative description of inter-tumoral and intra-tumoral heterogene-
ity might have significant potential for improved prognosis in MM. Consequently, it is
necessary to develop more effective and feasible methods to assist in image analysis and
mining more valuable prognostic information. Radiomics is an emerging area that shows
promising prospects in the domain of radiological evaluation. Radiomics is a sophisticated
image analysis technique that captures tissue and lesion high-throughput characteris-
tics providing complementary information about tumor heterogeneity across the entire
tumor volume to improve prognosis prediction and may therefore prove useful for pa-
tient stratification [10]. Increasing studies are published owning to encouraging results of
radiomics-based machine-learning models. Most of these studies showed the value of ra-
diomics extracted from PET was for solid tumor, such as lung cancer, head and neck cancer,
and gastric cancer [11–13]. A recent study did clarify that the radiomics features model
may predict high-risk cytogenetic status in multiple myeloma based on magnetic resonance
imaging [14]. Some studies demonstrated that the radiomic analysis on standard CT or
18F-FDG-PET/CT images of patients with MM strongly improve accuracy in differentiating
focal from diffuse patterns at diagnosis [15]. It also showed the value in disease follow-up,
treatment options, and prognosis prediction. Bone marrow radiomics features extracted
from 18F-FDG PET/CT may provide some information of MRD [16]. In a small sample size
study, radiomics models based on MRI could also predict the response to bortezomib-based
therapy in MM patients [17]. MRI-based textural features proved to correlate well with
the clinical and hematological response (CR, VPGR, and PR) in MM patients undergoing
systemic treatment [18]. In some sense, a radiomics approach may extract and mine more
medical imaging features as reliable prognosis biomarkers of MM. We hypothesized that a
model incorporating radiomic features extracted from baseline PET/CT would improve
the prediction outcome of MM.

Although radiomics and machine learning have been widely used in disease diagno-
sis, the application of radiomics and multiple machine learning algorithms combined in
predicting prognosis of MM has rarely been reported. The aim of this study was to evaluate
the prognostic value of a machine learning model based on optimized radiomics features
from 18F-FDG-PET/CT and clinical characteristics in NDMM patients.

2. Methods
2.1. Study Design and PATIENTS

We retrospectively reviewed medical records of 98 NDMM patients who underwent
18F-FDG-PET/CT between 2014 and 2019 in Renji hospital. Inclusion criteria included active
MM, age of ≥18 years at the time of diagnosis, and availability of a pre-chemotherapy
PET-CT scan and complete clinical data. Patients with a history of other tumors were
excluded. This retrospective study was approved by institutional ethics committee in our
hospital, and the informed consent requirement was waived.

2.2. Data Collection

Baseline features of patients were used to characterize the disease at the beginning of
the concerned period. We gathered initial results of PET/CT and the biomarkers performed
before treatment in order to analyze the correlation between these characteristics and the
prognosis of myeloma. The data set is divided into training set and test set by date at 70:30.
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2.3. PET/CT Image Acquisition

According to the guidelines of the European Association of nuclear medicine (EANM),
all patients underwent whole-body 18F-FDG positron emission tomography on Siemens
Biograph-64 mCT scanner. All patients fasted for at least 6 h before acquisition, and the
blood glucose levels were controlled below 150mg/dL. FDG-PET/CT was performed
60 min (60 ± 3 min) after injection of 3.7–5.55 MBq 18F-FDG per kg of body weight. PET
image reconstruction with a 3-dimensional (3D) ordered-subset expectation maximization
(OSEM) algorithm: 3 iterations, 24 subsets; 2.75 mm × 3.12 mm× 3.12 mm voxel size. The
field of view (FOV) was 700 mm. Before PET scanning, CT was performed with attenuation
correction methods to obtain image with matrix size of 512 × 512 (80 Ma, 120 kV). PET
and CT results were reviewed on the workstation to display the fused image frame by
frame. Then, the positron emission tomography image (voxel size 3.12 mm, slice thickness
2.75 mm) was interpolated to the same resolution as the computed tomography image
(voxel size 0.98 mm, slice thickness 2 mm) (Supplementary Materials Table S1).

2.4. Image Preprocessing
18F-FDG-PET/CT images were read and interpreted by two independent board-

certified nuclear medicine physicians with more than 10 years of experience. The osteolytic
lesions are identified with a PET standard spatial resolution limit of about 5 mm. The
maximum standardized uptake value (SUVmax) of the lesions obtained from the region
of interest (ROI) is the standard semi-quantitative index that can be considered for image
interpretation. If there is no focal FDG metabolism in visual analysis, the ROI with diameter
of 10 mm is drawn at the first sacral vertebrae to obtain SUVmax. Focal lesions (FLs) at
diagnosis were defined as focally increased FDG uptake greater than the physiologic bone
marrow or liver uptake on at least two consecutive slices, with or without any underlying
lytic lesion. The dichotomized number of FLs were with the threshold set at 3.

2.5. Radiomics Features Extraction and Selection

Skeleton volume of Interest (VOI) segmentation was mainly based on Slicer Radiomics
(V2.10, https://github.com/Radiomics/SlicerRadiomics, accessed on 12 March 2022) as 3D
Slicer extension which enables processing and extraction of radiomics features. To ensure
the repeatability of PET/CT image features, we used the fixed bin width to acquire gray
histogram and discrete image gray level. Finally, a total of 1702 image radiomics features
were extracted from the original images of PET and CT by wavelet filter, including 18 first-
order features, 13 shape features, 23 gray-level co-occurrence matrix features (GLCM),
16 gray-level scale matrix feature (GLSM), 16 gray-level size zone matrix (GLSZM), 5
neighborhood gray-tone difference matrix (NGTDM), and 14 gray-level dependence matrix
(GLDM). The workflow was shown in Figure 1. All radiomics features were extracted from
VOIs of PET and CT images.

2.6. Predictive Model Establishment and Statistical Analysis

The data set is divided into training set and test set by date, and the proportion is 70:30,
with the latest 30% used as the test-set. Optimal features are screened by univariate Cox
regression together with least absolute shrinkage and selection operator (Lasso) algorithm
and 10-fold cross-validation [19] (Figures 1 and 2). Thus, different combinations were
constructed, and stepwise regression was performed: (1) radiomics features of PET/CT
alone (Rad-Mod); (2) using clinical data (including clinical/laboratory parameters and
conventional PET/CT metrics) only (Cli-Mod); (3) combination radiomics features and
clinical data (Cli-Rad-Mod). Receiver operating characteristic (ROC) curves were used to
test the predictive performance of each model. The discriminative ability of each model
was assessed by the concordance index (C-index). In order to evaluate the improvement
in prediction performance gained by adding radiomics features to the baseline model, we
calculated the net reclassification index (NRI) in the training cohort and validation cohort
in the first and third year.

https://github.com/Radiomics/SlicerRadiomics
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Figure 1. (A) Flowchart of the patient selection process. (B) Radiomics workflow. First, a region of 
interest is defined and/or lesions are segmented. A frequently large number of feature candidates 
are extracted. Optimal features are screened by Lasso algorithm and 10-fold cross-validation. 

Figure 1. (A) Flowchart of the patient selection process. (B) Radiomics workflow. First, a region of
interest is defined and/or lesions are segmented. A frequently large number of feature candidates are
extracted. Optimal features are screened by Lasso algorithm and 10-fold cross-validation. Prognostic
scores were generated for each multivariate Cox model by summing the product of each feature
retained in the different models.
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Figure 2. The radiomics features were screened based on lasso-Cox model. (A) The minimum criteria
for 10-fold cross-validation was used to select optimal features. (B) Lasso coefficient analysis of 1702
radiomics features. Each curve in the graph represents the change track of each independent variable
coefficient. With the increase of lambda, the coefficients of each feature are gradually compressed
and tend to zero. The upper horizontal axis represents the characteristic number of radiomics, the
lower horizontal axis represents the penalty coefficient log (lambda), the left vertical line represents
the characteristic parameter values corresponding to the minimum partial likelihood deviation in the
cross validation, and the right vertical line represents the corresponding parameter values within a
standard error.



J. Clin. Med. 2023, 12, 2280 6 of 14

SPSS Statistics 26.0 (version 26.0; IBMC, Armonk, NY, USA) and R software packages
(version 3.6.3, http://www.r-project.org, accessed on 10 February 2022) were used for
statistical analysis and model construction. The Mann–Whitney U test and Chi-square
test were used for comparisons between groups for continuous variables and categorical
variables. Progression-free survival (PFS) was calculated from the beginning of treatment
until disease progression or death from any cause. PFS were evaluated using Kaplan–Meier
estimates. We used the Cox regression model to confirm the independent predictors of
survival by univariate and multivariate analyses (see in Figure 2). The relative risk of an
event and the 95% confidence interval (CI) were estimated using a Cox proportional hazard
model. p < 0.05 indicates that the difference is statistically significant. The significant
difference between two C-indices was tested using the Hmisc R package.

3. Result
3.1. Baseline Clinical Characteristics

The baseline clinical characteristics of the 98 patients are summarized in Table 1. The
median age of all patients was 65 years (range, 41–86 years). The most prevalent type of
MM patients was IgG type (49.0%), and the proportion of patients with light chain disease
was 17.3%. The consensus of the International Myeloma Working Group defines high-risk
multiple myeloma based on cytogenetics as having poor prognosis due to t (4; 14), del
(17/17p), t (14; 16), t (14; 20), non-hyperdiploidy and gain (1q) [20]. In our study, cytogenetic
abnormalities were investigated by FISH in 79 patients. Twenty-six (32.9%) MM patients
were detected to have high-risk cytogenetic abnormalities. Overall, 62 patients (63.3%) re-
ceived a treatment regimen containing a proteasome inhibitor as the first-line chemotherapy.
Seventeen patients (17.3%) were treated with VRD regimen (bortezomib, lenalidomide, and
dexamethasone). Fourteen patients (14.3%) were treated with daratumumab, melphalan,
and dexamethasone. Twenty-two patients (22.4%) underwent consolidative autologous
hematopoietic stem cell transplantation after induction chemotherapy. Among the 98 pa-
tients, 50 (51.0%) patients had more than three FLs. The median SUVmax in patients was
3.55 (range, 1.2–28.3), and the SUVmax in 41.8% patients was >4.2. Over the median follow-
up of 27 (2.7–63) months, 52 patients (53.0%) had progressed and 22 (22.4%) had died. The
median PFS was 28 months (95% CI, 20.5–35.5 months), and the median OS was 59 months
(95% CI, 32.5–85.5 months). Patients with SUVmax greater than 4.2 were significantly
associated with poorer survival than those who were with SUVmax lower than 4.2 (PFS,
14 vs. 40 months, p < 0.001). Patients who had more than three FLs were associated with
significantly inferior PFS value compared with others (PFS, 20.0 vs. 38 months, p < 0.05)
(Table 2).

Table 1. Baseline clinical characteristics of all patients (n = 98).

Variables

Median age, years (range) 65.0 (41.0–86.0)

≥65 years, n (%) 52 (53.1%)

gender, n (%)

Male 45 (45.9%)

Female 53 (54.1%)

Immunoglobulin (Ig) type, n (%)

IgG 48 (49.0%)

IgA 25 (25.5%)

IgD 7 (7.1%)

Light chain only 18 (18.4%)

http://www.r-project.org
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Table 1. Cont.

Variables

International Staging System (ISS), n (%)

I 11 (11.2%)

II 49 (50.0%)

III 38 (38.8%)

ECOG PS ≥ 2, n (%) 22 (22.4%)

Bone marrow plasmacyte ratio (BMPC ratio) ≥ 60% 12 (12.3%)

Hemoglobin (g/L) < 100, n (%) 65 (66.3%)

LDH > (1 × ULN), n (%) 25 (25.5%)

β2MG (mg/L) ≥ 5.5 55 (56.1%)

Albumin (g/L) < 35, n (%) 58 (59.2%)

Calcium (mmol/L) > 2.65 12 (12.2%)

Creatinine (mg/dL) ≥ 2 32 (32.7%)

Cytogenetic abnormality (79/98)

High risk 26 (32.9%)

Standard risk 53 (67.1%)

Frontline treatment, n (%)

IMiD-based 5 (5.1%)

Proteasome inhibitor-based 62 (63.3%)

IMiD + proteasome inhibitor 17 (17.3%)

Daratumumab-based 14 (14.3%)

Performance of ASCT, n (%) 22 (22.4%)

Best response (92/98)

CR (complete remission) 32 (34.8%)

Not reach CR 60 (65.2%)

Table 2. Univariate and multivariate Cox analysis for PFS in the training and validation cohorts for
patients with MM.

Variable
Univariate Cox Regression Multivariate Cox Regression

HR (95% CI) p HR (95% CI) p

Gender 1.353 (0.483, 3.793) 0.565
Age 1.025 (0.957, 1.097) 0.479

ISS staging 7.169 (1.141, 45.025) 0.036 1.147 (0.665, 1.978) 0.621
BMPC ratio 1.000 (0.975, 1.025) 0.998

β2MG (mg/L) 1.007 (0.998, 1.016) 0.113
Albumin (g/L) 1.015 (0.966, 1.066) 0.560

Calcium (mmol/L) 1.101 (0.380, 3.188) 0.860
Creatinine (mg/dI) 0.984 (0.953, 1.015) 0.311

High-risk cytogenetics 1.301 (0.257, 6.600) 0.750
Ki-67 1.003 (0.978, 1.028) 0.844
LDH 1.005 (1.001, 1.010) 0.028 * 1.004 (1.000, 1.008) 0.034 *

Bone destruction 0.188 (0.031, 1.162) 0.072
Focal lesion 4.603 (1.140, 18.596) 0.032 * 1.976 (0.878, 4.447) 0.100

SUVmax 1.189 (1.077, 1.314) 0.001 * 1.114 (1.043, 1.189) 0.001 *

* p < 0.05. MM. Abbreviation: MM: multiple myeloma, PFS: Progression Free Survival, BMPC ratio: Bone marrow
plasmacyte ratio, ISS: International Staging System, β2MG: β2 microglobulin, LDH: lactate dehydrogenase.
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3.2. Feature Selection and Model Performance

In this study, radiomics analysis showed a total of 1702 features were extracted, in-
cluding morphological features, intensity features, texture features, and high-order features
based on wavelet filters. Optimal radiomics features are screened by Lasso algorithm
including LHL_Idmn_glcm, LHL_LDLGLE_gldm, LHL_LALGLE_glszm from (Table 3)
retained as prognostic factors for models involving radiomics features. For models in-
volving clinical parameters, elevated LDH (HR 1.004, 95% CI 1.000–1.008, p = 0.034) and
SUVmax > 4.2(HR 1.114, 95%CI 1.043–1.189, p = 0.001) were consistently found to be signifi-
cant predictors. After weighting the selected features according to the regression coefficient,
the score of each patient were calculated, respectively. The highest Youden index was
adapted from a time-dependent ROC curve used to determine the optimal cut-off value of
each model. Patients were divided into high-risk group and low-risk group according to
cut off value. The nomogram was constructed based on the above independent prognostic
factors (Figure 3).

In this study, the model performance was evaluated by the concordance index (C-
index). The value of C-index ranges from 0.5 to 1. The higher the c-index, the more accurate
is the prediction. The C-index for each model is listed in Table 4. The C-index ranges
of models with clinical data (including clinical/laboratory parameters and conventional
PET/CT metrics) or radiomics features alone are 0.736 vs. 0.675 and 0.563 vs. 0.698 for the
training and validation cohorts, respectively. Combination of clinical data and radiomics
features showed higher C-index compared with models with clinical data (training cohort:
C-index 0.790 [95% CI: 0.560–1.442] vs. 0.736 [95% CI: 0.401–1.600; validation cohort: 0.698
[95% CI: −0.346–1.048] vs. 0.563 [95% CI: −0.641–1.021]). Kaplan–Meier curves of PFS rates
of each model in the subset are shown in Figure 4.

Table 3. Radiomics features from Lasso regression analysis.

Orde Wavelet-Transformation Imaging Parameter Radiomics Feature Feature Type

1 LHL PET Idmn glcm
2 LHL PET LDLGLE gldm
3 LHL PET LALGLE glszm

Table 4. The C-index of each model in the training and validation cohorts.

Model
Training Cohort Validation Cohort

C-index (95% CI) C-Index (95% CI)

Cli_Mod 0.736 0.401, 1.600 0.563 −0.641, 1.021
Rad_Mod 0.675 0.376, 1.624 0.651 −0.597, 3.270

Cli_Rad_Mod 0.790 0.560, 1.442 0.698 −0.346, 1.048

NRI is a measure for improvements in risk predictions. Table 5 summarizes the NRI
in validation cohort for the first year and third year results for each combination. When
clinical data were combined with radiomics, an increase in the performance of the model
was observed. Adding radiomics features to the clinical model, the NRI was 0.482 (95% CI,
−0.142 to 1.131) for the first year and 0.497 (95% CI, 0.142 to 1.131) for the third year. The
NRI was 0.739 (95% CI, 0.350 to 1.380) for the first year and 0.632 (95% CI, 0.360 to 1.133) by
adding clinical data to the radiomics model.
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Table 5. NRI in validation cohort for the first year and third year.

Model Validation Cohort (1 Y)
NRI (95% CI)

Validation Cohort (3 Y)
NRI (95% CI)

Cli_Mod Reference Reference
Cli_Rad_Mod 0.482 (−0.149, 1.131) 0.497 (0.142, 1.131)

Rad_Mod Reference Reference
Cli_Rad_Mod 0.739 (0.350, 1.380) 0.623 (0.360, 1.133)

NRI > 0 indicates that the prediction ability of the new model is improved compared with the old mode (positive
improvement); NRI < 0 indicates the prediction ability of the new model decreases (negative improvement);
NRI = 0 is considered that the new model has not improved.

Table 6 and Figure 4 summarize the results for the AUC (area under ROC curve) of
each combination. In comparison with the AUC for the clinical model, the significant
improvement was seen with the combination of the clinical data and radiomics feature
(p < 0.05). Cli-Rad model yielded the best performance (AUC 0.761, sensitivity 56.7%,
specificity 85.7%, p < 0.05 in training cohort and AUC 0.650, sensitivity 80.0%, specificity
78.6%, p < 0.05 in validation cohort).

Table 6. Comparison of different models in training cohort and validation cohort.

Training Cohort Validation Cohort

AUC SEN SPE p Value AUC SEN SPE p Value

Cli_Mod 0.692 (0.542, 0.804) 0.667 0.600 Reference 0.582 (0.305, 0.860) 0.600 0.821 Reference
Rad_Mod 0.673 (0.645, 0.877) 0.500 0.886 0.328 0.650 (0.350, 0.950) 0.600 0.786 0.058

Cli_Rad_Mod 0.761 (0.698, 0.906) 0.567 0.857 0.042 * 0.650 (0.339, 0.961) 0.800 0.786 0.036 *

* p < 0.05.

4. Discussion

MM is a condition that has a heterogeneous presentation and prognosis with survival
rates ranging from months to decades. A prior identification of those with high-risk profiles
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is important for prognostication and personalized treatment strategies [21,22]. An increas-
ing number of clinical prognostic markers for MM reflecting various aspects of the patients’
clinical status and disease behavior have been mentioned in the literature [23]; however,
risk stratification is still a challenge because of spatial intra-tumoral heterogeneity. The
imaging phenotype potentially containing extensive information of tumor characteristics
and susceptibility to treatments can be partly acquired through medical image analysis,
especially using PET-based images [24]. FDG-PET/CT enables detecting the presence
of sites of metabolically active PCs and to assess changes in tumor cell metabolism after
induction treatment. This study evaluated the potential prognostic performance of ra-
diomics features extracted from FDG-PET/CT in MM integrated with clinical data. We
have identified a model for predicting progression in newly diagnosed MM. Among the
13 clinical features initially considered in this study, LDH and SUVmax were selected in
the final model. Patients with elevated LDH and SUVmax > 4.2 had significantly worse
PFS. In this study, optimal radiomics features are screened including LHL_Idmn_glcm,
LHL_LDLGLE_gldm, LHL_LALGLE_glszm from PET. Idmn is a measurement for local
homogeneity of imagine. LALGLE reflects the proportion of a larger area with lower
gray value in the image. LALGLE is a large area low gray level emphasis. Our model
incorporated six of the most highly predictive PET/CT radiomics and clinical parameters.
The model combining clinical data with radiomics features showed higher C-index than
the models with clinical data alone (training cohort: C-index 0.790 [95% CI: 0.560–1.442]
vs. 0.736 [95% CI: 0.401–1.600; validation cohort: 0.698 [95% CI: −0.346–1.048] vs. 0.563
[95% CI: −0.641–1.021]). In comparison with the AUC for the clinical model, the signifi-
cant improvement was seen with combination of the clinical data and radiomics feature
(p < 0.05). The Cli-Rad model yielded the best performance (AUC 0.761, sensitivity 56.7%,
specificity 85.7%, p < 0.05 in training cohort and AUC 0.650, sensitivity 80.0%, specificity
78.6%, p < 0.05 in validation cohort).

Radiomics as a data-driven analysis of radiologic images might enable efficient mine
image features providing valuable clinical information. Yet, few studies underly the interest
of the value of radiomics features in MM. Radiomics features may quantify structural
characteristics of bone marrow changes in MRI images and may be implemented as a
complementary prognosis evaluation tool [25]. Some studies have shown MRI-based or
PET/CT-based radiomics features may provide valuable information for image-based
assessment of MRD and prediction of the therapy response [16–18,26]. Jamet B [27] tried to
evaluate the potential prognostic value of textural features extracted from FDG-PET/CT
in MM framework in addition to conventional PET-derived metabolic features and usual
clinical/biological/genetic parameters. Though FDG-PET/CT has been considered a
valuable tool in the work-up of patients with newly diagnosed MM, differentiation between
focal and diffuse patterns on PET/CT is difficult. Therefore, some studies attempted to
apply radiomic approaches to improve standard radiological evaluation with implications
for prognosis. Tagliafico AS [28] found 15% of radiomics features (16/104) were different
in diffuse and focal patterns. Mesguich C [21] found that a radiomic signature based on
five different features extracted from PET and CT images was accurate for the diagnosis of
diffuse disease in MM patients. In this study, we found radiomics features extracted from
the baseline PET/CT combined with clinical parameters provided valuable information
identifying the patients progressing early. Nevertheless, the limited literature could not
give enough evidence of the value of radiomics features predicting outcomes in MM
patients. A prior work on radiomics in myeloma has explicitly shown that the feature
stability between different scanners is very limited in vivo, even after application of a
simple image normalization. Radiomics features selected by a repeatability experiment
only are not necessarily suited to build radiomics models for multicenter clinical application.
Supposedly, one of the main reasons that hinder the translation to clinical application is
the low external generalizability of radiomics models [29]. Accordingly, standardization
of image acquisition or advanced calculative approaches for image normalization or RF
compensation might help to improve external generalizability of radiomics prediction
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models. Further investigations that completely explore the potential prognostic value of
PET/CT radiomics feature predicting the outcome of MM patients should be taken.

Our study has several limitations. First, our findings are based on a small size cohort
from one institution with retrospective nature. A second follow-up duration may not
be long enough; therefore, we establish a predictive model based on a single survival
endpoint (PFS). Thus, a prospective multicenter study with a large cohort is necessary
to confirm the results. Thirdly, the whole spine including the intervertebral disc was
segmented in our study. The segmentation in a further study with using only the “clean”
bone without discs might provide more valuable information on MM prognosis. Another
research group combined the automatic BM segmentation with a subsequent radiomics
analysis to automatically perform comprehensive, bone-by-bone phenotyping of the BM
from wb-MR images which correctly exclude intervertebral discs [26]. This also brings
inspiration for our future work.

5. Conclusions

Early identification of high-risk myeloma would help the development of precise
treatment strategies. Radiomics features extracted from the baseline PET/CT quantita-
tively characterized intratumor heterogeneity and provided complementary information of
prognosis for myeloma patients. In our study, the combination of radiomics features with
clinical data showed improved performance relative to models with radiomics features or
clinical parameters alone. Multivariate Cox model containing the radiomics information
stratified patients into different risk groups for PFS, and thereby may mine more intratumor
heterogeneous information and maybe further improve prognostic performance. Further
studies with external test data will be needed to investigate the final, realistic performance
of the model.
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