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Abstract: Improving the prediction of blood glucose concentration may improve the quality of
life of people living with type 1 diabetes by enabling them to better manage their care. Given the
anticipated benefits of such a prediction, numerous methods have been proposed. Rather than
attempting to predict glucose concentration, a deep learning framework for prediction is proposed
in which prediction is performed using a scale for hypo- and hyper-glycemia risk. Using the blood
glucose risk score formula proposed by Kovatchev et al., models with different architectures were
trained, including, a recurrent neural network (RNN), a gated recurrent unit (GRU), a long short-
term memory (LSTM) network, and an encoder-like convolutional neural network (CNN). The
models were trained using the OpenAPS Data Commons data set, comprising 139 individuals, each
with tens of thousands of continuous glucose monitor (CGM) data points. The training set was
composed of 7% of the data set, while the remaining was used for testing. Performance comparisons
between the different architectures are presented and discussed. To evaluate these predictions,
performance results are compared with the last measurement (LM) prediction, through a sample-
and-hold approach continuing the last known measurement forward. The results obtained are
competitive when compared to other deep learning methods. A root mean squared error (RMSE)
of 16 mg/dL, 24 mg/dL, and 37 mg/dL were obtained for CNN prediction horizons of 15, 30, and
60 min, respectively. However, no significant improvements were found for the deep learning models
compared to LM prediction. Performance was found to be highly dependent on architecture and
the prediction horizon. Lastly, a metric to assess model performance by weighing each prediction
point error with the corresponding blood glucose risk score is proposed. Two main conclusions
are drawn. Firstly, going forward, there is a need to benchmark model performance using LM
prediction to enable the comparison between results obtained from different data sets. Secondly,
model-agnostic data-driven deep learning models may only be meaningful when combined with
mechanistic physiological models; here, it is argued that neural ordinary differential equations may
combine the best of both approaches. These findings are based on the OpenAPS Data Commons data
set and are to be validated in other independent data sets.

Keywords: recurrent neural network; convolutional neural networks; deep learning; diabetes;
continuous glucose monitor; blood glucose risk score; machine learning

1. Introduction

In 2017, worldwide diabetes cases numbered 425 million, and it is estimated that
by 2045 that number will increase to 700 million [1]. Diabetes can lead to a number of
complications such as neuropathy, retinopathy, and nephropathy [2]. Many of the known
risks associated with diabetes result from poor glucose management.
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Both type 1 diabetes (T1D) and type 2 diabetes result from the interaction between
the environment and the patient’s genes; however, their pathogenesis is distinct. T1D,
the focus of this study, is due to the immune system destroying the beta-cells in the Islets of
Langerhans—the cells responsible for insulin secretion and production. The resulting effect
is currently treated with insulin to manage glucose. Current developments in the area of
health-targeted wearable and implanted devices have leveraged glycemic management in
several ways. First and foremost, the development of continuous glucose monitor (CGM)
sensors has allowed for people living with T1D to access nearly real-time interstitial glucose
values (reported every 1 to 5 min, depending on the kind of CGM sensor). This technology
is replacing frequent finger-prick testing. In addition, through cloud services, patients can
share their data with their care team and caregivers, catalyzing the generation of patient-
health data which could be used for research. Furthermore, advances in insulin delivery
technology have allowed for the use of closed-loop algorithms between the CGM sensor
and insulin pumps, essentially acting as an artificial pancreas [3]. Despite advances in
the use of health technology, poor glycemic management is still an issue. Patients still
experience hypo- and hyper-glycemic events due to a range of interactions between stress,
nutrition, exercise, medication administration, and other factors [4].

Using in silico and in vitro models has been pivotal to understanding the physiological
mechanisms behind blood glucose dynamics. Ultimately, glucose variability is due to sev-
eral complex processes involving but not limited to insulin, glucagon, epinephrine, cortisol,
and growth hormones, which operate on different time scales. Mechanistic modeling has
impacted research and therapy. In January 2008, the United States Food and Drug Admin-
istration (FDA) approved a simulator as a substitute for animal trials for the preclinical
testing of control strategies in artificial pancreas studies. Furthermore, the simulator has
been adopted by the Juvenile Diabetes Research Foundation (JDRF) Artificial Pancreas
Consortium as a primary test bed for new closed-loop control algorithms [4–6].

To evaluate the degree of glucose mismanagement resulting in hypo- and/or hy-
perglycemia, multiple risk scores have been proposed. For instance, the coefficient of
variability (CV) is defined as the ratio between the standard deviation and mean value of
glucose in a sufficiently large time window, such that a high CV indicates high variability
in glucose levels which contributes to sub-optimal glucose management. The variety and
flavors of glucose risk scores are broad yet, currently, there is not a one-type-fits-all risk
score nor has a consensus been reached for which risk score is best.

Despite ongoing research and funding directed toward diabetes treatment, which has
resulted in clinical and technological progress, optimal glucose management remains an
unsolved problem. In an effort to overcome these shortcomings, researchers have been de-
signing and building deep learning models for glucose management and prediction [7–12]
(see [13] for a review). Furthermore, competitions such as the Blood Glucose Level Predic-
tion (BGLP) Challenge [14] have been instrumental in coordinating collective efforts and
developing new deep-learning tools for glucose prediction, with the potential of improving
the health and well-being of individuals with diabetes. While some results are promising,
data-based approaches are still in the experimental phase. Most of the ongoing research is
focused on glucose prediction in a time horizon between 5 and 180 min. As the prediction
horizon increases, predictive accuracy typically decreases. Prediction in the time horizon
beyond 150 min is highly desirable since meals, insulin injections, and external schedules
operate on that time scale, whereas measurements within 150 min mainly correspond to the
pulsatile secretion of insulin and intrinsic oscillatory phenomena regimes [15]. Felizardo et al.
provide a thorough and detailed discussion of the current state of glycemia prediction [13].
They found that 80% of the reviewed literature corresponded to data-driven models, while
the remaining pertained to hybrid models combining data-driven models with mechanistic
modeling; 41% used only CGM data; 47% used CGM and insulin and/or meals data; and
12% used CGM, exercise and insulin and/or meals data. They report a broad spectrum
of approaches and results, though an unsolved issue that stands out is that it is virtually
impossible to compare performances between different methods due to both the variety
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of preprocessing techniques used and the application to different data sets from different
populations. With regard to the latter, it has been shown that glycated hemoglobin (HbA1c)
values, a key attribute for diabetes, can follow different paths in different populations [16].
Therefore, it is absolutely crucial to develop benchmarks that allow for the comparison
between results obtained from different data sets.

In the present paper, a deep learning prediction framework is proposed whereby the
prediction is conducted in a hypo- and hyperglycemia risk-score scale rather than a glucose
concentration scale, leading to a more robust behavior during training. The risk score
formula proposed by Kovatchev et al. [17] is used for this purpose, which symmetrizes the
glucose data and properly weighs hyper- and hypoglycemic events. A metric to assess the
model’s performance by weighing the prediction error with the blood glucose risk score is
proposed and presented.

Several models with different typical architectures were trained, including a recurrent
neural network (RNN), a gated recurrent unit (GRU), a long short-term memory (LSTM)
network, and an encoder-like convolutional neural network (CNN). Historically, the first
three types of architectures have been typically used for time series data, whereas con-
volutional neural networks have typically been used for image processing. A thorough
comparison between different architectures is presented and discussed. The models were
trained using the OpenAPS Data Commons [18] data set, comprising 139 individuals, each
with tens of thousands continuous glucose monitor (CGM) data points. Root mean squared
errors (RMSEs) of 16 mg/dL, 24 mg/dL, and 37 mg/dL were obtained for the CNN and
for time horizons of 15, 30, and 60 min, respectively (throughout this paper we use mg/dL
units for glucose unless stated otherwise). To evaluate the predictions, the performance
results were compared with the last measurement (LM) prediction, through a sample-and-
hold approach continuing the last known measurement forward. The obtained results are
competitive when compared with other deep learning methods.

2. Materials and Methods

The OpenAPS Data Commons data set includes more than 184 individuals’ donated
data, surpassing the number of days of data from other available data sets reported in the
literature [18]. For this research and after following the OpenAPS Data Commons Research
Guidelines [19,20], we were given access to n = 139 participants.

The data used came from continuous glucose monitor (CGM) measurements. The time
between two consecutive CGM measurements is typically five minutes. Before performing
any analysis, the data were cleaned and, for consistency, we adhered to the same cleaning
methodology as in [18]: all CGM entries different from a positive number (e.g., nega-
tive values, missing values, etc.) were removed; then, out-of-range CGM measurements
(<39 or >400) were replaced with imputed values. Since the goal is to predict values in
time series, data imputation was performed using linear interpolation. Denoting individual
p’s CGM value to impute as xp

t at time t, provided 39 ≤ xp
t±∆t ≤ 400; then, the linear

interpolation yielded:

xp
t =

⌊
xp

t+∆t + xp
t−∆t

2

⌋
, (1)

where b•c denotes the floor operator. In many cases where 39 ≤ xp
t−∆t ≤ 400, xp

t+∆t /∈ [39, 400].
Thus, generalizing Equation (1) leads to:

xp
t+n∆t =

 xp
t+(n+1)∆t + xp

t−∆t

2

 , (2)

where n is a positive integer and xp
t+n∆t is the imputed value. Notice that the only

constraint in order to apply Equation (2) is that the first and last measurements in the
time series must be bounded between 39 and 400. Therefore, all initial and ending time
series points were removed until the first and last points in each time series were in-
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bound, i.e., 39 ≤ xp
tinitial

≤ 400 and 39 ≤ xp
t f inal

≤ 400, for all individuals. Afterwards,
the linear interpolation in Equation (2) was applied to each of the individuals’ CGM data.
Figure 1 shows the CGM data in a normalized histogram, for three different individuals.
In blue corresponds to before imputing the data, while the red bins correspond to after
data imputation via Equation (2). Notice the overwhelming overlap between non-imputed
and imputed histograms (which yield a greyish-like color), suggesting the transformation
due to data imputation had little to no effect in the data distribution. As part of the scope,
the imputed data distribution should match that of the non-imputed data qualitatively,
which is achieved using the previous simple and straightforward method. However, it is
important to stress that there are a number of more sophisticated numerical methods (see
for instance [21–23]). In the Appendix A we provide further insight regarding the imputed
data; specifically, we show the percentage of imputed data per individual, as well as the
mean and standard deviation of consecutive imputed values.

(a) (b)

(c)

Figure 1. CGM normalized histograms before and after data imputation. Each panel corresponds to
a different individual in the OpenAPS Data Commons. Each panel shows the CGM data before data
imputation in blue, and after data imputation in red. The overlap between the two histograms in
each panel suggests that the linear interpolation (proposed in Equation (2)) has little to no effect in
changing the data structure. Notice the skewness in the histograms typical of CGM data. Panels (a),
(b) and (c) correspond to 154,378, 85,346 and 46,611 glucose measurements, respectively.

After preprocessing the data, the CGM data were mapped into risk score data by using
the symmetrization formulas proposed in [17,24], namely,

yt = γ(lnα(xt)− β) , (3)

where α = 1.084, β = 5.381, and γ = 1.509 are fitted parameters, and yt is the BG
risk variable. Notice that the BG risk score function is defined as BG(yt) = 10 · y2

t [17].
As mentioned, the formula in (3) symmetrizes and rescales the glucose data such that
−
√

10 ≤ yt ≤
√

10. Most activation functions in neural networks (NNs) have a non-
zero gradient in the interval [−1, 1] and, most importantly, zero gradients outside these
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bounds. For these reasons, the data is further transformed by dividing by
√

10 such that
ξt = yt/

√
10, where ξt shall be referred to as the blood glucose (BG) risk-standardized

variable or standardized variable. Figure 2 shows the resulting histogram in terms of
the standardized variable ξ. The fact that the data are now bounded between −1 and 1
improves the model robustness as shown later.

Figure 2. Normalized standardized variable histogram of an individual in the OpenAPS Data
Commons data set. Equation (3) was used to map the CGM data into the BG-risk standardized
variable. The histogram is more symmetrical than those shown in Figure 1.

In addition, symmetrizing the data also improves model performance by reducing the
skewness, as seen in Figure 2. In a rather clever approach, in [25] the authors trained an
LSTM to classify the risk by using the Kovatchev et al. risk score formula and considering
100 bins, yielding good performance. The approach in the present paper is similar although
our method is strictly a regression model.

Different architectures were trained, namely, (1) an RNN, (2) a GRU, (3) an LSTM
network, and (4) an encoder-like CNN. Models were built and trained in Julia using
Flux [26]; the code used is available at [27]. To train the models, the length of the data
sample was fixed to 104 measurements per individual, corresponding to roughly 34 days.
The individual with the largest coefficient variation was used together with nine randomly
selected individuals as the training data set. Notice that the gradient of the mean absolute
error (MAE) and the mean squared error (MSE) gradient are one and linear on the error,
respectively. Therefore, if the prediction and ground truth values are between −1 and 1,
the largest error per data point is 2; furthermore, most likely the error will be smaller than
1. Hence, the gradient using MSE is smaller than that using MAE. The loss function used
was MAE when training models using the BG-risk standardized data which are bounded
by −1 and 1, whereas for models trained using CGM data, having values between 39 and
400, the MSE loss function was used leading to a loss function gradient per data point
proportional to the error. The length of each input sample was set to 10 points with an
in-between gap equal to the prediction horizon for recurrent-like architectures, whereas for
the CNN, input samples contained 16 previous consecutive points. It was found empirically
that after 50 epochs, all models reached a plateau, while increasing the number of epochs
beyond 50 epochs increased the test error leading to overfitting. Hence, all models were
trained up to 50 epochs.
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Multiple models were trained per architecture and per prediction horizon as described
in Table 1. All architectures used hyperbolic tangent functions (tanh) as the activation
functions, except for RNN0 which used an identity activation function. All recurrent-like
networks were composed of a single unit, whereas three convolutional layers and one fully
connected layer were used for the CNN (Table 2).

Five replicas per architecture and per prediction horizon were trained as described in
Table 1. All models were trained using the risk-score scale except for the RNN0 models,
which were trained using data from the glucose concentration scale. All architectures were
trained to predict either 15, 30, or 60 min into the future. The LSTM performance for the
15 min prediction horizon was significantly worse than the other architectures and is not
reported here.

Table 1. Model prefix and the corresponding description. Several replicas per model per prediction
horizon (PH) were trained. Models were named as Model prefix_number. The model prefix defines the
architecture, the training set, and the training scale used.

Model Prefix Replicas PH Description

RNN0 5 15/30/60 One individual’s data in glucose scale
RNN 5 15/30/60 One individual’s data in risk-score scale
GRU 5 15/30/60 One individual’s data in risk-score scale
LSTM 5 30/60 One individual’s data in risk-score scale
CNN 5 15/30/60 One individual’s data in risk-score scale

CNN10 5 15/30/60 Ten individuals’ data in risk-score scale

Table 2. CNN architecture. The input consisted of the 16 previous measurements arranged in a
4 × 4 lattice with one channel. Regularizers were not required due to the kernel sizes and the NN
size overall.

Type of
Layer Kernel Padding Stride Output

Channels
Activation
Function

Convolution 2 × 2 0 1 4 tanh
Convolution 2 × 2 0 1 8 tanh
Convolution 2 × 2 0 1 16 tanh

Fully
Connected - - - 1 tanh

3. Results

This section presents results for the different architectures, namely the RNN, the GRU,
the LSTM, and the CNN for three different prediction horizons: 15, 30, and 60 min (see
Table 1). All replicas were evaluated on the test set consisting of the N − 10 = 129
individuals’ data. For the time series of each individual, three metrics were computed,
namely the ξ RMSE, the CGM RMSE (by inverting Equation (3)), and the CGM RMSE
weighed with the normalized BG-risk score. For the latter, the normalized BG-risk score is
defined as BG(yt) = y2

t /10, as mentioned previously.
The RMSE of the BG-risk standardized variable, ξ, histograms, and box plots are

shown in Figure 3 for different prediction horizons. The different architectures are specified
in the x-axis. The last-measurement prediction (LM), whereby the last known measurement
is used as the prediction, is also included in the plot. The performance of recurrent-
like architectures was highly variable for the 15 min prediction horizon, whereas the
CNN consistently performed better than recurrent-like architectures. For 30- and 60-min
prediction horizons, the performance is similar among different architectures. In Figure 4,
the CGM RMSE is shown for different prediction horizons. The CGM prediction was
obtained by inverting Equation (3), in order to convert BG-risk standardized data into CGM
data. The CNN had the lowest RMSE for the CGM prediction, with values of 16 mg/dL,
24 mg/dL, and 37 mg/dL corresponding to prediction horizons of 15-, 30-, and 60-min,
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respectively. The performance of the replicas trained with CGM data (RNN0) fluctuated
more than the RNN replicas, which suggests that using standardized data increases the
training process’ robustness. In Figure 5, the CGM RMSE weighed by the BG-risk score is
shown for different prediction horizons. Notice that there is no significant performance
variation compared to Figure 4. However, the RMSE LM prediction slightly decreased
relative to the rest of the NNs, although the decrease is not significant.

(a) (b)

(c)

Figure 3. BG-risk standardized variable, ξ, RMSE for (a) 15, (b) 30, and (c) 60 min prediction
horizon. Each panels shows the RMSE for different architectures specified in the x-axis and for the
last-measurement prediction (LM). Each box corresponds to the model tested on N − 10 individuals.

For a more detailed performance inspection, Figure 6 shows a Clarke error grid [28]
for CGM prediction using the CNN10 and a sample in the test set for 15, 30, and 60-min
horizons. The Clarke error grid shows the differences between a blood glucose predictive
measurement and a reference measurement, and the clinical significance of the differences
between these values. The x-axis corresponds to the ground truth, while the y-axis cor-
responds to the prediction. The diagonal line corresponds to when the prediction value
is the same as the ground truth. This grid is split into five zones: Zone A is defined as
clinical accuracy, zone B as clinically acceptable, whereas zones C, D, and E are considered
clinical errors. Figure 6d shows the ratio of the number of points between CNN10 and LM
that fall in each zone in the Clarke error grid for the three different prediction horizons.
For each zone in the x-axis, values above 1 imply a larger (smaller) number of points from
the CNN10 than the LM. Conversely, values below 1 imply a smaller number of points
from the CNN10 than the LM.

Lastly, shown in Figure 7 is the RMSE of the different replica models divided by
the RMSE of the LM approach. The interpretation is straightforward, i.e., models below
1 perform better than the LM approach, and models above 1 perform worse. The average
performance of CNN is slightly better than the LM approach; however, is not statisti-
cally significant.
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(a) (b)

(c)
Figure 4. CGM prediction root mean squared error for (a) 15, (b) 30, and (c) 60 min horizons, and for
different architectures. Each panels shows the RMSE for different architectures, specified in the
x-axis and for the last-measurement prediction (LM). Each box corresponds to the model tested on
N − 10 individuals.

(a) (b)

(c)
Figure 5. CGM prediction root mean squared error weighed with the normalized BG risk score for
(a) 15, (b) 30, and (c) 60 min horizons, and for different architectures. Each panels shows the RMSE
for different architectures, specified in the x-axis and for the last-measurement prediction (LM). Each
box corresponds to the model tested on N − 10 individuals.
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(a) (b)

(c) (d)

Figure 6. Clarke error grid for CGM prediction using the CNN10 and a sample in the test set for (a) 15,
(b) 30, and (c) 60 min horizons. Panel (d) shows the ratio of the number of points between CNN10 and
LM that fall in each zone in the Clarke error grid for the three different prediction horizons. For each zone
in the x-axis, values above (below) 1 imply a larger (smaller) number of points from the CNN10 than the

LM. In the case of the CNN10, the fraction of points in each zone are: (a) ρ
(15)
A = 0.908, ρ

(15)
B = 0.068,

ρ
(15)
C = 0.003, ρ

(15)
D = 0.021, ρ

(15)
E = 0; (b) ρ

(30)
A = 0.819, ρ

(30)
B = 0.160, ρ

(30)
C = 0.004, ρ

(30)
D = 0.016,

ρ
(30)
E = 0.001; and (c) ρ

(60)
A = 0.566, ρ

(60)
B = 0.345, ρ

(60)
C = 0.003, ρ

(60)
D = 0.085, ρ

(60)
E = 0.001.

(a) (b)

(c)
Figure 7. CGM prediction root mean squared error reduced by the LM prediction for (a) 15, (b) 30, and
(c) 60 min horizons, and for different architectures. Each panels shows the RMSE for different architectures
specified in the x-axis and for the last-measurement prediction (LM). The RMSE of the given model is
divided by the RMSE of the LM. Models below (above) 1 perform better (worse) than the LM approach.
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4. Discussion

A total of three different metrics were shown for the different architectures, namely
the RNN, the GRU, the LSTM, and the CNN and for three different prediction horizons:
15, 30, and 60 min. The performance of the models using BG-risk standardized data is
consistent with that of CGM data, which supports the use of BG-risk standardized data
for glucose prediction. Furthermore, in the case of RNNs, models trained using CGM
data (models with prefix RNN0) performed significantly worse than those trained with
BG-risk standardized data for the CGM 15 min prediction horizon. The latter exhibited
more variability between replicas. In the case of 30 and 60 min prediction horizons,
performances are similar although models trained using CGM exhibited more variability
between different replicas. In the case of recurrent-like networks, no clear improvements
were observed when comparing the different architectures described in Table 1.

The CNN architectures demonstrated the best performance in the 15 min prediction
horizon. While the RNN and the GRU performed similarly, the GRU was more robust
during training. The RNN0 performed significantly worse than the GRU and the RNN.
The 15 min prediction horizon was significantly worse when using the LSTM compared to
the rest of the architectures and is not reported here. For 30 and 60 min prediction horizons,
the results are consistent throughout replicas although no significant improvement in
performance compared to other architectures was obtained. It is worth noting that in the
60 min prediction horizon, the lower bound CGM RMSE is in the range of ≤ 20 for all
models except RNN0 and CNN10. However, it is important to highlight that the CNN10
performance is able to generalize better than the rest by reducing outliers. This is a rather
interesting effect, since by reducing the outliers, there are individuals for which models
other than the CNN10 yield a lower CGM RMSE and therefore a better prediction. Had we
trained our models per individual data set using a smaller data set, we most likely would
have interpreted the lower bound outlier performance as a benchmark which may have led
to a misinterpreted good performance.

Finally, no model displayed a significant improvement in performance compared to
the LM prediction. This suggests that the trained networks were mainly memorizing the
last known measurement. This behavior has also been seen in other work [12], where the
prediction lags the ground truth. Furthermore, in [29] the authors propose using LSTM NNs
to predict future cryptocurrency prices and also observed a lag between the ground truth
value and the prediction, suggesting the lag is not a feature of the particular time series
used. Therefore, computing the relative model performance, defined as the performance
ratio between deep learning model and the LM prediction, as shown in Figure 7, can lead
to a better benchmark. Another way to visualize performance in a finer scale is by using
a Clarke error grid as shown in Figure 6. It is worth noting from the ratio of the number
of points per zone obtained from the CNN10 model and the LM approach (see Figure 6d)
that zones A and B contain approximately the same number of points from both methods,
whereas for zones C, E, and D the ratios go over and under 1, further showing that the NN
is performing similar to the LM approach.

Typical CGM data sets are obtained from individuals wearing CGM sensors. As the
sensors’ output can inform their actions, there is the potential for later measurements to
be influenced by earlier measurements within a feedback loop. However, such decisions
are not well captured in the data sets. For instance, when an individual’s glucose goes
above a given threshold, the individual receives a notification, and the individual may
or may not act upon it (e.g., via an insulin dose). The individual’s action is not captured
in the CGM data set though the effect of the action is. Therefore, a neural network may
learn the effect (lowering glucose) but not the cause (the individual’s action). The same
argument holds for the scenario where glucose goes below a given threshold, which is
medically more concerning for the individual. Therefore, the CGM data set is biased by
default; hence, even CGM data-driven models with perfect prediction cannot be used as
stand-alone CGM management protocols. Instead, they can be used as an extra layer for
glucose management. One may be compelled to think that having contextual information
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on the action taken by the patient (e.g., insulin data) can circumvent this shortcoming
in data-driven models; yet, due to the multiple physiological and activity-wise factors
contributing to glucose behavior, reliable stand-alone data-driven models would require
multiple sources of data capturing all these contributing factors, beyond CGM and insulin
data. This fundamental limitation is inherent in data-driven modeling. Conversely, in silico
models have successfully understood and managed glucose behavior [3–6]. Embedding
neural networks as mathematical operators in ordinary differential equations (NODEs) is a
growing field, which is beginning to yield promising results ranging from OpenAI’s Dalle
2 [30] to immune system digital twin modeling [31].

5. Conclusions

In this paper, a deep learning prediction framework was proposed and tested. The pre-
diction is made using a hypo- and hyperglycemia risk-score scale rather than attempting
to predict glucose concentrations, leading to more robust training. The risk score formula
proposed by Kovatchev et al. [17] was used for this purpose, which symmetrizes the
glucose data. Several models with different architectures were trained and tested. No
significant improvement was found from using deep learning models compared to LM
prediction, suggesting that the trained networks were potentially also memorizing the
last known measurement. The performance is highly dependent on architecture and the
prediction horizon. We presented three metrics for evaluating the performance of our pre-
dictive model for continuous glucose monitoring (CGM) data: the standardized risk-score
root mean squared error (RMSE), the CGM RMSE, and the CGM RMSE weighted by the
normalized BG-risk score. The latter metric considers the associated risk of mis-prediction
and could have the potential for use as a clinical marker. However, further investigation is
required. We emphasize that our results should be interpreted relative to the data set used
and thus have presented the ratio of the prediction error to the last-measurement error for
this purpose.

Finally, it is important to note that our method trains the model using 1 or 10 data sets
and tests it on the remaining 129 data sets, as this allows us to provide statistics on the
model’s performance.

Two main conclusions were drawn/firstly, the need to benchmark model performance
using LM prediction to normalize benchmark results obtained from different data sets and
secondly, that model agnostic data-driven deep learning models may only be meaningful
when combined with mechanistic physiological models.

More diverse data sets are needed to enable better data-driven models trained on a
composite data set. Further emphasis on hybrid models is key for better glucose management.
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Appendix A

In Figure A1, we show the percentage of imputed data per individual (panel a),
the mean and standard deviation of consecutive imputed values per individual (panel b),
and the number of measurements per individuals (panel c). In all plots, we have arranged
the data by ranking the imputed data percentage per individual from smallest to largest.

(a) (b)

(c)

Figure A1. (a) Imputed data percentage per individual. (b) Mean number of consecutive imputed
values per individual. The error bars correspond to the standard deviation. (c) Number of measure-
ments per individual. In all plots, the x-axis is the ranked imputed data percentage from smallest
to largest.
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