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Abstract: Introduction: The present study explores brain connectivity in Parkinson’s disease (PD) 
and in age matched healthy controls (HC), using quantitative EEG analysis, at rest and during a 
motor tasks. We also evaluated the diagnostic performance of the phase locking value (PLV), a 
measure of functional connectivity, in differentiating PD patients from HCs. Methods: High-
density, 64-channels, EEG data from 26 PD patients and 13 HC were analyzed. EEG signals were 
recorded at rest and during a motor task. Phase locking value (PLV), as a measure of functional 
connectivity, was evaluated for each group in a resting state and during a motor task for the 
following frequency bands: (i) delta: 2–4 Hz; (ii) theta: 5–7 Hz; (iii) alpha: 8–12 Hz; beta: 13–29 Hz; 
and gamma: 30–60 Hz. The diagnostic performance in PD vs. HC discrimination was evaluated. 
Results: Results showed no significant differences in PLV connectivity between the two groups 
during the resting state, but a higher PLV connectivity in the delta band during the motor task, in 
HC compared to PD. Comparing the resting state versus the motor task for each group, only HCs 
showed a higher PLV connectivity in the delta band during motor task. A ROC curve analysis for 
HC vs. PD discrimination, showed an area under the ROC curve (AUC) of 0.75, a sensitivity of 
100%, and a negative predictive value (NPV) of 100%. Conclusions: The present study evaluated 
the brain connectivity through quantitative EEG analysis in Parkinson’s disease versus healthy 
controls, showing a higher PLV connectivity in the delta band during the motor task, in HC 
compared to PD. This neurophysiology biomarkers showed the potentiality to be explored in future 
studies as a potential screening biomarker for PD patients. 
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1. Introduction 
The diagnosis of Parkinson’s disease (PD) is currently based on the clinical 

evaluation Poewe, et al. [1] of the cardinal motor symptoms, bradykinesia, rest tremor, 
and rigidity, which represent the hallmarks for the in vivo diagnosis [2] according to the 
current diagnostic criteria for PD [3]. Different strategies have been explored to 
characterize PD features in a non-invasive way. One first approach is to follow the clinical 
diagnostic pathway trying to make clinical evaluations of motor symptoms more objective 
and quantitative, through a motion analysis technique able to characterize PD motor 
symptoms [4–6], such as bradykinesia [7–9], tremors [10–13], rigidity [9,14–16], and axial 
symptoms, such as gait, balance, and postural issues [17–22], also with the support of 
machine learning algorithms [23–27]. Another possible approach is to explore the brain 
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activities that underly and determine the PD symptoms, which are characterized by 
pathological oscillatory activities [28,29] and have been widely used to manage therapy, 
such as deep brain stimulation [30,31], but can be used also as a proxy for PD 
neurophysiology biomarkers identification. 

In this context, neurophysiological tests may help to better understand the 
pathophysiology of PD, and their low cost, brief execution times, and the wide diffusion 
among hospitals represent a competitive advantage in respect to other techniques to 
support PD biomarkers identification in clinical practice. 

Brain connectivity is a method to explore the way how different brain regions interact 
and communicate with each other. The degeneration of nigrostriatal dopaminergic 
neurons, which is the hallmark of the pathophysiology of PD, leads to the dysfunction of 
the basal ganglia–thalamo-cortical pathway, which underlies the PD motor symptoms 
[32]. 

Resting state functional MRI (RS-fMRI) can be used to study the connectivity among 
different brain areas in PD patients. A meta-analysis of RS-fMRI connectivity studies in 
PD patients [33], showed a decreased functional connectivity within the posterior 
putamen. The functional network involving this area and its cortical projections can be 
modulated by levodopa administration [32–34]. 

Among the neurophysiological techniques, electroencephalogram (EEG) is one of the 
most versatile and widely available techniques, it offers good balance between the 
temporal and spatial resolution, meaning that this technology is most frequently used in 
studies on PD biomarkers. 

In de novo PD patients, compared to controls, a reduced coherence in α-β EEG 
frequency bands and a hyperconnectivity in γ band were observed [35]. 

Exploring dynamic networks between neuronal populations in a quantitative way, 
by noninvasive electrophysiological mapping with EEG, could unveil crucial information 
about brain connectivity in PD and subsequently, improve the diagnostic process. 

Nonlinear and nonstationary systems may be analyzed with the phase locking 
methodology [36]. Indeed, the brain can be compared to a nonlinear dynamic system and, 
as such, the phase locking approach can be used for the scope [36–38]. Phase locking value 
(PLV) is a non-linear measure of pairwise functional connectivity (Lee, Liu et al., 2019), 
used to quantify the phase coupling between two biological nonlinear signals in a time-
series, such as electroencephalographic signals [39]. A high PLV between two brain 
regions indicates a high synchrony [40]. 

The present study aims at investigating brain connectivity, through quantitative EEG 
analysis in Parkinson’s disease versus healthy controls, at rest and during a motor task, 
exploring the performance of the phase locking value (PLV) in discriminating the two 
study groups. 

2. Methods 
2.1. Patients and Data Collection 

The database and EEG data utilized in this study were obtained from the University 
of Iowa Hospitals & Clinics (UIHC) Movement Disorders Clinics [41]. The database 
contains high-density EEG (HD-EEG)[42] data from 26 patients with PD and 13 
demographically matched healthy controls (HCs). All patients in the experiment met the 
UK Parkinson’s Disease Brain Bank criteria for the diagnosis of idiopathic PD [43]. All 
patients underwent neuropsychological evaluation using the Montreal cognitive 
assessment (MOCA), EEG signals were recorded at rest and during a specific lower-limb 
pedaling motor task [41] using a customized 64-channels cap (EASYCAP GmbHAm 
Anger, 582237 Woerthsee-Etterschlag, Germany) with a high-pass filter of 0.1 Hz and a 
sampling rate of 500 Hz (Brain Products). Online reference and ground channels were Pz 
and FPz, respectively. Patients and HCs were both instructed to perform a lower-limb 
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motor task during the EEG recording. Therefore, for each subject we analyzed the EEG 
recorded in both conditions (i.e., Resting State and Motor Task). 

2.2. Quantitative EEG Analysis 
Quantitative EEG analysis was performed using the Brainstorm Toolbox for 

MATLAB (Tadel et al., 2011) (The Math Works Inc., Natick, MA, USA), and in home 
MATLAB code. Offline data pre-processing was performed using Brainstorm and 
included: (i) DC removal; (ii) 60-Hz notch filter; (iii) bandpass filter between 1 and 70 Hz 
(linear phase finite impulse response filter); (iv) EEG re-reference to average; (v) and 
correction for pulse and eye-blink artifacts using independent component analysis [44,45]. 

2.3. EEG Connectivity Analysis 
To assess the differences in brain networks among PD and HCs we performed a 

measure of EEG functional connectivity. We selected a total of 180 s continuous epoch 
from the EEG recordings free from relevant artifacts for further analysis [46,47]. As a 
measure of connectivity, we computed the phase locking value (PLV). PLV is an important 
measure of synchronization when studying bio-signals and especially electrical brain 
activities. It is a measure of non-directional frequency-specific synchronization reflecting 
long-range integrations and it assesses the extent to which the phase difference between 
two signals changes over time [36,37,48]. 

Taking into account the lack of consensus in the classification of frequency bands for 
quantitative EEG analysis [47], starting from the most recent International Pharmaco-EEG 
Society (IPEG; [49]) recommendations, also endorsed by the International Federation of 
Clinical Neurophysiology recommendations on frequency and a topographic analysis of 
resting state EEG rhythms [47], the final frequency band selected for the phase locking 
value connectivity analysis was based on the frequency band employed in several 
previous studies [45,46,48] in which, with respect to the IPEG recommendation, was 
selected the fastest delta band 2–4 Hz and a restricted theta band 5–7 Hz. We measured 
the PLV for all possible channel combinations and averaged to obtain a measure of global 
connectivity [46,48] for the following frequency bands: delta: 2–4 Hz; theta: 5–7 Hz; alpha: 
8–12 Hz; beta: 13–29 Hz; and gamma: 30–60 Hz. Connectivity analysis was performed 
separately for the resting state EEG and for the EEG recorded during the lower limb 
pedaling motor task. 

2.4. Statistical Analysis 
Statistical analysis was performed using the R statistical package [50]and MATLAB 

(Mathworks). Data distribution was checked by means of a Kolmogorov–Smirnov test. 
The differences in Global Connectivity among PD and HCs was tested using a three-way 
aligned rank transformed (ART) ANOVA for non-parametric factorial three-way designs 
[51] with Fr 

equency (five levels: delta, theta, alpha, beta, gamma), Group (two levels: PD and 
HCs) and Condition (two levels: resting state and motor task) as within the subject factor. 
A Bonferroni correction was used for post-hoc tests of multiple comparisons when 
needed. 

To estimate the clinical value of EEG connectivity for differentiating between PD and 
HCs, we built receiver operating characteristic (ROC) curves on the PLV connectivity 
values for each frequency band and for each condition (i.e., resting state and motor task). 

The following performance metrics were estimated in terms of outcome prediction: 
(i) sensitivity (ii) specificity, (iii) positive predictive value, (iv) negative predictive value; 
and (v) accuracy. The ROC curve point showing the highest combination of predictive 
values was selected as the optimum cut-off value to differentiate PD vs. HCs. Finally, we 
built non-parametric ROC curves to estimate 95% confidence intervals (CIs) for the area 
under the curve (AUC), sensitivity, specificity, positive predictive value (PPV), negative 
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predictive value (NPV), and accuracy. CIs were validated using 10,000 stratified bootstrap 
replicates [52]. Moreover, a Spearman correlation test was used to assess the correlation 
between MOCA scores and the PLV in each frequency band. Significance level was set at 
p < 0.05. Results are reported as the mean ± standard deviation unless differently stated. 

3. Results 
3.1. Patient Cohort and Control Group 

PD patients (nine females and 17 males) had a mean disease duration of 6.2 years 
(SD: ±3.7), a mean age of 67.3 years (SD: ±9.2), a UPDRS III score of 14.8 (SD: ±7.1), and a 
MOCA score of 23.3 (SD: ±3.9). The healthy controls (five females and eight males) had a 
mean age of 68.9 years (SD: ±8.2) [41]. 

3.2. Comparison between PD and Control Groups 
3.2.1. EEG Connectivity 

The comparison between PD and HCs revealed no significant differences between 
groups (factor group: F(1,370) = 0.76, p = 0.38), but a significant group by frequency interaction 
(F(4,370) = 3.62, p < 0.005; Figure 1), related to a higher connectivity in the delta frequency 
band for HCs compared to PD (Bonferroni corrected p = 0.04; Figure 2). We also found 
lower connectivity values in the gamma frequency band for HCs compared to PD, 
although with a borderline level of significance (Bonferroni corrected p = 0.05; Figure 2). 

The ART ANOVA considering condition and frequency, as within the subject factor, 
showed a significant condition effect (F(1,370) = 10.77, p = 0.001), related to higher global 
connectivity values during the motor task compared to the resting state. A significant 
group by condition interaction was also found (F(1,370) = 5.33, p = 0.02). Post-hoc tests revealed 
a significant difference in connectivity values during the motor task compared to the 
resting state in HCs (Bonferroni corrected p = 0.004; Figure 3), as opposed to PD patients 
who did not reach the statistical significance (p = 0.18). We also found a significant 
condition by frequency interaction (F(4,370) = 3.48, p = 0.008; Figure 3), related to higher delta 
connectivity values during the motor task, as opposed to the resting state (Bonferroni 
corrected p = 0.03; see Figure 3). Finally, we found no correlation between the PLV 
connectivity values and MOCA scores in each frequency band (p > 0.05). 

 
Figure 1. Phase locking value (PLV) connectivity topoplot and comparison between Parkinson 
Disease (PD) and Healthy Control (HC). PLV is expressed as the average across channels to obtain 
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a measure of global connectivity. Notice how PLV in the delta range is higher in HC compared to 
PD. *: p < 0.05. 

 
Figure 2. Boxplot distribution of the phase locking value (PLV) connectivity values between 
Parkinson disease (PD, red) and healthy control (HC, blue) across different frequency bands during 
the motor task. Black lines represent median values. Dots denote values that are farther than 1.5 
interquartile ranges. Notice how PD subjects present a lower delta connectivity (p = 0.04) and a 
higher gamma connectivity, although with a borderline level of significance (p = 0.05). *: p < 0.05. 

 
Figure 3. Boxplot distributions of the phase locking value (PLV) mean connectivity values. Boxplot 
distributions of the mean PLV values for different frequency bands across Groups: Parkinson 
disease (PD) vs. healthy control (HC) and conditions: motor task (red) vs. resting state (blue). Black 
lines represent median values. Dots denote values that are farther than 1.5 interquartile ranges. 
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Connectivity values were significantly higher during the motor task compared to the resting state 
in HC (p = 0.004), as opposed to PD (p = 0.18). *: p < 0.05. 

3.2.2. ROC Curve Analysis 
The ROC curve analysis showed that the PLV connectivity analysis in the delta fre-

quency band during the motor task band was able to differentiate HC from PD (Figure 4) 
with an area under the curve (AUC) of 0.75 (95% CI, 0.58–0.89), a sensitivity of 100% (95% 
CI, 100–100%), a specificity of 50% (95% CI, 31–69%), a PPV of 50% (95% CI, 42–62%), an 
NPV of 100% (95% CI, 100–100%), and an accuracy of 66.7% (95% CI, 54–79%). 

 
Figure 4. Receiver operating characteristic (ROC) curve (black line) (left image) and confusion ma-
trix (right image) of the phase locking value (PLV) in the delta frequency band during the motor 
task for the classification of healthy controls (HCs) and Parkinson disease (PD) patients in our co-
hort. Non-parametric ROC curve (blue line), binormal ROC curve (red line) and 95% confidence 
interval (C.I.; dotted lines) are shown. AUC = area under the curve. CI = confidence interval. TPR = 
true positive ratio; FPR = false positive ratio. 

4. Discussion 
In the present study, we evaluated brain connectivity through a quantitative EEG 

analysis in Parkinson’s disease versus healthy controls, at rest and during a pedaling mo-
tor task, exploring the diagnostic performance of the phase locking value (PLV) in dis-
criminating the two study groups. 

In the literature, few studies explored the PLV analysis in the PD population. 
Bertrand, McIntosh, Postuma, Kovacevic, Latreille, Panisset, Chouinard and Gagnon [40] 
compared the baseline resting state EEG of healthy subjects and PD patients, and after a 
follow-up classified the PD patients who developed dementia and patients who did not 
developed dementia. The results were assessed in terms of both signal synchrony and 
variability at different timescales, respectively, and statistically expressed by the PLV and 
multiscale entropy (MSE). In the delta frequencies, the PLV was lower in the PD who de-
veloped dementia compared to the PD without dementia and controls, while, for the beta 
and gamma frequencies, the PD-dementia patients showed a higher PLV when compared 
with the PD-non dementia patients, and both groups showed a higher PLV when com-
pared to the controls. Conversely, the signal variability was lower at the higher frequen-
cies and higher at the lower ones. 

The main hypothesis in Gerardo Sánchez- Dinorín et al.’s [53] research was that func-
tional connectivity abnormalities could predict cognitive decline in Parkinson’s disease. 
The study showed that the increased synchrony of frontal slow waves predicts cognitive 
decline in PD patients after less than a decade with the illness [53]. 
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In Soojin Lee et al.’s [54] study, the PLV was employed to evaluate the effect of do-
paminergic medication and electrical vestibular stimulation (EVS) in Parkinson’s disease. 
While levodopa medication was effective in normalizing the mean PLV only, all EVS stim-
uli normalized the mean, variability, and entropy of the PLV in the PD subject, demon-
strating both low- and high-frequency EVS exert widespread influences on cortico-cortical 
connectivity [54]. 

In the present study, the results showed no significant differences in the PLV connec-
tivity between the two groups (PD vs. HCs) during the resting state, but a higher PLV 
connectivity in the delta band during the motor task in the HCs compared to PD. In addi-
tion, comparing the resting state versus motor task for each group, only in the HC results 
showed a higher PLV connectivity in the delta band during the motor task. These results 
showed a deficit for the PD subjects in modulating the delta band PLV brain synchrony 
during movement, in contrast with the healthy controls. In addition, in our study the PLV 
connectivity was not correlated with cognitive performance. 

These preliminary results also show that the higher value of the PLV during the mo-
tor task could be a potential useful tool as a neurophysiological connectivity biomarker 
for PD. Considering the ROC AUC of 0.75, which indicates a good discrimination perfor-
mance, the sensitivity of 100%, indicating the ability to identify a high number of patients 
potentially affected by PD, and a NPV of 100% indicating the ability to exclude only truly 
HCs, combined with its lower specificity and PPV, leads this predictor to be the candidate 
as a screening biomarker. 

The main limitations of the study are the small number of the sample, the type of 
motor task which was not compared to different motor tasks of lower limbs or tasks of 
upper limbs, and in line with the lack of consensus in the classification of frequency bands 
for the quantitative EEG analysis [47], the specific band selected for the present study can 
be a limitation, therefore further studies are needed to confirm the results and the pro-
posed applications. 

5. Conclusions 
The present study evaluated the brain connectivity through a quantitative EEG anal-

ysis in Parkinson’s disease versus healthy controls, showing a higher PLV connectivity in 
the delta band during the motor task in the HCs compared to PD. This neurophysiology 
biomarker showed the potentiality to be explored in future studies as a potential screening 
biomarker for PD patients. 
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